
TECHNISCHE UNIVERSITÄT MÜNCHEN
Fakultät für Informatik

DIPLOMARBEIT

Übersetzung funktionaler Sprachen
mittels GCC – Tail Calls

Andreas Bauer

Abgabe: 15. Januar 2003

Aufgabensteller:
Prof. Dr. Manfred Broy

Betreuer:
Dr. Markus Pizka

ERKLÄRUNG

Ich versichere, dass ich diese Diplomarbeit selbständig verfasst und
nur die angegebenen Quellen und Hilfsmittel verwendet habe.

Datum Unterschrift

MUNICH UNIVERSITY OF TECHNOLOGY
Department of Informatics

A Thesis submitted for the Degree of
Diplom Informatik

Compilation of Functional Programming
Languages using GCC — Tail Calls

Andreas Bauer

Date: January 15, 2003

Supervisor:
Prof. Dr. Manfred Broy

Instructor:
Dr. Markus Pizka

ACKNOWLEDGEMENTS

Thanks. . .

to my project instructors — Dr. Markus Pizka, Dr. Clem Baker-Finch, and
Prof. Simon Peyton Jones: for counsel, encouragement, and for turning
this thesis into an international joint venture.

to my project supervisor — Prof. Manfred Broy: for giving me the opportu-
nity to work on such an interesting project.

to the Head of Department of Computer Science, ANU — Dr. Chris Johnson:
for providing me with all the necessary facilities in an inspiring environ-
ment, again.

to Bob Edwards: for technical assistance and for endless personal support.

to Jason Ozolins: for pointing me in the right direction at the right time and
for knowing the answers to basically all questions one could ever dare to
ask.

to Fergus Henderson: for meeting me in Melbourne and providing the most
valuable reviews on my source code submissions.

to Mark Probst: for meeting me in Munich to discuss his thesis and ideas
on the subject.

to Richard Walker: for TEXnical assistance.

to the GCC developers — Richard Henderson et al.: for insightful comments
on the mailing list and patience.

to the Canberra Linux Users Group: for advice and suggestions.

to my parents — Horst and Waltraud: for their unfailing love and support.

This thesis was supported by an Abroad Scholarship granted by the Deutscher
Akademischer Austauschdienst (DAAD) which enabled me to finish the majority of
this work at the Australian National University (ANU) in Canberra.

vii

ABSTRACT

In the late 1980s, functional programming language implementations com-
monly translated a program into a C output file which could then be processed
by an independent C back end. Those functional language front ends were ei-
ther faced with the complexity of a single large C function that contained the
functionality of the entire program, or they were constrained by the lack of
support for proper tail calls in C. Even today, a lot of functional programming
language implementations use C to gain native binary executables for various
target platforms. Using this technique, they are still faced with the same prob-
lems as their early predecessors were; proper tail calls are still missing as a
feature of modern C back ends.

This work gives the technical background and rationale as to why it is so
difficult to implement proper tail call support in a system’s C compiler and
it discusses different approaches to overcome this traditional problem in the
widespread and freely available GNU Compiler Collection (GCC), so that func-
tional language front ends like The Glasgow Haskell Compiler (GHC), which
use GCC, gain a greater amount of flexibility. It also shows how many C com-
piler constraints which make tail call support such a difficult feature in terms of
implementation, date back to design issues made in early versions of the UNIX
operating system.

In order to address, in particular, GHC’s need for support of indirect tail
calls in the GCC back end, a series of GCC source code changes are described
which have become integral parts of the compiler suite. The changes enable
the open source compiler to optimise a class of indirect tail calls on Intel-based
32 and 64-bit platforms and are designed to be portable to any other platform
which is not bound by its ABI to not support this notion. A GCC test suite to
verify such future ports has been developed and is described as well.

Furthermore, this work examines the GCC project in general, whose ever
growing core exceeds 500,000 lines of code, and it explains how this huge open
source product is being developed and driven forward by a worldwide commu-
nity of programmers. In doing so, a special emphasis is placed on the process of
becoming involved in the community and how to start contributing ideas and
code that implements them. Because of the remarkable number of over 200
supported hardware and software platforms, this work also explains the com-
piler’s highly portable internals in detail and it shows how GCC can be used to
bootstrap a variety of different cross compilers.

viii

CONTENTS

Chapter 1 — Basic Concepts . 6

1.1 Functional Programming Languages . 6
1.2 Tail Calls . 7
1.3 GNU C as Intermediate Target . 9
1.4 The Application Binary Interface . 11
1.5 The Disease of C . 15

Chapter 2 — The GNU Compiler Collection 18

2.1 Overview . 18
2.2 Internals . 24

2.2.1 Passes of the Compiler . 25
2.2.2 Abstract Syntax Trees . 27
2.2.3 Register Transfer Language . 29
2.2.4 Machine Descriptions . 30

2.3 Building the Compilers . 32

Chapter 3 — Existing Tail Call Support in GNU C 36

3.1 Tail Recursion and Sibling Calls . 36
3.2 Current Implementation . 38
3.3 Limitations . 42

Chapter 4 — Possible Enhancements . 52

4.1 Design Aspects . 52
4.2 Super Sibcalls . 55

4.2.1 Concept . 55
4.2.2 Implementation . 56
4.2.3 Super Sibcalls vs. Normal Sibcalls 60

4.3 Creating a new Calling Convention . 61
4.4 Summary . 62

Chapter 5 — Improving GNU C . 64

5.1 Introduction . 64
5.2 A Pragmatic Approach . 65
5.3 Introducing a New Target Hook . 66

ix

x CONTENTS

5.4 Extending the Machine Description . 68
5.4.1 Initial Situation . 69
5.4.2 Converting the Macro . 69
5.4.3 Improving the Hook . 70
5.4.4 Adjusting the 32-bit Call Patterns 71
5.4.5 Adjusting the 64-bit Call Patterns 74
5.4.6 Using the Hook . 77

Chapter 6 — Results . 79

6.1 Technical Impact . 79
6.2 A New Test Suite for Sibcalls . 82
6.3 A Practical Guide to Working on GCC 84

Chapter 7 — Conclusions . 89

7.1 Current State . 89
7.2 Future Work . 90
7.3 Resumé . 91

Appendix A — Compiler Foundations . 93

A.1 Activation Record . 93
A.2 Basic Block Analysis . 94
A.3 Bootstrapping . 94

Appendix B — Internet Addresses . 96

Appendix C — Source Code . 98

C.1 Indirect Sibling Calls . 98
C.2 Super Sibcalls . 118
C.3 An Application: Newton Square Root 118

Appendix D — Hardware and Software Used 121

Bibliography . 122

INTRODUCTION

The GNU Compiler Collection (GCC) offers optimised code generation
for a variety of imperative and object oriented programming languages, such as
Ada, C, C++, Java, Pascal, and others. Furthermore, it supports (far) more
than 200 different software and hardware platforms [Pizka 1997] which strongly
relates to the fact that its source code is free and open, i. e. released under
the terms of the GNU General Public License [Free Software Foundation 1991].
That means, everybody can change the compiler suite’s source code as long as
the original copyright is not violated and the changes are published under this
very same license enabling others to benefit from these changes. It is this very
license, which allows others to port the collection to their platform of choice.

Today’s development community around the compiler suite is large — in fact,
very large. It consists of hundreds of volunteers, paid software engineers, con-
tractors, students, government employees (e. g. NASA) and, of course, an even
larger user base. A team of researchers around Prof. Simon Peyton Jones of Mi-
crosoft Research, Cambridge, UK, deploys GCC in their own project The Glas-
gow Haskell Compiler (GHC; see Peyton Jones et al. [1992] and Appendix B), a
functional programming language implementation that achieves portability by
using GCC as a compiler back end. The concept is simple, but very effective:
GHC translates a Haskell input file into a complete C program, which can then
be compiled into native assembler on every platform that GCC supports. In
this way, the researchers’ focus can rest solely on their Haskell front end, while
an independent group of developers maintains a highly portable back end.

However, compared to imperative programming languages, the functional
counterparts like Haskell, Scheme, ML, or Lisp demand fundamentally different
implementation concepts. One of the most outstanding differences between
the two worlds is the occurrence of a large number of tail calls in functional
programs which, of course, also appear in the GHC generated intermediate C
source code. As § 1 will explain more accurately, a tail call can be thought of
as a function call which is the last instruction of the calling function.

The C notion to translate any function call is to allocate a block of memory
on the system’s run time stack, called the stack frame, which holds sufficient
space for local variables, arguments, the return address, and so on. When func-
tions “tailcall” to another function though, it means that their computation has
basically finished at this point (as it is the last instruction), so the stack frame
should become redundant and thus be deleted before issuing the call. This,
however, is not how C commonly works or what it was designed for. In C, a

1

2 INTRODUCTION

stack frame gets removed when the called function (the callee) returns control
back to the caller and not any sooner. Hence, given a sufficiently large number
of such tail calls in a C program, the run time stack would overflow, because
redundant stack frames would not be released in time. (§ 1 also contains a more
detailed explanation of this entanglement and the severe problems associated
with it.)

For many years, people have tried to come up with a solution to the tail call
optimisation problem in C, because GHC is, by far, not the only functional lan-
guage implementation which relies on a C compiler’s back end; amongst others
there are, for example, SCHEME->C [Bartlett 1989], Mercury [Henderson et al.
1995], and Bigloo [Serrano and Weis 1995]. They all share the same concerns
regarding a common C compiler’s shortcoming in terms of tail call support.

The most obvious, and most frequently presented solution to the tail call
problem (in GCC) would be to simply reuse stack frames and realise the function
call via a jump command rather than the manufacturer’s special call instruction.
The advantage of such an approach is that a jump, generally, does not reserve
run time stack space to create a new frame (see also § 1). In theory, this
sounds very simple and straightforward but, obviously, it must be very hard to
implement in a real world compiler like GCC, because after nearly two decades
of existence, GCC still lacks such a very important optimisation feature.

THE AIMS OF THIS THESIS

It all comes down to methods. Everybody wants results, but no
one is willing to do what it takes to get them.

— Dirty Harry, Sudden Impact (1983)

If the efficient translation of tail calls as they are broadly used not only by func-
tional programs but also by their accompanying intermediate C code, is such a
crucial aspect in successfully creating executable programs, the question arises,
“Why has yet no one come up with a good implementation to overcome this
fundamental problem?” After all, a system like SCHEME->C dates from 1989
and a decade later, the methodology as well as the availability of optimising C
back ends which are able to handle tail calls efficiently, seems to be unchanged.

Although, over the years, many different papers, articles and theses (e. g.
Nenzén and R̊ag̊ard [2000], or Probst [2001]) have been written which deal
with this problem as well as to provide potential answers to the above question,
it was not yet possible to find a concept which would effectively enable a popular
compiler suite like GCC to properly optimise tail calls. As a matter of fact, a
lot of people still underestimate the huge number of problems involved in such
a task, because they fail to see even the most basic limitations that a language
like C imposes on a functional front end. This is why some of the more recent
publications also examine alternative languages, such as C--, to represent the
intermediate functional program (see, for example, Peyton Jones et al. [1999],
or Pizka [2002]).

INTRODUCTION 3

The research associated with this thesis was always meant to be a “hands
on” project, meaning that its aim was to make a practical impact, rather than
restate the well known results which have been concluded several times before
without actually tackling the tail call problem (of GCC) at all. In an early
meeting at the University of Technology in Munich, Prof. Simon Peyton Jones
made it very clear that the successful compilation of functional programming
languages using GCC as a back end depends strongly on the optimisation of tail
calls, and that any results of this thesis would be useless (to his GHC project),
should they fail to make practical impact. Thus, a primary goal of this work
was not only to examine the problem (again), but also to remove some of the
constraining factors which, so far, hindered tail call optimisation in GCC. All
the attendants1 agreed to the idea that merely rephrasing the problem would
not be an option this time.

Hence, this thesis is not only meant to present an in depth analysis of the
reasons why GCC offers poor tail call support, but it will also sketch solutions,
their implementation and, finally, also code changes which have been adopted
into mainline GCC to make a noticeable difference in terms of successful tail
call optimisation.

Furthermore, this thesis fulfils yet another purpose, which is to aid as an
introductory text to GCC’s internals and its general development, because a lot
of the common documentation targets only at experienced GCC programmers.
Hence, topics like intermediate code representation, the various compilation
stages and even cross compilation are covered to help others getting used to this
extensive compiler suite. Also, great emphasis has been placed upon software
engineering aspects, i. e. the thesis deals with questions like “How can a code
base which exceeds 500,000 lines of code remain maintainable?”, or “Which is
the best starting point when trying to modify GCC yourself?”, etc. To very
experienced (open source) software developers, some of the answers may come
naturally, but for most people it is quite miraculous to see a huge project, as
GCC is, progress, especially because most of its developers have never met or
even spoke in person.

TERMINOLOGY AND NOTATION

There are many different, partly misleading names associated with the GNU
Compiler Collection. Just recently (Dec. 2002) the GCC steering committee
has officially abandoned the old style name “GNU CC”, referring to the GNU
Compiler Collection. Nowadays, people commonly use the acronym GCC when
they mean the whole suite but use, for example, GNU C, if they only refer to
the C compiler in particular. This document will follow that tradition and will
refer to the compiler collection as “GCC”, and uses “GNU C” to refer only to
its C components.

1The meeting consisted of Prof. Simon Peyton Jones (Microsoft Research, Cambridge, UK),
Dr. Markus Pizka (University of Technology, Munich, Germany), Mark Probst (University of
Technology, Vienna, Austria), and the author of this text.

4 INTRODUCTION

References and citations in this text appear in the form § 2.5 (Section 2.5),
or as Knuth [1998a, § 2.5] (Section 2.5 of Donald Knuth’s book The Art of
Computer Programming, 1998). Many authors prefer to use page numbers,
instead of citing chapters and sections, but due to the fact that this document
used both German and English editions of the very same books, the chosen
approach seemed much more reasonable and also practical. The use of italic
font in this text is mainly for emphasis (e. g. “this can be applied to all lines
alike”) and for first occurrences of important terms (e. g. “a sibcall is a special
call mechanism”).

THE STRUCTURE OF THIS THESIS

The body of the thesis is divided into seven chapters:

� § 1 deals with the basic concepts and terminology underlying this work. It
accurately explains the notion of “tailcalling”, the concept of using stack
frames and gives reasons why a C back end may not be well suited to
implement a general tail call optimisation at all.

� In § 2, the GCC project is outlined — its structure, the way people work
on it, and its internals, i. e. the part which actually generates code for
various targets.

� The existing handling of tail calls in GCC is described in § 3. This chapter
introduces custom terminology, which is unique to GCC, and examines
the technical reasons for GCC’s inability to eliminate tail calls.

� § 4 discusses various different approaches to the problem and also sketches
their technical realisation in the compiler suite.

� The implementation of a rather pragmatic approach which actually caused
a practical impact not only on the GCC community is described in § 5 of
this work.

� § 6 describes this thesis’ results by giving practical examples and some
important use cases of the newly achieved enhancements.

� The conclusions in § 7 describe the current state of GCC, after the solution
has been adopted and elaborates on future work needed to turn the results
into an even broader optimisation mechanism for the compiler.

There are four appendices: Appendix A contains basic compiler terminol-
ogy which should be covered by the according text books, but may be useful
as an appendix when trying to understand this text, because all the required
terms can be found together in a single document. Experienced (compiler) pro-
grammers may want to skip this part. Appendix B contains Internet addresses
(URLs) to software referred to in this thesis and which did not seem fit for the
bibliography. The source code which the text refers to, i. e. the implementation

INTRODUCTION 5

of the proposed solutions, can be found in Appendix C and on an attached CD-
ROM. The hardware and software which was used to work on this interesting
problem is summarised in Appendix D.

This document was typeset on the UNIX-like operating system GNU/Linux,
using Donald Knuth’s excellent document preparation system TEX together
with Leslie Lamport’s macro package LATEX 2ε. During the six months of work,
all text has been under version control, automated by CVS, GNU Make and
various other UNIX tools. The fonts used in this document are Computer
Modern, Computer Modern Sans and Computer Modern Typewriter. Unless,
explicitly denoted otherwise, the figures have been either drawn manually by
using TEX commands, or by using the X11-based vector drawing program Xfig
by Brian V. Smith, and the interactive plotting program Gnuplot by Thomas
Williams and Colin Kelley.

CHAPTER ONE

BASIC CONCEPTS

This chapter introduces the basic concepts and terminology which are un-
derlying this work. It also presents some short examples and important appli-
cations to help make these ideas and terms transparent.

1.1 FUNCTIONAL PROGRAMMING LANGUAGES

Unlike imperative programming languages, the functional world emphasises the
evaluation of expressions, rather than the execution of commands. In most
cases, the mere definition of a function is already the program’s source code
itself. For example, a recursive definition of Euclid’s algorithm [Knuth 1998b,
§ 4.5.2] to get the greatest common divisor of two numbers may look like this:

gcd(a, b) =

a, if a = b
gcd(a− b, b), if a > b
gcd(a, b− a), if a < b

In a functional programming language like Haskell, the body of function gcd
could then be implemented accordingly:

gcd a b | a==b = a
| a>b = gcd (a-b) b
| a<b = gcd a (b-a)

This small piece of code satisfies computation and is, indeed, very similar to
the mathematical definition of the function. In fact, it looks so much alike,
that it can be intuitively understood even by people who do not possess any
programming skills.

What is more, functional programs consist only of such functions and the
entire program itself is also written as a function. Generally, there are no
assignment statements (which are common in any imperative language) and
computation is solely based upon the arguments of functions and the corre-
sponding return values. This notion is also known as “side effect free”, because
functions are not able to change anything except their return values.

6

1.2 TAIL CALLS 7

1.2 TAIL CALLS

One of the most essential techniques for providing such a “natural” way of
programming with values and functions is the concept of recursion and in par-
ticular tail recursion, just as it gets applied in the example of gcd: the recursive
call to gcd is always the last instruction until, finally, a = b.

Definition (Tail Call). A call from function f to function b is a tail call iff
(in a series of instructions) the call is the last instruction of f . A tail call is tail
recursive iff f and b are not two distinct functions.

Basically, this sums up a more formal definition by Clinger [1998]. It implies
that the contents of the caller’s activation record (see Appendix A) become
redundant when issuing a tail call (with disregard to certain technical aspects
which may prevent that and which are discussed in § 3.3).

Example 1. The call to function bar is in the tail position as it is the very
last instruction of foo. During the execution of the subroutine, the previous
activation record is no longer required:

int foo (float a, float b)
{
...

return bar (a/2);
}

Example 2. In this example the final call to bar is not a tail call, even
though it seems to be in the tail position. The last instruction of foo is really
the assignment of bar’s return value. The activation record of the caller must
be kept alive during the execution of the subroutine. Its contents do not become
redundant:

void foo (float a, float b)
{
int c = 0;
...

c = bar (a/2);
}

The second example shows that it is not always trivial to decide whether
a call is really in the tail position or not. While there are efforts by people
trying to detect tail calls on a syntactic level [Probst 2001, § 3], the decision is
commonly pushed into a compiler’s back end or, to be more precise, into the
basic block analysis (see Appendix A).

Another case where it is not obvious at all whether the caller deals with a
tail call or not, is given in the next example.

8 BASIC CONCEPTS 1.2

Example 3.

void foo (float a, float b)
{
...

bar (a/2);;
}

The additional semicolon after the call to bar basically translates to a NOP
instruction1. All good compilers realise this and will remove NOPs during
optimisation and then go on to handle the cleaned up code “as always”. How-
ever, with syntactic tail call detection this is not possible. Hence, this artificial
example, like any other C peculiarity, would demand a specific case-by-case
precaution in the parser.

Definition (Proper Tail Call). A tail call from function f to function b is
a proper tail call iff the memory held by the stack frame of f can be released
before jumping to function b. A proper tail call is properly tail recursive iff f
and b are not two distinct functions.

In other words, the essence of proper tail calls is that a function can return
by performing a tail call to any other function, including itself [Clinger 1998].
Naturally, functional programming languages like ML, Haskell, Scheme and
many others, rely heavily on the efficiency of such tail calls. In fact, the IEEE
standard for Scheme [IEEE Computer Society 1991, § 1.1] states:

“Implementations of Scheme are required to be properly tail-recursive.
This allows the execution of an iterative computation in constant
space, even if the iterative computation is described by a syntacti-
cally recursive procedure.”

While new language implementations may be able to provide this level of
integration, it is often lacking in already existing frameworks, such as the GNU
Compiler Collection (GCC) being originally designed to support merely imper-
ative programming, and therefore not dependent on recursion and tail calls, at
least up to the same extent.

Example 4. A slightly modified version of the Newton Square Root (NSR)
algorithm [Knuth 1998b, § 4.3.1, 4.3.3] will help to demonstrate how much the
implementation of an algorithm can, indeed, depend upon proper tail calls and
what happens to even simple computations, if such an optimisation is lacking.
NSR is a tail recursive approximation for a value’s square root. The discussed
example uses an accuracy of 0.0000001 to compute the square root of 101. The
according C source code is available in Appendix C.

As can be seen in Fig. 1, the NSR program aborts with a segmentation fault
after approximately 28 seconds2 during which time it used 261,953 tail calls

1NOP is an acronym for “No Operation”.
2The time measured contains I/O for printing the number of function calls made. Without

such debugging information, the program aborts almost instantly.

1.3 GNU C AS INTERMEDIATE TARGET 9

Segmentation Fault

Time in minutes

Function calls × 1000

St
ac

k
sp

ac
e

in
M

B
yt

es

02:0001:3001:0000:3000:00

120010008006004002000

40

35

30

25

20

15

10

5

0

Fig. 1. Using the input value 101, the NSR program, which can be found in Ap-
pendix C, aborts after approximately 28 seconds of run time.

and 8.38 MBytes of run time stack space (on the same computer system that
is described in Appendix D). The graph also shows that NSR would have
consumed 40 MBytes of stack space, if it was possible to run the application for
two minutes. This, however, is hard to achieve with most of today’s software
and hardware systems. Even though the algorithm is correct and works well
for a number of input values (e. g. 100), the presented NSR implementation can
hardly be used to compute the square root of (say) 101, if compiled with an
unmodified GCC.

In addition to that, an ordinary function call is also rather expensive com-
pared to a proper tail call. A call sequence of 10,000,000 ordinary calls (and,
consequently, returns or the stack would overflow) required 290 ms on the same
test architecture, while an implementation which deployed proper tail calls fin-
ished in less than half the time, after only 130 ms.3

1.3 GNU C AS INTERMEDIATE TARGET

A number of different programming languages, not only those that are func-
tional, use GCC as an intermediate target platform, because it saves the imple-
mentors from maintaining a compiler back end for every hardware and software
platform they aim to support. GCC is widespread, well maintained, and highly
portable, and therefore, in many cases, ideally suited to offer a new language
and associated advantages, even to exotic systems.

3This can easily be verified with GCC version 3.4 (or greater) which contains this work’s
improvements, either by modifying NSR accordingly, or by calling some “dummy” functions
in a loop and, respectively, tail recursive. Time measured does not contain I/O.

10 BASIC CONCEPTS 1.3

Haskell Intermediate
C Source Code

Abstract Syntax
Trees (AST)

Register Transfer
Language (RTL)

GCC
Symbol Table

RTL
Optimisation

Output

Compiler Back-End Machine Language

Scanner Parser

Fig. 2. The different passes of the GNU C compiler.

As already pointed out in the introduction to this text, one of these “newer”
language implementations using this approach is the Glasgow Haskell Compiler
(see Appendix B) which was started in 1992 by a team of researchers led by
Prof. Simon Peyton Jones [Peyton Jones et al. 1992] and which also provided
the original motivation for this work4. The Glasgow Haskell Compiler (GHC)
is a complete implementation of the functional programming language Haskell,
but is also able to perform as just a front end to GCC, in particular to GNU C,
because it can translate the Haskell source into a C program. Figure 2 roughly
sketches the process a GHC generated C source code has to go through in order
to obtain assembly output for a certain architecture. RTL (Register Transfer
Language) and AST (Abstract Syntax Trees) are GCC’s internal intermediate
code representation.

Of course, the “one big shortcoming” GHC has to deal with by using GCC
as its back end is the lack of support for proper tail calls. A situation that
was partly addressed by using a Perl script called “Evil Mangler”5. Its purpose
is to make programs properly tail recursive, using pattern matching on the
assembly code of function epilogues and prologues. Even though the mangler
proves useful, the ultimate goal is to get rid of this script in favour of a clean
and portable solution in GHC’s back end. (Obviously, pattern matching on
assembly is everything but portable. In fact, it can be considered “evil”.)

Other front ends, especially earlier ones, have taken a different approach
and compiled their language into a single large C function to overcome the
problem of a growing and finally collapsing run time stack. Janus, for example,
is one of these language implementations [Gudeman et al. 1992]. However, these
projects share other probably even tougher, problems because of the high level
of complexity found in their target C function.

4In comparison, the first official releases of GNU C were already available in the mid 1980s
and have been maintained ever since.

5More in depth information on the “Evil Mangler” is available from The Glasgow Haskell
Compiler Commentary at http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/.

1.4 THE APPLICATION BINARY INTERFACE 11

The intermediate C code of GHC, on the other hand, is not easy to read either,
although it is divided into semantically and syntactically disjoint functions. Not
only to make it at least somewhat easier for the back end, GHC maintains its
own internal and independent stack frame for function arguments and the like.
Effectively, most subroutines do not accept ordinary parameters because there
is simply no need to store them, conventionally, a second time on the machine’s
main run time stack. Most of the GHC generated function calls are indirect
though, i. e. via pointers, which relates partly to the fact that GHC’s execution
model can be largely based upon the Continuation Passing Style (CPS). In CPS,
the program flow (i. e. the computation) relies upon an implicit parameter, the
continuation which points to the next function being executed. It is, of course,
a big advantage not having to worry about function arguments too much when
trying to specifically optimise GHC’s back end, but the indirect calls bear great
inconveniences as well. Not all platforms support the idea of indirect calls
equally well, and GCC being designed for portability seems not necessarily the
best choice of a compiler when extensions need to be added that primarily refuse
to work on some systems (see also § 3.3).

Example. The call to the externally linked function bar is indirect via func-
tion pointer ptr. It is, in fact, an argumentless tail call and a sure candidate
for optimisation:6

int (*ptr) (); /* Function pointer. */
extern int bar (); /* Externally linked function. */

int foo (int arg)
{
...

ptr = bar; /* Pointer points at bar now. */
return (*ptr) (); /* Indirect tail call. */

}

1.4 THE APPLICATION BINARY INTERFACE

In order to understand why GNU C does not yet offer proper tail calls, it is also
important to look at the historic evolution of the compiler and its language.

In 1973, when the UNIX operating system was entirely rewritten in C, it
basically meant that its core could be ported to other platforms within months
[Salus 1994]. The availability of the first ports to different, but similar hardware
made it soon necessary to standardise an Application Binary Interface (ABI)
for each family of processors, such as Intel ix86 for instance. Typically, an ABI

6Note, the example uses the “old style” notation for indirect calls, followed by The C Pro-
gramming Language [Kernighan and Ritchie 1988, § 5.11], because the ()-operator originally
took a function and an argument list; and the function operand of () did not decay to a
pointer. Therefore, when referring to an actual pointer, it had to be written as (*ptr) ().
In accordance to the ANSI-C standard [American National Standard for Information Systems
1989], modern compilers will also accept the syntax ptr ().

12 BASIC CONCEPTS 1.4

defines a system interface for compiled application programs, enabling users
to transfer programs from one such architecture to another. Furthermore, it
describes how C types align to bytes and bits and what the memory layout
generally looks like.

Stack Frames. Since the C language was originally designed for, and imple-
mented on UNIX [Kernighan and Ritchie 1988], it comes as no surprise that the
ABI was specified with this language in mind. C, being an imperative language,
uses and opens new stack frames upon each function call (regardless whether it
is in the tail position or not) whose layout is defined by the corresponding ABI.
The stack frame organisation for the Intel i386 architecture, as it was originally
published together with the UNIX System V documentation [The Santa Cruz
Operation 1996] by AT&T is depicted in Fig. 3.

Position Contents Frame
4n+ 8 (%ebp) argument word n High addresses

. . . Previous
8 (%ebp) argument word 0
4 (%ebp) return address
0 (%ebp) previous %ebp (optional)
−4 (%ebp) unspecified Current

. . .
0 (%esp) variable size Low addresses

Fig. 3. The standard UNIX stack frame on Intel i386.

Calling Conventions. The arguments for a called function, commonly re-
ferred to as the callee, are pushed onto the stack by the caller and in reverse
order. That is, the syntactically first argument is pushed onto the stack last.
This enables C to support functions, taking a variable amount of arguments as
with, for instance, printf:

int printf (const char *format, ...)

On UNIX and UNIX-like systems, this convention is also known as the C
Calling Convention. Other languages, like Pascal or Fortran use their own
standards which, in general, are not compatible with C programs. In C, the
arguments are usually referenced relative to a frame pointer (%ebp), while func-
tion variables are addressed via a negative offset to the stack pointer (%esp).
Note, however, that a frame pointer is not always required.

Therefore, GNU C, like all other C compilers, translates a function call into
a prologue sequence to create a stack frame providing space for the activation
record. The called function in turn expects the compiler to put the arguments
on top of its own stack frame and it expects to have space for its own variables
at the expanding lower end of the stack as is required by the calling convention.

1.4 THE APPLICATION BINARY INTERFACE 13

Example. In accordance with the C Calling Convention, the Intel i386 ma-
chine code for a function call under UNIX may look like this:

foo:
...
call bar Make function call (in the tail position).
leave
ret

bar:
pushl %ebp Prologue. Push base pointer onto stack.
movl %esp, %ebp Set stack pointer accordingly.
subl $88, %esp Allocate stack space.
movl %edi, -4(%esp) Save register.
movl %esi, -8(%esp) Save register.
...

And the corresponding epilogue at the end of a function’s machine code looks
typically like this:

...
movl %edi, %eax Set up return value.
addl $80, %esp Epilogue. Free local stack space.
popl %edi Restore register.
popl %esi Restore register.
leave Restore frame pointer.
ret Pop return address.

Having to restore registers, as it happens in this example, is not a necessity. It
really depends on the use of (which) registers, types of arguments and so on.
As a matter of fact, many function calls can be translated without precautions
for callee saved registers.

Table 1. INTEL i386 REGISTERS AND THEIR ASSIGNED ROLE

Name Role “Belongs” to

%eax Function return register; otherwise scratch. Callee
%ebp Frame pointer holds base address for stack frame; Caller

optionally, a scratch register.
%ebx, %edi, %esi No specified role. Caller
%ecx, %edx Scratch registers. Callee
%esp Stack pointer to bottom of stack frame. Caller

%st(0) Floating point return register. (Must be empty
upon function entry and exit.)

%st(1) – %st(7) Floating point scratch registers. (Must be empty
upon function entry and exit.)

The designated roles of registers in the C Calling Convention on Intel i386
systems can be seen in Table 1. On this platform all registers are global, thus

14 BASIC CONCEPTS 1.4

visible to both the caller and the callee. %ebp, %ebx, %edi, %esi, and %esp are
the callee saved registers, all others belong to the called function; these caller
saved registers must be saved before making a call, so that their values may be
preserved.

Moreover, the calling convention also defines who cleans up what parts of
the run time stack. In C, it is common for the caller to reserve and clean up
stack space for the callee’s incoming arguments. So the callee is left with the
responsibility to clean up its own local space, but not the argument space.

Naturally, the run time stack will grow during the execution of a C program,
but usually not to the extent that the stack would “overflow” because functions
release memory at the moment where control returns to the caller, i. e. old stack
frames get destroyed by the epilogue. But, if applied to functional programs,
this concept would prove of no value at all, since the “unusually high” level
of recursion (compared to a C program) and in particular tail recursion would
require too many live stack frames, hence memory, and even the most robust
run time environments would asymptotically fail to satisfy such demands (see
Example 4, p. 8).

Table 2. THE C AND PASCAL CALLING CONVENTIONS

Calling Convention Argument Passing Stack Maintenance

C Right to left Calling function pops
arguments from the stack

Pascal Left to right Called function pops
arguments from the stack

Due to the fact that GCC, C and UNIX are historically tied together in the
sense that GCC adopted the ABIs and calling conventions for the C language in
a UNIX-like environment, it now becomes clear why this popular and powerful
compiler needs more than just a “few changes” in order to support a wholly
new programming concept which is totally different to “trusty old C”. And
even though GCC is able to use a Pascal-like7 calling convention (see Table 2),
amongst others, it is often not trivial to mix and link foreign concepts together
into one application or run time library. The Pascal-like calling convention uses
a different epilogue, freeing space occupied by the incoming arguments:

bar:
...
leave Epilogue. Restore frame pointer.
ret $4 Pop return address and additional 4 bytes

of the own argument space.

7The convention is called “stdcall” and was introduced rather early, due to the fact
that operating systems like Apple’s Mac OS and Microsoft Windows originally offered
a Pascal-like system interface. It can be applied by tagging function declarations with
attribute ((stdcall)).

1.5 THE DISEASE OF C 15

Another way to mix different calling conventions, other than those already
supported by mainstream GCC, is opened up by the System V Application
Binary Interface [The Santa Cruz Operation 1996] itself. The ABI requires
only those functions to conform to the system’s standard, which are declared in
a global scope and thus can be linked by other program modules. Naturally, two
external modules have to agree on a calling convention in order to be linked,
but it does imply that one program alone can not make up its own internal
conventions. In order to issue system calls though, such a program must still
comply to the operating system’s interface definition. (Of course, on UNIX-like
environments it is typically a C interface, although others are also possible.)

Alternatives. Parameter passing on a system must not necessarily conform
exactly to the presented conventions in order to stay compatible. Minor modifi-
cations are tolerated, especially if a target’s hardware was designed to support
them, as is the case with AMD’s and Intel’s 64-bit architectures, for instance.
One such alternative is Passing in Registers. That is, a limited number of prede-
termined registers are used to pass a callee’s arguments. Language constructs
like structs or unions are still passed via the stack as it is defined by the
C Calling Convention. Such a modification constitutes a consistent, therefore
compatible stack frame layout and improves system performance at the same
time.

1.5 THE DISEASE OF C

Pointers are like jumps, leading wildly from one part of the data struc-
ture to another. Their introduction into high level languages has been
a step backwards from which we may never recover.

— C. A. R. Hoare, Hints on Programming Language Design (1973)

Yet another important reason why C compilers in general have difficulties of-
fering proper tail calls to functional language front ends is a feature of C itself.
It is perfectly legal to assign the address of a short lived function’s local to a
long lived global pointer. While this can be a “disease” when being faced with
its impact, there are situations where this concept proves useful. For example,
it is not possible to implement some functions such as strtok without a sim-
ilarly high degree of flexibility in place, and even (some of its more sensible)
implementors realise this by putting a warning statement in their man page (see
Fig. 4). However, strtok still became part of the ANSI-C standard [American
National Standard for Information Systems 1989, § 4.11.5.8] and appeared first
in The C Programming Language [Kernighan and Ritchie 1988, §B3].

Naturally, such “pointer acrobatics” is not only counter intuitive to the func-
tional world’s notion of side effect free programming, but also makes source
code hard to read and understand.

Example 1. In the following code snippet, the tail call to bar can not be
transferred into a proper tail call, because the stack frame of foo is still alive
(or, should be) when issuing control to the subroutine:

16 BASIC CONCEPTS 1.5

NAME
strtok, strtok_r - extract tokens from strings

SYNOPSIS
#include <string.h>

char *strtok(char *s, const char *delim);

char *strtok_r(char *s, const char *delim, char **ptrptr);

. . .

BUGS
Never use these functions. If you do, note that:

These functions modify their first argument.

The identity of the delimiting character is lost.

These functions cannot be used on constant strings.

The strtok() function uses a static buffer while
parsing, so it’s not thread safe. Use strtok_r() if
this matters to you.

Fig. 4. Excerpt from the UNIX man page of strtok(3).

int *global;
...

float foo ()
{
int local = 0;
global = &local;
return bar (global);

}

Example 2. To emphasise this point and to show how “obscure” things can
get in C, the code can even be made to look “worse”. The problem, however,
remains the same, though now it is well disguised: the pointer global is an
external pointer to a pointer which in turn points to a value:

float foo ()
{
extern int ***global;
int local = 0;
**global = &local;
return bar (global);

}

1.5 THE DISEASE OF C 17

Clearly, this legal example (see ISO/IEC JTC1/SC22/WG14 1999, § 3.1.2.1, for
verification) is not suited for (say) pure syntactic analysis. The references, even
though embedded in a function, are still global and in order to know whether
the call to bar can be turned into a proper tail call, some in depth examination
is essential.

Such a high level of indirection (in an already particularly “dangerous code”)
does not make sense and the majority of language front ends would be well
advised to avoid it, but in order to implement a clean mechanism for detecting
and optimising proper tail calls it is absolutely necessary to cover all aspects of
“legal C”, even if they are only of marginal practical value, as it is the case in
the given examples.

As a consequence, C back ends desiring to automatically detect proper tail
calls, must provide a sophisticated liveness analysis. That is, at call site, it
must be known whether it is safe to scrape the locals off the stack or not, as
the subroutine may still have references to contents of the caller’s stack frame.
The C programmer, however, does not necessarily benefit from a complicated
detection algorithm, since he would be out of his mind deploying such an unsafe
mechanism of referencing locals; and he is also able to manually resolve deep
recursion — simply speaking — by jumping to code labels or by using loops any-
way (see Aho et al. [1986, § 2.5]). In most “pure C scenarios”, it does not matter
whether the caller’s stack frame is kept during the execution of subroutines, or
not. Therefore, not too many C compiler authors would place this feature high
up in their list of priorities, very much to the disadvantage of functional lan-
guage front ends and the like. Potential authors may consider this as a large
overhead for relatively little gain in return.

So it is probably not wrong to say that C pointers are a “blessing”, because
they offer flexibility beyond the possibilities of other languages like Java or Lisp
for instance, and they are a “disease” at the same time, because the very concept
can be wickedly abused. Even though that poses a serious problem in terms
of tail call optimisation, there are different ways to overcome it. Chapters § 4
and § 5 discuss several different approaches to making compiler improvements
without introducing new error potentials due to pointer constraints.

CHAPTER TWO

THE GNU
COMPILER COLLECTION

The following sections introduce the GNU Compiler Collection (GCC),
its internals and describe how development revolves around it. Without doubt,
GCC is one of the largest and most complicated open source software packages
available today, right next to giants like OpenOffice (see Appendix B) and the
various UNIX-style operating system kernels [Cubranic 1999, Wheeler 2001].
And despite the helpful GCC mailing lists and online archives, it comes as no
surprise that it takes quite a long while for someone to get comfortable with its
inner structure and the way it is being driven forward by the worldwide com-
munity of developers. A very good understanding of these aspects is required
though, when trying to contribute code to this project.

2.1 OVERVIEW

The original GNU C compiler was started in the early 1980s by Richard Stall-
man, who aimed to create a whole operating system based on free software.
While his various tools (Bison, Emacs, etc.) that should have enabled him to
create the free operating system GNU1 grew and gained popularity, the kernel
development itself stalled somewhere on the way. (This unfortunate situation
was fixed a few years later when Linus Torvalds used these tools to write Linux,
which then became known as GNU/Linux.)

Nowadays, it is hard to find an operating system for personal computers that
is not supported by GCC, or which does not ship the compiler as an integrated
part of the platform. Apple’s Mac OS X (version 10.2) is compiled entirely
using GCC 3.1, for instance. But also, companies like Sun, The Santa Cruz
Operation (SCO), and others offer GCC as their standard system compiler.
Manufacturers of handheld devices, such as Compaq with its iPAQ series that
run on RISC processors of the ARM family, can use GCC to compile their
application code. As a matter of fact, there are various commercial embedded
Linux distributions available (e. g. Lineos’s Embedix Linux) which do exactly
that.

1GNU is a recursive acronym for “GNU’s Not Unix”. Trying to resolve it may corrupt the
human brain.

18

2.1 OVERVIEW 19

These properties emphasise GCC’s flexibility and portability alike, but also
point to the fact that its code base appears to be a “monster”, when daring
a first glance into it. At the time of writing this thesis, the core of it exceeds
500,000 lines of code, rapidly growing as new languages, features and targets
get added.

Table 1. PARTIAL LIST OF SUPPORTED TARGETS

Target Supported Platforms Some Systems and Binary Formats

alpha DEC/Compaq/HP Alpha family -alpha-linux, -alpha-pc-linux-gnu
arm ARM, StrongARM family -elf, -aout
hppa HP’s PA-RISC series -hpux, -linux
i386 Intel 32-bit family -elf, -aout, -linux*aout
ia64 Itanium processor family -linux

m68k Motorola 68k family -aout, -coff
mmix Donald Knuth’s hypothetical -knuth-mmixware

RISC processor
rs6000 IBM and Motorola PowerPC -darwin, -linux-gnu, -netbsd,

family, RS/6000 systems -aix

sparc Sun Sparc processors -netbsd-*, -elf, -sun-solaris*
x86 64 AMD x86-64 -linux

*Further combinations between the types or versions of operating systems and the supported
binary formats are possible.

Table 1 contains a few of the GCC supported target platforms. (It is not
part of this thesis to describe them all in great detail, but to show how complex
and flexible GCC’s code generation design really is.) Each target description
consists of a triplet which has the form cpu-vendor-os, where os can be system
or kernel-system, as there are operating systems supporting more than just
one standard [Vaughan et al. 2000]. For example, it is possible to compile C
programs for i386-gnu-linux-elf and for i386-gnu-linux-aout, both being
different targets. Sometimes, it is enough to specify merely a tuple such as
arm-elf, arm-linux or armv2-linux for instance, with differences being only
subtle. This is usually done when the vendor tag is unknown, or only a single
vendor is supported. The number of combinations of all supported platforms
and binary formats exceeds 200, including systems like Donald Knuth’s MMIX
RISC processor which does not even physically exist, except in his (upcoming
rewrite of the) book series The Art of Computer Programming [Knuth 1998a]
and in a designated virtual environment called “MMIXware” [Knuth 1999]. It
is even possible to create code for nearly all of these targets without running
the compiler natively. This process is called “cross compilation” and enables
developers to generate foreign assembly code, for example ARM code on an
Intel-based host (see § 2.3). In the case of MMIX, this is the only option to
obtain code at all.

20 THE GNU COMPILER COLLECTION 2.1

Project Management. GCC, like other large open source projects with a
huge number of developers, is managed mainly via mailing lists and by a steer-
ing committee who decides upon release schedules and the general direction
of the package. The source code itself is version controlled by a public CVS2

server that only the official GCC maintainers may write to — anyone else has
read-only access. All changes to the central source code repository are first pre-
sented and discussed on the lists before a maintainer either agrees to accept the
contribution, or explains why he rather rejects it. In fact, even the maintainers
themselves present their code changes to the public mailing lists in order to get
feedback and to find out how their planned contribution interacts with different
parts of the compiler suite.

Such a public review can be very useful to eliminate obvious bugs in new
code, but also helps upcoming contributors getting used to the development
style and cycle of GCC. Furthermore, it ensures that only high quality code
finds its way into the CVS repository. The GCC project has the reputation of
having one of the most strict reviewing processes of all open source projects,
even more stringent than (say) the reviewing process for the Linux kernel. Then
again, it can be questioned whether a bug in Linux is quite as bad as a bug in
GCC, which is being used to compile Linux and the software that runs on top
of it.

Maintainers also require code changes to be thoroughly tested first and to be
made against the “right” CVS branch. This means that GCC improvements
have to be made against the basic-improvements-branch, bug fixes usually
against “mainline” and other changes against specific branches for a particular
purpose, e. g. as it is the case with the ssa or the mips-3 4-rewrite-branch.
The following list (which is far from complete) contains some CVS tags and
branch names:

gcc latest snapshot: This tag marks the latest code snapshot of all of GCC.
Snapshots are made daily or weekly to get a working code base that rep-
resents ongoing development and can be used for testing (e. g. SuSE is
running regular SPEC20003 tests on development snapshots) and docu-
mentation purposes.

gcc-3 2-branch: This tag marks the development branch of the GCC 3.2.x
series. This is where small fixes and documentation updates should be
applied.

x86-64-branch: This branch contains a stable version of GCC for the AMD
x86-64 development/port.

pch-branch: This branch contains work in progress towards a precompiled
header implementation, including a lot of garbage collector changes. (Many
of these changes are already extant in Apple Computer’s own version of
GCC and are waiting to be merged into this branch.)

2CVS is an acronym for Concurrent Versions System (see http://www.cvshome.org/).
3The SPEC CPU2000 suite contains a number of C, C++, Fortran77 and Fortran90 pro-

grams that are compiled by GCC and then run with defined inputs (see http://www.spec.

org/osg/cpu2000/).

2.1 OVERVIEW 21

gcc-3 4-basic-improvements-branch: This branch is for basic, straight-
forward improvements to the compiler. In general, this branch is away
furthest from official release, as new features need more time to be tested
than small bug fixes and the like.

mips-3 4-rewrite-branch: This branch is for “largish” rewrites to the mips
back end.

At the time of writing, the latest stable release of GCC is version 3.2. How-
ever, a bug fix branch to the upcoming release 3.2.1 is also maintained, as well
as a branch for the future release 3.3, and finally another branch for all new
features that will show up for the first time in version 3.4 of the compiler (prob-
ably another two years from now). “Special branches” are usually not directly
connected to any of these, but will merge the changes from time to time just
to keep up.

Submitting a Patch. Contributions to GCC are commonly made by sending
a patch to the mailing list. A patch is a piece of code which contains all the
differences, found by the diff command of one file (or many), compared to
a newer version of this file. The patch must address the correct CVS branch
and it must follow certain style guidelines, set up by the GCC maintainers
and accessible via the official web page. The guidelines cover aspects like the
preferred indentation of code, the handling of return values and the formatting
of error messages, etc. Not following the established coding conventions usually
results in not getting a patch approved; a rewrite would then be necessary.

Another requirement is to test the compiler first with a new patch in place.
This can be done by running the extensive internal regression test suite and
by making use of GCC’s many DejaGnu input files. DejaGnu is a common
framework for testing programs, providing a single front end for all the indi-
vidual test cases available. Like many other programs, GCC employs it to test
specific features of the compiler and its supported targets. Testing is, in fact, a
rather substantial part of GCC (at the time of writing, taking up about 20% of
the total space of the basic-improvements CVS tree) with companies like Red
Hat paying engineers to do (almost) nothing else, but trying to make GCC’s
testing procedures more perfect. Interestingly enough, the tests have gotten
so complex that they can hardly be pursued by a single person anymore. For
example, Red Hat runs daily regression tests on numerous different platforms
while, at the same time, monitoring GCC’s ChangeLog very carefully. If a new
regression is detected, no matter on which platform, the bug gets associated
with a ChangeLog entry and the author of the according patch is receiving an
email with a description of the problem.

Since an automated framework can not cover all possible faults and traps, it
is also absolutely essential to bootstrap (see Appendix A) the compiler before
publishing code changes to it. Should the changes affect multiple platforms
at once, bootstrapping has to be performed at least with a cross compiler or,
alternatively, native.

22 THE GNU COMPILER COLLECTION 2.1

However, not all patches address the code base of GCC. It is also possible
to submit changes to other parts of the project, like documentation or its web
page. But even then it is required to test these changes and to make sure that
everything (e. g. the documentation) “builds”. The GCC manual is written
in the Texinfo format [Chassell and Stallman 1999] and integrates smoothly
into its overall build process. The input files can also be used to compile the
documentation into Postscript, PDF, HTML, or LATEX format.

Copyright Assignment Process. GCC, like all other “GNU Software” is
released under the General Public License [Free Software Foundation 1991].
That is, GCC’s source code is free and open to anyone interested, including
commercial vendors, but must not be modified without applying this very same
license to all changes. One of the implications of that is that, every contributor
has to write to the Free Software Foundation (FSF), which is currently holding
the copyright on GCC, and apply for a “Copyright Assignment Form”. If
the FSF has received the signed form from the potential contributor, thereby
signifying an agreement to accept the terms of the GPL and that the contributed
code is free from any rights of a third party, it is possible for program changes
to be considered for submission.

For the sake of writing this thesis, such a form has been signed by the author
and by the University of Technology, Munich, to assign the copyright of all of
the author’s changes back to the FSF.

This “tedious” step is absolutely necessary to ensure that all code submissions
can be accepted without having to worry about a university or an employer
claiming copyright on them several years later when it is already too late to
remove the affected code.

Parties Involved. Although GCC’s copyright is owned by the FSF, many
other parties with commercial interests pay their staff to help develop the soft-
ware or to maintain servers to host it. Of course, it implies that they have read,
understood and accepted the terms of the GPL, just like anyone else.

Some of these parties involved, for example, are companies like Red Hat and
SuSE who ship the compiler with their Linux distribution, Apple who base their
entire system software on GCC, IBM who use GCC for system development
on a wide range of platforms and many, many others. It is no coincidence
that most of the GCC maintainers are being paid for their work by some of
these companies. They are professional software engineers (professional in a
sense that they are no less skilled than developers working on “closed source”
software) continuously enhancing the code quality and stability of the compiler
suite. And they are also the reason for the strict code reviewing process each
submission has to undergo. There are, however, countless numbers of private
people and students working on GCC as well, who are not being paid by anyone
and are merely doing it to finish a course project or to gain experience in
developing open source software.

2.1 OVERVIEW 23

Problems. But not all is well in the world of GCC; sheer project size and
numerous language front ends bear risks and problems, especially in terms of
maintenance. While GCC grew over the years, the number of people with an
overview over the package as a whole, has shrunk. Nowadays, it is mainly
the 14 members from the steering committee who know how all the different
components of GCC interact and are connected with each other (contrary to
the popular belief that open source software is always and necessarily developed
by thousands or millions of keen volunteers, at the same time).

All bigger projects have similar maintenance concerns, but not all have these
concerns resolved by the same methods. GCC’s approach to these problems is
both a public and pragmatic one including the following cornerstones:

� It has an up to date online documentation which reflects all the latest
developments; it is available via the official GCC homepage and contains useful
information to developers and users alike. Most of the content is contributed by
developers though, because all program changes that may affect the API and
also internal interfaces, must be documented, promptly. The documentation is,
just like the source code itself, under version control and it is not uncommon
for patches on documentation to get rejected on the mailing lists, e. g. due to
bad formatting or use of language.

� Program changes must be documented by commenting the source code to
ensure that other developers understand the rationale of the changes. Accepted
patches must also be accompanied by a detailed ChangeLog entry which states
the author and the general purpose of the patches. Some claim that GCC’s
best documentation is its source code and the comments; and this, in many
ways, is true.

� The GCC project has several mailing lists: gcc-help to discuss mat-
ters ranging from a failing program installation up to questions about copy-
right assignments and the like, gcc to discuss the general development of the
GNU Compiler Collection, including its front ends, gcc-patches to discuss
new source code and documentation submissions, gcc-bugs to report problems
with the compiler or its code generation, etc. These lists are a formidable entry
point for GCC development, and their extensive, searchable online archives give
answers (at least) for common questions almost instantly.

� A chief concept of GCC is modularity, also to enable program ports with
relatively little effort. Unlike other, sometimes faster compilers, GCC’s archi-
tecture is layered and structured and patches trying to implement a new feature
at the expense of modularity are almost certainly rejected to keep the project
as “clean” as possible (for a detailed description of the layers and stages of
the compiler suite, see § 2.2). After all, GCC does not impose deadlines or has
“feature hungry” clients who possess the economic power to demand the latest
compiler properties at any cost if necessary.

With these and the other aforementioned techniques in place it is and has
been quite possible to manage the “GCC monster” successfully over the last two
decades. As the compiler suite expands, new CVS branches will be created and
concurrent versions of code and documentation kept, but despite the breathtak-
ing size of the project, development will not cease at all. The modular concept
of GCC does probably not even demand more than a steering committee to

24 THE GNU COMPILER COLLECTION 2.2

understand the “bigger picture” and it is quite possible even for beginners to
become GCC experts by starting out with modifying only certain bits of it, not
knowing the details of neighbouring parts.

Although all this is good news, it still takes skilled developers and software
engineers who are capable of applying these techniques and tools, such as CVS,
to a comprehensive and distributed project like GCC; because, even the most
sophisticated project management would be worthless, if there were no experts
able to apply it in practice. For example, it takes usually more than a week,
before people are allowed to add further patches to the repository again, when
the GCC project merges the mainline CVS trunk with a development branch —
obviously, not a trivial task at all.

2.2 INTERNALS

According to Richard Stallman, GCC’s original goal “was to make a good,
fast compiler for machines in the class that the GNU system aims to run on:
32-bit machines that address 8-bit bytes and have several general registers.
Elegance, theoretical power and simplicity are only secondary. [Stallman 2002]”
Nowadays, the compiler runs on many other systems than just 32-bit and keeps
getting ported as new architectures hit the markets (e. g. AMD’s x86-64).

The major reason for GCC being greatly portable is that it contains no ma-
chine specific code. However, it does contain code that “depends on machine
parameters such as endianness (whether the most significant byte has the high-
est or lowest address of the bytes in a word) and the availability of autoincrement
addressing [Stallman 2002].”

It was a second, implicit goal of the GCC project to generate high quality
code for all different target platforms through intensive optimisation. This goal
could only be equally achieved on all supported platforms alike by performing
the most crucial parts of the optimisation in a target-independent manner.
Hence came the necessity for RTL (Register Transfer Language), which is GCC’s
main intermediate code representation, in important parts independent of the
processor GCC is running on. The architecture for the RTL machine is an
abstraction of actual processor architectures. It therefore reflects the technical
reality of familiar concepts like storage, processor registers, address types, an
abstract jump command, and so on. In RTL it is possible to express almost all
of the input program, though not to the extent that would allow front ends to
use it solely as an interface. RTL is meant for internal use only, and modifying
GCC’s functionality almost always results in modifying the way it handles and
generates RTL on a particular host, or for a particular target.

For those situations in which it is useful to examine the internal RTL repre-
sentation of a function, GCC is able to produce a dump from within a certain
stage of compilation, e. g. right before the sibcall optimisation pass starts. The
RTL dumps are syntactically similar to the Lisp programming language, though
not directly related (see Fig. 1).

The proper way to interface GCC to a (new) language front end is with the
tree, or AST (Abstract Syntax Tree) data structure, described in the source

2.2 INTERNALS 25

(insn 11 10 12 (nil) (set (reg/f:SI 59)
(mem/f:SI (symbol_ref:SI ("ptr")) [0 ptr7+0 S4 A32])) -1 (nil)

(nil))

(call_insn 12 11 14 (nil) (set (reg:SI 0 eax)
(call (mem:QI (reg/f:SI 59) [0 S1 A8])

(const_int 4 [0x4]))) -1 (nil)
(nil)
(nil))

Fig. 1. Part of a typical RTL dump; two instructions (insns), preparing an indirect
function call via the pointer ptr.

files tree.h and tree.def. They are the foundations of RTL generation and
often it is necessary to have multiple strategies for one particular kind of syntax
tree, that are usable for different combinations of parameters. Such strategies
may also vary greatly from target to target, but can be addressed in a machine-
independent fashion, and will affect only the platforms that really need adjust-
ments.

2.2.1 Passes of the Compiler

Figure 2 shows a simplified diagram of GCC’s compilation stages of which
only some are relevant for this work. In order to keep things in perspective,
only the important passes are described in this chapter. For a more complete
explanation that covers the whole process in detail, see the GNU Compiler
Collection Internals [Stallman 2002].

Parsing. This pass reads the entire text of a function definition, constructing
a high level (Abstract Syntax) tree representation. Because of the semantic
analysis that takes place during this pass, it does more than is formally consid-
ered to be parsing. Also it does not entirely follow C syntax in order to support
a wider range of programming languages. The important files (for this work at
least) of this pass are tree.h and tree.def which define the format of the tree
representation, c-parse.in which describes the main parser itself, and a few
more which will appear later in this text.

RTL Generation. The conversion of the Abstract Syntax Tree data struc-
ture tree into RTL code takes place in this pass. It is actually done statement-
by-statement during parsing, but for most purposes it can be thought of as a
separate single pass. This is also where the bulk of target-parameter -dependent
code is found and where optimisation is done for if conditions that are compar-
isons, boolean operations or conditional expressions. Most importantly though,
tail calls and recursion are detected at this time. Furthermore, decisions are
made about how best to arrange loops and how to output switch statements.
Among others, the source files for RTL generation include stmt.c, calls.c,
expr.c, function.c and emit-rtl.c. Also, the file insn-emit.c, generated

26 THE GNU COMPILER COLLECTION 2.2

Optimisation
(Repeated)

Jump

Parsing
Tree

Optimisation
RTL

Generation
Sibling Call

Optimisation

SSA Based
Optimisation

Jump
Threading

Common
Subexpression
Elimination

Global Common
Subexpression
Elimination

Loop
Optimisation

Data Flow
Analysis

Jump
Optimisation

Instruction
Combination

Register
Movement

Instruction
Scheduling

Register Class
Preferencing

Instruction
Scheduling

Global Register
Allocation

Local Register
Allocation

Basic Block
Reordering

Delayed Branch
Scheduling

Branch
Shortening

Final Pass:
Assembler

Output

Register Scan

Reloading

Fig. 2. A simplified, sequential diagram of the compilation process in the back end,
when a sufficiently high level of optimisation is enabled.

2.2 INTERNALS 27

from a target machine description is deployed in this pass. The header file
expr.h is used for “communication” within this stage.

Sibling Call Optimisation. An accurate definition of a sibling call can be
found in § 3. This pass is responsible for tail recursion elimination, and tail and
sibling call optimisation. The purpose of these optimisations is to reduce the
overhead of function calls, whenever possible. A main source file of this pass is
sibcall.c, even though a lot of decisions on optimisation candidates are made
in earlier stages (even more so due to the outcome of this work).

Final Pass (Assembler Output). In this pass, the assembly instructions
for a function are created and machine-specific peephole optimisation is per-
formed at the same time. The function entry and exit sequences are produced
directly as assembler code, i. e. they never exist in RTL. The interesting source
files of this pass are final.c and insn-output.c. The latter is generated au-
tomatically from the machine description by a tool called “genoutput”. The
header file conditions.h is used for “communication” between these files.

2.2.2 Abstract Syntax Trees

“The central data structure used by the internal representation is the tree.
These nodes, while all of the C type tree, are of many varieties. A tree is
a pointer type, but the object to which it points may be of a variety of types
[Stallman 2002].” In many ways the trees4 correspond to ordinary syntax trees,
e. g. as they are described by Aho et al. [1986], but they surpass their semantic
expressiveness by allowing nodes to carry additional information used in later
compilation stages. To give an example, there are certain tree slots reserved for
the back end which can hold generated RTL, or additional front end information
such as the “tailness” of a function call. (The latter does not currently exist in
mainstream GCC. This thesis contains source code to implement it (see § 4.2).)

With the TREE CODE macro it is possible to determine the kind of a tree node,
such as INTEGER TYPE, FUNCTION TYPE, POINTER TYPE, etc. Other macros exist
to test certain attributes of tree nodes, such as TYPE VOLATILE P which checks
whether a function returns at all. In general, a macro can be thought of as a
predicate if it ends with “ P”.

Figure 3 shows the usage of the TREE TYPE macro and some additional fields
and flags a tree node typically contains. Most of the fields are for internal
use only, but lang flag x is typically reserved for language front ends and
not further specified anywhere in the GCC documentation. TREE TYPE can be
used to obtain all sorts of different information, e. g. when applied to a pointer
to a function (POINTER TYPE) it returns the function type; when applied to a
function type it can be used to obtain the return type, and so on.

4From this point forward, trees will be referred to in normal type, rather than in this

font, except when talking about the actual C type tree.

28 THE GNU COMPILER COLLECTION 2.2

*()

.type .common

type

.type.common

type

.type .common

int_cst = {...}
real_cst = {...}
vector = {...}
string = {...}
identifier = {...}
decl = {...}
type = {...}
list = {...}
vec = {...}
exp = {...}
block = {...}

common = {...}
values = 0x85652a0
size = 0x20
size_unit = 0x171
attributes = 0x0
uid = 2
precision = 16
mode = VOIDmode
string_flag = 0
no_force_blk_flag = 0
needs_constructing_flag = 0
transparent_union_flag = 0
packed_flag = 0
restrict_flag = 0
pointer_depth = 0
lang_flag_0 = 0
lang_flag_1 = 0
lang_flag_2 = 0
lang_flag_3 = 0
lang_flag_4 = 0
lang_flag_5 = 0
lang_flag_6 = 0
user_align = 0
align = 4
pointer_to = 0x0
reference_to = 0x4019cc40
symtab = {...}
name = 0x401af770
minval = 0x401af8c0
maxval = 0x401b62ec
next_variant = 0x0
main_variant = 0x4019cc40
binfo = 0x0
context = 0x0
alias_set = 1075553000
lang_specific = 0x0

chain = 0x401af3f0
type = 0x4017e700
code = FUNCTION_DECL
side_effects_flag = 0
constant_flag = 0
addressable_flag = 1
volatile_flag = 0
readonly_flag = 0
unsigned_flag = 0
asm_written_flag = 0
unused_0 = 0
used_flag = 1
nothrow_flag = 0
static_flag = 1
public_flag = 1
private_flag = 0
protected_flag = 0
bounded_flag = 0
deprecated_flag = 0
lang_flag_0 = 0
lang_flag_1 = 0
lang_flag_2 = 0
lang_flag_3 = 0
lang_flag_4 = 0
lang_flag_5 = 0
lang_flag_6 = 0
unused_1 = 0

int_cst = {...}
real_cst = {...}
vector = {...}
string = {...}
identifier = {...}
decl = {...}
type = {...}
list = {...}
vec = {...}
exp = {...}
block = {...}

chain = 0x0
type = 0x401713f0
code = FUNCTION_TYPE
side_effects_flag = 0
constant_flag = 0
addressable_flag = 0
volatile_flag = 0
readonly_flag = 0
unsigned_flag = 0
asm_written_flag = 0
unused_0 = 0
used_flag = 0
nothrow_flag = 0
static_flag = 0
public_flag = 0
private_flag = 0
protected_flag = 0
bounded_flag = 0
deprecated_flag = 0
lang_flag_0 = 0
lang_flag_1 = 0
lang_flag_2 = 0
lang_flag_3 = 0
lang_flag_4 = 0
lang_flag_5 = 0
lang_flag_6 = 0
unused_1 = 0

common = {...}
values = 0x4016fe4c
size = 0x4016e8a0
size_unit = 0x4016eac0
attributes = 0x0
uid = 173
precision = 0
mode = DImode
string_flag = 0
no_force_blk_flag = 0
needs_constructing_flag = 0
transparent_union_flag = 0
packed_flag = 0
restrict_flag = 0
pointer_depth = 0
lang_flag_0 = 0
lang_flag_1 = 0
lang_flag_2 = 0
lang_flag_3 = 0
lang_flag_4 = 0
lang_flag_5 = 0
lang_flag_6 = 0
user_align = 0
align = 64
pointer_to = 0x40199cb0
reference_to = 0x0
symtab = {...}
name = 0x0
minval = 0x0
maxval = 0x0
next_variant = 0x401af540
main_variant = 0x4017e700
binfo = 0x0
context = 0x0
alias_set = -1
lang_specific = 0x0

common = {...}
values = 0x0
size = 0x4016e4e0
size_unit = 0x4016e580
attributes = 0x0
uid = 8
precision = 32
mode = SImode
string_flag = 0
no_force_blk_flag = 0
needs_constructing_flag = 0
transparent_union_flag = 0
packed_flag = 0
restrict_flag = 0
pointer_depth = 0
lang_flag_0 = 0
lang_flag_1 = 0
lang_flag_2 = 0
lang_flag_3 = 0
lang_flag_4 = 0
lang_flag_5 = 0
lang_flag_6 = 0
user_align = 0
align = 32
pointer_to = 0x4017d930
reference_to = 0x0
symtab = {...}
name = 0x40171af0
minval = 0x4016e540
maxval = 0x4016e560
next_variant = 0x4019d2a0
main_variant = 0x401713f0
binfo = 0x0
context = 0x0
alias_set = 2
lang_specific = 0x0

int_cst = {...}
real_cst = {...}
vector = {...}
string = {...}
identifier = {...}
decl = {...}
type = {...}
list = {...}
vec = {...}
exp = {...}
block = {...}

chain = 0x0
type = 0x0
code = INTEGER_TYPE
side_effects_flag = 0
constant_flag = 0
addressable_flag = 0
volatile_flag = 0
readonly_flag = 0
unsigned_flag = 0
asm_written_flag = 0
unused_0 = 0
used_flag = 0
nothrow_flag = 0
static_flag = 0
public_flag = 0
private_flag = 0
protected_flag = 0
bounded_flag = 0
deprecated_flag = 0
lang_flag_0 = 0
lang_flag_1 = 0
lang_flag_2 = 0
lang_flag_3 = 0
lang_flag_4 = 0
lang_flag_5 = 0
lang_flag_6 = 0
unused_1 = 0

129: fndecl
0x401af850

Fig. 3. The macro TREE TYPE reveals a node FUNCTION TYPE, containing the type of
a function declaration; when applied to that, it returns INTEGER TYPE, its return type.
(Image created using the gdb debugger in combination with the ddd user interface (see
Appendix B).)

2.2 INTERNALS 29

2.2.3 Register Transfer Language

Most of the work of the compiler is done on the intermediate RTL represen-
tation. “In this language, the instructions to be output are described, pretty
much one by one, in an algebraic form that describes what the instruction does
[Stallman 2002].” It has both an internal form made up of pointers and struc-
tures, and an external, Lisp-like textual form which could also be seen in Fig. 1
(p. 25), for instance.

Example. A more extensive example of RTL code is presented here, where a
function foo tailcalls bar. The following, simple C code

int foo ()
{
return bar (5);

}

translates to this long (though not quite complete) list of RTL expressions,
dumped before the actual sibling call optimisation phase took place:

01 (call_insn 19 9 20 (nil) (call_placeholder 16 10 0 0
02 (call_insn 17 16 18 (nil)
03 (set (reg:SI 0 eax)
04 (call (mem:QI (symbol_ref:SI ("bar")) [0 S1 A8])
05 (const_int 4 [0x4]))) -1 (nil)
06 (expr_list:REG_EH_REGION (const_int 0 [0x0])
07 (nil))
08 (nil))) -1 (nil)
09 (nil)
10 (nil))
11
12 (insn 20 19 21 (nil) (set (reg:SI 58)
13 (reg:SI 59)) -1 (nil)
14 (nil))
15
16 (jump_insn 21 20 22 (nil) (set (pc)
17 (label_ref 25)) -1 (nil)
18 (nil))
19
20 (barrier 22 21 23)
21
22 (note 23 22 27 NOTE_INSN_FUNCTION_END)
23
24 (insn 27 23 28 (nil) (clobber (reg/i:SI 0 eax)) -1 (nil)
25 (nil))
26
27 (insn 28 27 25 (nil) (clobber (reg:SI 58)) -1 (nil)
28 (nil))

30 THE GNU COMPILER COLLECTION 2.2

29
30 (code_label 25 28 26 6 "" [0 uses])
31
32 (insn 26 25 29 (nil) (set (reg/i:SI 0 eax)
33 (reg:SI 58)) -1 (nil)
34 (nil))
35
36 (insn 29 26 0 (nil) (use (reg/i:SI 0 eax)) -1 (nil)
37 (nil))

The trailing numbers of an RTL instruction indicate which place in the inter-
mediate language list is occupied by it (e. g. the second last insn is 26, line
32), followed by two further numbers (in this case, 25 and 29) that indicate
to which objects it is linked to. The remaining characters are the instruction
itself; register %eax is assigned a value of type integer. (The “Single Integer”
mode SI represents a four-byte integer.) Its origin is an artificial pseudo register
(58), because the compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
even into memory references. The many “-1 (nil)” references mean that the
compiler has not yet matched this part of RTL to the possibilities given in the
according machine description. Later on, these gaps are filled and instructions
are rearranged. Further examples and RTL descriptions are available in GCC’s
Internals documentation [Stallman 2002] or in Porting the GNU C Compiler to
the Thor Microprocessor by Gunnarsson et al. [1995].

RTL uses five kinds of objects: expressions, integers, wide integers, strings
and vectors. Expressions are the most important ones. An RTL expression
(“RTX” for short) is a C structure, but it is usually referred to with a pointer;
a type that is given the typedef name rtx. Expressions are classified by expres-
sion codes, also called “RTX codes”. The expression code is a name defined in
the file rtl.def, which is also (in upper case) a C enumeration constant. The
possible expression codes and their meanings are machine-independent. The
code of an RTX can be extracted with the macro GET CODE and altered with
PUT CODE [Stallman 2002]. For instance, there are RTX codes that represent
an actual object, such as a register, or a memory location as well as codes for
comparison, such as NE (“not equal”) or LT (“lower than”), or codes for general
arithmetic, and so on.

2.2.4 Machine Descriptions

A machine description has at least three parts: a file of instruction patterns
(.md file), a C header file of macro definitions and a C source which contains
target-specific hooks and the like. The .md file for a target machine contains a
pattern for each instruction that the target machine supports (or at least each
instruction that is worth telling the compiler about). The header file conveys
information about a target that does not fit the scheme of the .md file and the
main C source file specifies further capabilities of the hardware which should
not be expressed purely by the instruction patterns.

2.2 INTERNALS 31

When the compiler builds, it really interprets the machine description for a
target to create further C source files. These are compiled and linked with the
rest of GCC’s sources to create an executable binary. By offering such a large
variety of machine descriptions, it now becomes clear why GCC is suited so
well for cross compilation. Technically, all it takes to get a foreign compiler is
to configure GCC with an alternative machine description in place and then
recompile. (§ 2.3 gives details to that.)

Instruction Patterns. The contents of the .md file are a mixture of RTL
and C syntax to define and fill instruction patterns with semantics, so the
compiler is able to use them for a certain target. The patterns either start
with define insn or define expand. The latter is used only when converting
the parse trees into RTL, i. e. into RTXs which, in turn, are defined by the
define insn declarations.

The following instruction pattern is a define insn taken from i386.md; it
defines an indirect function call to a void function:

(define_insn "*call_1"
[(call (mem:QI (match_operand:SI 0 "call_insn_operand" "rsm"))

(match_operand 1 "" ""))]
"!SIBLING_CALL_P (insn) && !TARGET_64BIT"

{
if (constant_call_address_operand (operands[0], QImode))
return "call\t%P0";

return "call\t%A0";
}
[(set_attr "type" "call")])

The name of this pattern is “*call 1” and any instruction whose RTL de-
scription has the form shown, satisfying the condition “!SIBLING CALL P &&
!TARGET 64BIT” may be handled according to this pattern. The description
contains a template (match operand) which is used to define which instructions
match the particular pattern and how to find their operands. The operands, in
turn, are restricted to a predicate (call insn operand) and further constraints
(rsm). The predicate is the name of a C function which accepts two parame-
ters, an expression and a machine mode. The constraint is usually a class of
registers or memory locations to use for an operation. rsm stands for “register-,
immediate-integer-, and memory-operands allowed”. Finally, the output con-
trol string is a piece of C code which chooses the right output template to
return, based on the kind of operand and machine mode.

Source Files. Most targets have two C files: a header, machine.h, and the
according machine.c file. However, others have more to address certain porta-
bility issues like binary formats and different operating systems; for example,
an additional file “machine-linux.h” may be present. Among other things,
a header file defines memory layout and alignment issues as well as register
classes and their usage. The corresponding macros are sometimes rather large

32 THE GNU COMPILER COLLECTION 2.3

and have a function-like character that do not help the purpose of debugging
much, should it be required:

#define MUST_PASS_IN_STACK(MODE, TYPE) \
((TYPE) != 0 \
&& (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \

|| TREE_ADDRESSABLE (TYPE) \
|| ((MODE) == TImode) \
|| ((MODE) == BLKmode \

&& ! ((TYPE) != 0 \
&& TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
&& 0 == (int_size_in_bytes (TYPE) \

% (PARM_BOUNDARY / BITS_PER_UNIT))) \
&& (FUNCTION_ARG_PADDING (MODE, TYPE) \

== (BYTES_BIG_ENDIAN ? upward : downward)))))

This random i386.h macro evaluates to non-zero if it can not be determined
how to pass TYPE solely in registers; endianness and alignment are taken into
account by deploying even further macros such as FUNCTION ARG PADDING, or
BYTES BIG ENDIAN.

Depending on their return value, the C source file uses these macros to finally
emit machine language. It also defines target hooks to optimise the output
for machine-specific features, such as the availability of register windows and
scratch registers, for instance. Target hooks may have a noticeable effect on
the quality of the generated assembly code, if the compiler was invoked with
the “right” optimisation switches. Further information on target hooks is also
available in § 5.

2.3 Building the Compilers

Although there exists good and extensive documentation on how to build GCC
on various platforms, it can be somewhat “tricky” at times, especially when
trying to do something non-standard like cross compilation. This section is de-
voted to show the issues involved5 and gives reason for the importance of cross
compilation when working on GCC’s code base.

After downloading either a CVS version or a compressed archive of GCC, the
user has to invoke an enclosed configure script for guessing and also setting
system-specific values, such as where the current C compiler resides and which
libraries are available, etc. This information is required by the build process to
compile and later install GCC on a certain platform. While this process is fairly
standard in the GNU/UNIX world, the vast amount of configuration switches

5The alert reader might be wondering at this point, why a process like software installation
is addressed in a thesis, but he should be aware of the fact the author spent a great part of
his restricted time in trying to figure out good ways of setting up cross compilers to test his
various GCC changes on different platforms. The importance of this step and the experiences
gained should not be underestimated.

2.3 BUILDING THE COMPILERS 33

available is still somewhat uncommon. Albeit, it is enough to call configure
with a single option, in order to set up purely the C compiler on and for the
current host:

$./configure --enable-languages=c

It does get more complicated when trying to build a cross compiler, as several
additional programs and libraries need configuration and building first. GCC
does not fully compile without access to a variety of standard system calls, on
GNU-based systems typically provided by the GNU C library (glibc). In fact,
the whole process can become barely possible on older machines, as stated in
The PARISC-Linux Cross Compiler HOWTO6:

“You are going to need a good and fast cross compiling box and at
least 1.5 GBs of free drive space to fit all the source and compiled
stages.

You will also need all the latest tools required to build: glibc, gcc,
binutils and the latest Linux kernel.”

Generally speaking, the above holds, but in some respect it does not tell the
entire truth, because glibc and a new Linux kernel are only required for very
broad and general cross compiler usage, e. g. when doing foreign kernel devel-
opment. For the purpose of writing this thesis and testing “merely” compiler
code changes, a simpler and less disk space consuming approach suffices. It is
the aim of this section to explain why, and especially how, this more simple
solution works.

Binutils. A top prerequisite for building a cross compiler, apart from hav-
ing the main GCC source code itself, is a package called “GNU Binutils” (see
Appendix B). Binutils is a collection of binary tools, including in particular
an assembler and a linker to create binary files. Like all the other components
involved in building a cross compiler, Binutils have to be configured and com-
piled for the foreign architecture, in the following example for AMD’s x86 64,
supporting Linux:

$./configure --target=x86_64-unknown-linux \
--disable-nls

$ make

The current host usually does not need any further specification, although it is
possible to explicitly set it by using --host=i686-pc-linux-gnu, for instance.
--disable-nls disables native language support to keep the configuration as
straightforward as possible and also to avoid unnecessary interprogram or in-
terlibrary dependencies.

6The document is freely available from http://www.baldric.uwo.ca/HOWTO/.

34 THE GNU COMPILER COLLECTION 2.3

GCC. Typically, GCC has to be built in at least two separate steps. The
first build is supposed to create a basic C cross compiler which is then used to
compile a foreign system library. In the next step, the library gets used to build
all the “rest” of GCC. That is, step one depends on the working installation of
the foreign Binutils and step two depends (at least) on a successful build of the
system library.

Not surprising, there is no bullet proof recipe on how to properly configure
the GCC cross compiling build process. However, the following command line
options will usually look similar on a lot of different targets:

$./configure --target=x86_64-unknown-linux \
--disable-nls \
--enable-threads=single \
--disable-shared \
--without-headers \
--with-newlib \
--enable-languages=c

$ make

In this case, the command will set up a C compiler for x86 64-unknown-linux,
without native language modules, without support for multiple threads, without
support for building dynamically linked binaries, i. e. without references to a
system library, and without the presence of operating system header files, but
with support for “Newlib” (see also next paragraph and Appendix B). However,
--with-newlib does not necessarily mean that Newlib is really used; it just
modifies the build process so that GCC builds as little of itself as possible,
because Newlib contains several functions that GCC normally provides itself.

Unfortunately, most of this is not obvious at all, and to make things worse,
the configuration does not work on all targets alike. However, in order to test
ones code changes to just the C compiler, it is, in many cases, sufficient. This
is mainly due to the fact that error messages which may be spewed during
the build process are generally not affecting the C back end. So, by the time
an error about unsatisfied library dependencies occurs, the main C compiler is
already built and ready to generate “foreign assembler”, although it can not
yet create useful executable binary files.

C Library. Naturally, the cross compiler will depend on various system calls
to translate a source file into executable machine code. There are two common
ways to provide these system calls to the cross compiler: one can set up and
compile GNU’s entire C library (see Appendix B), or use a smaller substitute
called “Newlib” (see Appendix B). The GNU C library, however, is much larger
than Newlib and requires more resources and hence, time to build. Therefore,
the choice for Newlib is an easy one, despite the introductory comments in the
PARISC HOWTO.7

7It may even be possible to build GCC as a cross compiler with size optimised C system
libraries like diet libc (see Appendix B), but that has not been tried by the author. Maybe
this could be covered in the future by a proper Cross Compilation HOWTO?

2.3 BUILDING THE COMPILERS 35

Another aspect to consider when setting up a a cross compiler is that a
foreign C library is not always required. Firstly, it depends on how much the
cross compiler is supposed to do and secondly, not all target systems depend
on the library to exactly the same extent. Indeed, for most test cases which
occurred during this work, it was not necessary to create a C library at all,
in other situations, e. g. when trying to run GCC’s extensive test suite on a
cross compiler, it was absolutely essential to have a proper installation at hand,
which is not always trivial to achieve. To cite the PARISC HOWTO once more,
it states that “Sometimes glibc builds. . . sometimes it doesn’t. Sometimes it’s
just magic.” Indeed, the comment is not very helpful, but it sums up the
circumstances quite well.

Nevertheless, the following commands usually work, when configuring a C
system library for a non-native platform:

$./configure --target=x86_64-unknown-linux \
--with-headers=$HOME/src/linux/include \
--disable-nls

$ make

Obviously, this requires access to the kernel header files which, in this example,
are stored in the directory $HOME/src/linux/include. Newlib, on the other
hand, does not necessarily depend on the header files and thus gives yet another
good reason to use it. (Building seems faster and more predictable as well.)

Summary. As already pointed out in the beginning of this section, the author
was required to set up several different cross compilers for all kinds of targets
during this work, e. g. for arm, x86 64, and sparc, amongst others. Each of
them revealed their own peculiarities, but in most cases it was, at least, not
necessary to set up an error prone system library. Some targets compiled “out of
the box” like arm, for instance, while others would cause great frustration during
very odd stages in the overall build process. But given the huge number of
supported platforms, GCC’s cross compiling facilities remain impressive. They
enable developers to make use of code for a platform which they have no physical
access to and even more, they allow stringent tests and bootstrapping. Since
this thesis affects not only Intel ix86, it would have been barely possible to
complete it without GCC’s ability to act as a cross compiler. Given the huge
number of different possibilities to approach cross compiling, this process can
become very time consuming and tedious though, with the subtle contradictions
in different online manuals not making the task any easier. Hence, this part of
the thesis should not only be regarded as a description of the process, but also
as a critical review that lists the hurdles involved. Certainly, there is still room
for improvements in this area of GCC.

CHAPTER THREE

EXISTING TAIL CALL
SUPPORT IN GNU C

Tail call support has been a part of the GCC back end for several years now,
therefore this chapter mainly focuses on its original implementation and the
limitations. Because some of those are rather stringent, the GCC community
has agreed on their own terminology regarding the subject. Hence, it is also
part of this chapter to introduce their terms and explain in detail why projects
like the Glasgow Haskell Compiler, currently, do not benefit from the existing
form of tail call optimisation of GNU C.

3.1 TAIL RECURSION AND SIBLING CALLS

The preferred way of the GNU C compiler to deal with tail calls is in its back
end during basic block analysis (see Appendix A). That is, the back end first
determines the exit block of a function, and then checks whether that is the
immediate successor of the block that the function call is in. In other words,
it verifies whether a call in the tail position is really the last instruction of a
function. However, upon detection, it is not decided whether the call should
really be optimised, because it needs to qualify as sibling call first. (The GCC
source code also often uses the abbreviation “sibcall” referring to the same
concept.)

Definition (Sibling Call). Let f and b be two not necessarily distinct func-
tions. A call from function f to function b is a sibling call iff

1. it qualifies as proper tail call,

2. the number of arguments to b (or the space occupied by them) do not
exceed the number of arguments to f (or the space occupied by them),

3. the return types of function f and function b match.

Obviously, this definition covers proper tail recursion as well, because if in a
call, f and b are really the same function, then the number of arguments and the
return type are guaranteed to be always the same. In all other cases, however,
the definition means that the caller’s and the callee’s function signature have
to be at least somewhat similar in order to be regarded as “siblings”.

36

3.2 TAIL RECURSION AND SIBLING CALLS 37

Example 1. The call to function bar is a sibling call, because it is in the tail
position. The caller and callee accept exactly the same number of arguments
and share the same return type:

int bar (int, int);

int foo (int a, int b)
{
...

return bar (b - 2, a - 5);
}

Example 2. The following code snippet is not a sibling call, because bar’s
arguments demand more stack space than foo’s — in fact, twice as much. The
caller and callee are not siblings:

int bar (int, int);

int foo (int a)
{
...

return bar (a, abs (a));
}

Example 3. At a first glance, the function signatures do not seem to match;
nonetheless is the argument of foo on almost all platforms greater in size,
than both of bar’s together. Therefore, (on these platforms) the call can be
optimised into a sibling call:

int bar (int, int);

int foo (long long a)
{
...

return bar ((int) a * 2, (int) a * 3);
}

The above examples demonstrate the essence of the definition, but also show
how it is partially dependent on the operating system’s memory layout, hence
ABI. Not all platforms share the same internal representation of C types, so
recognising sibling calls, in practice, goes beyond any high level definition; also,
because operating systems and hardware are constantly subject to change.

It is probably best to consider a sibling call as a “technical term” only, rather
than a widely accepted scientific notion. Indeed, recent traffic on the GCC mail-
ing lists has shown that even some of the developers aim to drop their custom
(and sometimes very confusing) terminology as sibling calls slowly become more
powerful.

38 EXISTING TAIL CALL SUPPORT IN GNU C 3.2

3.2 CURRENT IMPLEMENTATION

It should be clear that detecting sibling calls and tail recursion is not only a
matter of dissecting a program into basic blocks. If given a sufficiently high
level of optimisation, GCC is promoting the information about possible sibling
call candidates throughout various different stages of compilation, beginning at
RTL generation in the file calls.c.

The front end. Currently, the front end does not explicitly know about
sibling calls, even though it is theoretically possible to detect and mark at
least some of them during this stage. When GCC’s parser (c-parse.in)
detects a function call, no matter of which kind, it always passes it on to
build function call inside c-typeck.c in order to start building the corre-
sponding syntax tree and later also RTL code.

The calls.c file. For the purpose of this thesis, the file’s most important
function is expand call. It is responsible for generating all the code for a
function call which is stored in a tree expression, and it returns an RTX for its
value. Most importantly though, the function already makes an estimate over
which calls may be subject to sibcall optimisation later on and, thus, generates
additional code for such candidates. To be more precise, expand call fills a
pattern called “CALL PLACEHOLDER” with multiple versions of RTL instructions
to represent the current function call (see Fig. 1).

Normal Call Tail Recursion Sibling Call

RTL Code RTL Code RTL Code

#1 #2 #3

CALL PLACEHOLDER

Call Chains

Fig. 1. A CALL PLACEHOLDER pattern contains three different call chains each repre-
senting one and the same function call: one chain consists of code for a “normal” call
(#1), one is reserved for tail recursion (#2), and another one for sibling calls which,
generally, are not tail recursive (#3).

It does so by entering a loop for each call in the tail position, where every
iteration creates an individual chain. (For tail recursion there are even multiple
ways of optimisation: usually, the compiler will try to convert the tail recursive
call into a goto statement inside stmt.c. Should that fail, GCC will still
attempt to convert it into an “ordinary” sibling call, before it finally gives up.)

3.2 CURRENT IMPLEMENTATION 39

The sibcall.c file. The code in sibcall.c is being executed at the end
of RTL generation; the compiler selects one of the three call chains, mainly
according to the outcome of the basic block analysis. That is, either the call is
in the last basic block of the current function, or it is in a block whose successor
is an explicit exit block. Due to the inner structure of GCC’s basic blocks,
the analysis is relatively straightforward (see Fig. 2): a loop runs through the
entangled blocks until, either the last one contains a pointer to the RTL code
representing the function call (end rtx), or the exit block is reached.

...

end rtx

head rtx

loop depth

succ edge

pred edge

index

...

...

...

RTL insns

...

Basic Block

Fig. 2. A basic block consists of various fields and references pointing to other blocks
and also to RTL instructions. The picture follows the definition to be found in
basic-block.h.

Machine-specific code generation. After the compiler has chosen its pre-
ferred call chain, it is up to the machine-dependent part to handle any sibling
calls by emitting the according prologue and epilogue instructions which, in the
end, cause the memory and performance benefits sought (not only) by the func-
tional language community. Those targets supporting the notion of proper tail
calls, usually translate the assembly “call” into “jump” (or to whatever name
the according architecture deploys) which does not open a new stack frame for
the callee. Of course, if a tail recursive call was transformed into C’s goto
statement earlier on, then the work is already done for this particular recursive
call; no further optimisation by the back end is required.

The emitted epilogue differs from the “normal” one as it is defined in the
ABI, in the sense that the caller does not need to worry about memory clean
ups, once the callee has finished execution. Hence, the alternative epilogue for
sibling calls typically contains the following steps:

40 EXISTING TAIL CALL SUPPORT IN GNU C 3.2

� The caller stores the callee’s arguments in the area for its own incoming
arguments. (By definition, this is not part of the epilogue, but without
this step the following instructions would not make sense.)

� The caller has to pop callee saved registers, should it be required.

� If not given the option -fomit-frame-pointer, the caller restores the
frame and base pointer, by reloading both with their prior values. (On
Intel ix86 architectures this can be achieved by issuing only a single
instruction: leave [Brey 1995, § 6-4].)

� Instead of finishing with a generic function call, the callee is invoked via
the architecture’s low level jump command to reuse the existing stack
frame along with the stack slots reserved for incoming arguments.

How sibling calls work in practice. The prologue does not need to be
modified, because the callee does not know whether it has been called as an
ordinary function, or whether it was invoked via a jump command. It may
still reserve space for locals, find its arguments in the expected area on the
stack, saves callee saved registers, and so on. When it has finished execution,
however, it does not return control back to the caller; instead, the program
continues with the function that has originally invoked the caller, as can be
seen in Fig. 3.

S
ta

ck

f f

b b′

Fig. 3. Function f issues a normal call to b which in turn “sibcalls” function b′. When
b′ has finished execution, it frees some stack memory and returns to f .

This is because the return address put onto the stack by function f for func-
tion b does not get touched until the end of the whole call sequence, where it
then gets removed. So to function b′ it looks like it has been invoked by f , not
b. Hence, in the end it returns to f .

In order to understand what is really going on when a sibling call is emitted,
one has to take a closer look at the run time stack. All the following examples
depict the situation on an Intel ix86 architecture, unless explicitly marked
otherwise. Therefore, each stack slot is 4 bytes in size. SP labels the stack
pointer (%esp on 32-bit Intel platforms), BP represents the base pointer (%ebp
on 32-bit Intel platforms; also known as the frame pointer), RA denotes the
return address, and An stands for the n-th function argument.

Figure 4 shows how the before mentioned calling sequence (see Fig. 3) does
not build up stack space by first opening a frame for f , then for b and finally for
b′. The nature of sibling calls is reflected in the reuse of the incoming argument
and current stack space of a function. Unlike in “normal” calls, the only stack
frame present on the stack during the entire calling sequence, is f ’s.

3.2 CURRENT IMPLEMENTATION 41

Arguments

for b

SP

...

An

...

A0

(a) The above figure shows the bottom of
the run time stack as it looks when f is
about to issue the call to b. All of b’s
arguments are part of f ’s stack frame.

SP

Arguments

for b

Stack frame

for f

RA to f

BP

...

An

...

A0

(b) After issuing the call to b, b stores the
base pointer below the return address and
begins computation. Here, BP is the only
occupied stack slot of b’s stack frame, so
far.

Arguments

for b′
Stack frame

for f

RA to f
SP

...

A′n

...

A′0

(c) Almost at the end of execution, before
b issues the sibling call to b′ it shrinks
the stack by restoring the base pointer
and reuses its very own incoming argu-
ment space for b′. Notice, how the return
address to f remains unchanged by this
step.

SP

Stack frame

for b′

Arguments

for b′
Stack frame

for f

RA to f

Local data

BP

...

A′n

...

A′0

...

(d) Now b′ can continue as usual by push-
ing the base pointer, reserving space for
local variables, and so on. Finally, when it
returns, the only choice is f (RA to f), be-
cause in a sense, b has already “returned”
by issuing the sibling call to b′.

Fig. 4.

42 EXISTING TAIL CALL SUPPORT IN GNU C 3.3

Saving one stack frame may not seem like much of an improvement, but if
this example is stretched out to mutual tail recursion, for instance, then the
gain can make a remarkable difference. In fact, if the depth of recursion is
sufficiently high, such a (sibling) call mechanism would be GCC’s only solution
to prevent a system’s run time stack from overflowing.

3.3 LIMITATIONS

The criteria for successful sibling call optimisation on the RTL level are quite
strict though and, at this stage, these do not even take further constraints from
the underlying hardware into account; those are considered in a separate step,
afterwards. It was one major objective of this work to loosen these criteria.
Hence, the following elaboration will describe the situation as it was before the
author’s results were officially adopted by the maintainers of GCC.

In calls.c, the routine expand call contains most of the (partially very
complex) if conditionals, making sure that only the “right” optimisation can-
didates are chosen. The following paragraphs explain each condition one at a
time and outline the rationale behind it. In summary, those are:

a) No pending clean ups

b) Matching argument sizes of caller and callee

c) No variable argument functions

d) Sibling call epilogue must be defined

e) No struct returns

f) Caller and callee must have matching return types

g) No setjmp and longjmp

h) No volatile functions

i) The caller’s stack frame must be empty

j) No indirect calls

k) No position independent code

l) No overlapping arguments

m) (Partly) Machine-dependent constraints

a) No pending clean ups. Foremost, this constraint affects C++ users,
because a call in the tail position may not be the last instruction if it is followed
by class destructors, often containing code to free memory, for instance. So
any pending clean ups will, of course, prevent sibling call optimisation. A
programmer, however, will not find this constraint very predictable at all times.

3.3 LIMITATIONS 43

b) Argument sizes must match. More accurately, the caller’s arguments
must at least be as great in size as the callee’s.1 From all present constraints,
this is the most difficult one to overcome, because in order to be able to issue
a sibling call to a function with larger argument space requirements, the caller
would have to shift (at least) one stack slot containing the return address.
While additional move statements are not a huge problem, their implications
are, because they would require the introduction of an outright new calling
convention (see also § 5).

The call sequence illustrated in Fig. 3 clearly demonstrates the problem, if
the following function signatures are assumed:

int f (int, int);
int b (int, int, int);
int b’ (int, int, int, int);

To have the example no more complicated than necessary, the functions only
handle integer values and it is assumed that the compiler accepts a name like
b’ which is not common C, of course.

Figure 5 shows how a sibling call from a caller with less arguments than
the callee would affect the consistency of the run time stack. However, such
a call would not be possible with GCC, because this configuration constitutes
a serious problem in terms of memory deallocation: when b′ returns, function
f would only attempt to clean up three arguments instead of four, because it
has no information about b′. To f it appears as if only function b and not b′

has been called. On the other hand, if GCC would allow b′ to clean up its
own argument space to solve f ’s problem, it would loose compatibility with the
C Calling Convention which clearly assigns the responsibility for the callee’s
arguments to the calling function.

Not even the stdcall convention has the potential to improve this situation,
because even if b′ cleaned up its own argument space, f would still need to
know about it in advance, so that it does not try to wrongly unwind the stack.
If the call chain is sufficiently complex and long, it would imply that a lot of
program functions have to use the alternative calling convention, because every
function of the sequence would be required to clean up its own argument space.
As a matter of fact, GCC is hardly able to make any predictions about which
functions end up in such a call sequence and which do not. The important
point is that, often the entire program would need to deploy the alternative
convention.

This scenario may sound odd, but it is possible. In fact, it is even possible
to use a calling convention along the lines of stdcall to potentially enable a
greater range of sibling or tail calls, but breaking with the standard C Calling
Convention also means giving up compatibility with any other C program for
external linkage, save those compiled with the alternative convention in place.
However, an unmodified stdcall is not suited for this task, because its epilogue
instructions do not perform the essential shift operations on the stack. (Return
address, registers, etc.)

1The original requirement was even more stringent: siblings were only those functions
whose signature was exactly the same, thus the unusual, but once appropriate, terminology.

44 EXISTING TAIL CALL SUPPORT IN GNU C 3.3

SP

Arguments

for b

Stack frame

for f

RA to f

BP

...

A2

A0

A1

(a) This figure depicts the run time stack,
before b is issuing a sibling call to b′. In
this situation, the stack frame reserved for
function b consists only of a single slot, the
base pointer.

Arguments

for b

Stack frame

for f

RA to f
SP

...

A2

A0

A1

(b) Normally, using sibling calls, b would
first clean up its own stack frame (i. e.
pop the base pointer) and have the ar-
guments for b′ ready in the own incoming
argument space. There is, however, not
enough space for four arguments.

SP

Stack frame

for b′

Stack frame

for f
Arguments

for b′

RA to f

Local data

BP

Shift RA downwards

A′2

A′0

...

...

A′1

A′3

(c) In order to fit all of the arguments for b′, it would be necessary to shift the return
address (RA to f) down. That is the only way to pass all of the arguments via the
stack.

Fig. 5.

3.3 LIMITATIONS 45

c) No variable argument functions. It is not possible to optimise calls to
functions taking a variable amount of arguments, such as printf for example.
In order to explain why, one has to examine yet another example which is given
in Fig. 6. Let b′ be a function that takes a variable number of arguments. If

f

b b′ b′′

Fig. 6. A call sequence of one normal and two sibling calls.

b −→ b′ is a sibling call, then the next potential sibling call b′ −→ b′′ would be
impossible to realise even if b′′ accepts a fixed number of arguments, because b′

has no information about how many arguments it has been invoked with. As
a consequence, this constellation only works if b, b′, and b′′ all expect a fixed
number of arguments.

d) Sibling call epilogue must be defined. A minimum requirement for
every target is the definition of an according sibcall epilogue as part of the
machine description. Although, most of the optimisation is performed on the
RTL level, a target must have access to alternative epilogue instructions in order
to emit corresponding machine code. Currently, not all GCC supported systems
offer sibling calls, and those who do put further, greatly varying constraints
on their functionality. But very often, the constraint has more to do with the
number of people supporting a platform, rather than any physical shortcomings
of the underlying hardware or operating system.

e) No struct returns. Functions returning large C structures, will not fit
an instance into the usual return register %eax. Since C is always call-by-value,
the ABI requires the caller to reserve space in its own stack frame for the return
value of the called function. The address of that area is given as a “hidden” first
argument and is also given back by the callee in register %eax for future access
[The Santa Cruz Operation 1996]. Interestingly enough, the callee removes the
“hidden” argument from the stack, unlike all its other parameters.

The reason why structure returns break sibling call optimisation is more of a
pragmatic nature, rather than a question of whether it is possible or not. This
is based on the gross assumption that, in reality, only a few tail calls would be
made to functions returning a struct, as a comment in expand call explains:

/* Doing sibling call optimization needs some work, since
structure_value_addr can be allocated on the stack.
It does not seem worth the effort since few optimizable
sibling calls will return a structure. */

Again, the situation is similar to the one described in b). If a caller emits a
sibling call to a callee returning a struct, it has to shift things around the stack,

46 EXISTING TAIL CALL SUPPORT IN GNU C 3.3

because it can not allocate space for the structure in the “usual” location as that
is going to be reused. Hence, it would have to add space to the previous stack
frame and shift down every live stack slot in between. While this is possible, it
would not be desirable if there is hardly any code that would benefit from it. In
fact, the issue could become a lot more complicated when taking further ABIs
into account as some may use a call clobbered register to store the structure’s
location and those can not be guaranteed to be usable on all platforms alike,
especially when the tail call is indirect (see j) for further details about call
clobbered registers).

f) Same return type. Basically, this requirement is a consequence of e) and,
at the same time, very similar to b); it translates to the caller and the callee
having to share the same structural type equivalence, hence return mechanism.
For example, the ABI for Intel ix86 architectures predefines the return register
%eax for 32-bit values and requires C types like long long which take up 64-bit
to be split into %eax for the low part and %edx for the high part [The Santa Cruz
Operation 1996]. Therefore, sibling call optimisation is possible as long as both
functions agree on the same mechanism or the same registers for returning their
values, because (on a lot of popular platforms) the compiler makes no difference
as to whether there is a character or an integer in the return register; both fit
equally well.

Figure 7 helps to illustrate this situation: the main point is that, to the top
most calling function f , it has to look like the tail call “has never happened”,
i. e. the pre-conditions upon calling function b must correspond to the post-
condition when the sibcall sequence returns control back to f2.

g) No setjmp and longjmp. In UNIX, setjmp and longjmp are the com-
mands to handle signals like Ctrl-C interrupting a program in execution. They
are part of the standard system library and provide a way to avoid the normal
function call and return sequence, typically to enable an intermediate return
from a deeply nested function call [Kernighan and Ritchie 1988, §B8]. When
setjmp saves state information like program and stack counters, general pur-
pose registers, etc. it uses an instance of the jmp buf data structure for longjmp
to restore, after a signal has been processed. In effect, longjmp allows one to
jump over the calling stack to any previous frame beginning at the next in-
struction past the originally called setjmp. Even though that sounds ominous
in itself, due to the fact that sibling calls delete stack frames for other func-
tions to reuse, the main problem is that longjmp typically means a function
can return more than once.

GCC does not add such functions to the CALL PLACEHOLDER pattern — not
only to simplify sibling call optimisation. Instead, instructions for a normal
call are generated. From a technical point of view, however, it is possible to

2To understand the prerequisite, it may help to compare it roughly with the “while rule”
in the Hoare Calculus [Winskel 1993], better known for the concept of the invariant which
has been introduced by this rule. The invariant is a condition which holds upon loop entry,
and after it has finished computation.

3.3 LIMITATIONS 47

pre-cond post-cond

f

b b′

f

(a) A typical sibcall sequence:
function f calls b which sib-
calls b′ and returns to function
f .

pre-cond post-cond

f f

b b

b′

(b) Here, the same function f
calls b which calls b′ and re-
turns normally. Unlike in the
first figure, there are no sibling
calls involved in the depicted
call sequence.

Fig. 7. Two different call chains, involving the same functions: the dashed area is the
interesting part of the sequence, because function f is not supposed to “notice” what
happened in that area; it called b under certain pre-conditions (expectation of return
types, required argument space, etc.) and will end up in a predestined post-condition,
i. e. “pre-cond” of situation (a) must match “pre-cond” of situation (b); the same holds
for “post-cond”.

use longjmp and sibling calls, but the work required may not seem worth it,
especially as long as volatile functions are not supported which impose a very
similar problem (The next paragraph elaborates more on this subject.)

h) No volatile functions. Still, to many peoples’ surprise, the keyword
volatile is standard C and can be considered as the opposite of the better
known keyword const [Kernighan and Ritchie 1988, §A8]. Functions declared
as being volatile may not be sibling call optimised. The rationale behind that
does not originate from peculiar ABIs or hardware design issues, but from a
“misinterpretation” of such functions in GCC itself. When GCC encounters
a volatile function, it assumes this function does not return. Examples are
exit or abort, but also any other user defined function which is marked by the
according attribute:

void foo () __attribute__ ((noreturn));

void foo ()
{
...

exit (1);
}

GCC versions prior to 2.5 required a slightly different declaration of volatile
functions:

48 EXISTING TAIL CALL SUPPORT IN GNU C 3.3

typedef void voidfn ();
volatile voidfn foo;

Both pieces of code represent the same situation, but use a different notation;
and they share also the same problem: within the basic block analysis, sibling
calls to noreturn functions do not have an explicit edge to the function’s or
program’s exit point, which means that the code intended to insert the alterna-
tive sibling call epilogue would not get executed. Consequently, GCC prevents
sibling calls for such cases which is not a terribly huge burden for a programmer
or a front end, because most functions, indeed, do return. In the future, it may
be possible that this situation will be improved, but at the moment the pressure
for doing so, does not seem high enough.3

i) Empty stack frame. The original sibling call optimisation always had the
potential of handling functions whose stack frame was not empty e. g. occupied
by the declaration of local variables or temporaries. However, GCC currently
prevents sibling calls for these cases, with the result that sibling calls can be
used to efficiently compute the Fibonacci numbers, but not for too much more.

The reason for this has already been given in § 1.5: in C, it is possible to have
global references to a local variable. If the calling function uses such a reference
as an argument, the stack frame must still be live for the callee’s access to that
parameter. Sibling and proper tail calls, however, are supposed to delete the
current stack frame for reusage. Thus, GCC would have to detect such cross
references, should it allow automatic sibling call optimisation for functions with
local variables.

Clearly, this is one of the most limiting constraints so far. It means that a
vast number of real world C applications have the possibility to issue sibling
calls and save stack space but, in reality, almost never get a chance to do so.
This is mainly because a C function without arguments is usually rather limited
in its possibilities and often serves merely as a predicate returning “true” or
“false” for a certain input condition. (It can be argued whether it really matters
if these smaller functions are optimised at all, or not.) The big, heavyweight —
also in terms of stack space consumption — functions, however, are not even
considered as candidates, even though they constitute the most crucial cases
for the optimisation.

At least the GCC maintainers are well aware of this weakness in the current
implementation, though, until now, no one has volunteered to pick up work on
a sophisticated liveness and flow chart analysis that would solve the problem.
But even without such a complicated detection in the back end it is possible to
address this issue. In § 4 a possible solution is sketched which, in this aspect,
is largely based upon extensions in GCC’s front end.

j) No indirect calls. In order to support continuation passing in GHC, the
back end is required to offer optimisation for indirect function calls, since they

3The notorious exception to this rule of thumb is the Mercury Compiler (see Appendix B)
which declares many functions as volatile to generate better and faster code with GCC serving
as its preferred back end [Conway et al. 1995, Henderson et al. 1995].

3.3 LIMITATIONS 49

constitute the program’s continuation. Sibling calls were designed, with only
direct calls in mind though, and if the “Evil Mangler” (see § 1.3) would not
have been invented, almost none of the GHC generated C functions could be
translated into a sibling or properly tail recursive call. In other words, GCC
practically provides almost no sibling call support for GHC at all, even though
it serves as its most portable back end.

Certainly, it is no exaggeration to say that, this is a suboptimal situation:
a widespread compiler’s portability depends strongly on a Perl script to pre-
vent the run time stack of its compiled programs from overflowing. However,
understanding the rationale of this constraint also means understanding the
constraints of the underlying hardware and the corresponding ABIs.

Depending on the number of arguments and used registers, assembly code
for a direct sibling call from foo to bar (e. g. on 32-bit Intel platforms) looks
typically like this:

foo:
...
movl %eax, 8(%ebp) Prepare a function argument.
popl %ebp Pop base pointer.
jmp bar Jump to function bar.

Here, the jump command’s one and only parameter is the target function name,
bar. An indirect call, however, redirects to an address which points to the first
instruction of the callee. So instead of jumping to a label, foo would have to
jump to an address, held in one of the machine’s free registers:

foo:
...
movl %eax, 8(%ebp) Prepare a function argument.
movl ptr, %ecx Move destination ptr into %ecx.
popl %ebp Pop base pointer.
jmp *%ecx Jump to the address stored in %ecx.

Even though this is valid assembly code, it has, until now, only been wishful
thinking, for GCC would have never produced code like this. In such a case, it
would rather use the ordinary call command which opens a new stack frame
for the callee.

One of the architectures which required such a restriction is ARM. On ARM,
which is an ever popular RISC platform, since companies like Apple, Palm, and
Compaq based their handheld devices upon it, all call clobbered registers are
used for argument passing [ARM 2000]. It is the nature of sibling calls that the
calling function restores all callee saved registers to the state its caller expects,
before calling the target. All argument registers, on the other hand, have to be
loaded as the called function expects, so in calls with at least four arguments
there is no space to hold the address. Plus, in many cases additional scratch
registers are needed for marshaling the parameters and values.

These problems do not occur in direct calls, even on ARM, because the
address can be conveniently stored in any call clobbered register. If its value

50 EXISTING TAIL CALL SUPPORT IN GNU C 3.3

was important to a calling function, it would be temporarily stored on the stack
and restored when the whole call sequence has come to an end.

The popular Intel 32-bit platform, however, is one of those which does not
depend upon free registers as much when calling a function; registers are not
all assigned a certain role during the calling procedure. Moreover, there are
various different registers for the caller to chose from when storing an address,
e. g. %ecx, %edx, or even %eax. Either they are all available at once, or the back
end can determine at least a single one to store the required address.

For GCC, it means that handling of indirect sibling calls is impossible in
the RTL generation stage where most of the optimisation decisions are made.
During this phase, it can not determine or even react properly to peculiarities
of the according ABIs. Hence, the indirect sibling calls are always disabled by
default, regardless of the host or target platform which may have the capabilities
to support this important concept.

k) No position independent code. Some platforms allow programs to link
dynamically against libraries in order to save main memory when various dif-
ferent applications all depend on the same functionality. In such cases, the
library is loaded once and mapped into each of the program’s virtual memory
as if it was the only application on a system. On UNIX and also on some other
systems, this is achieved by using position independent code for libraries, so
that addressing is relative to an offset, rather than absolute to a fixed address
space.

On many platforms, however, position independent code must not be sibling
call optimised. The problem involved is that the offsets for navigating through
the program have to be kept in registers; on Intel 32-bit, %ebx is used which is a
callee saved register; other platforms follow that notion. Unlike functions using
normal calls, those deploying sibling calls have to restore the callee saved reg-
isters before branching off to the subroutine, not when they return themselves.
Normally, that is no problem, because at this point, the top most calling func-
tion does not care for the value stored in %ebx, but the position independent
code depends on this value upon each and every jump, call or branch command.
In other words, restoring %ebx in a sibcall epilogue would basically deliver the
wrong offset and the program would abort.

l) No overlapping arguments. On a closer look, the essence of the current
sibling call implementation is the reuse of the incoming argument space, rather
than the current stack frame, as it is usually greater in size. Also, according to
i), the stack frame offset must be zero to issue a sibling call.

Unfortunately though, having a nearly empty stack frame also means not
being allowed to have space for temporaries and additional slots needed to
marshal arguments for the callee. Hence, if the outgoing arguments depend
solely on the values of the incoming arguments, they can not be overwritten,
because that would delete the previous value. That is, in many cases which,
to make things worse, are often not obvious to a programmer, a sibling call is
prevented because the caller’s and the callee’s arguments overlap and possess

3.3 LIMITATIONS 51

a cyclic dependency. Instead, the arguments have to be stored on the run time
stack violating the empty-stack-frame rule.

m) Other possible constraints. There are further reasons for sibling call
optimisation to fail, aside from the mostly platform independent issues. When
an optimisation candidate is considered by the underlying machine and op-
erating system dependent code, there are various obstacles upon which GCC
switches back to the “normal call chain”, instead of using the more efficient sib-
ling call. Sometimes, it is difficult to differentiate clearly between the platform
dependent and general restrictions as some of them are closely tied together.
Subtle differences do exist, and they require thorough checking in the machine
dependent part of the back end.

To give one example for the Intel 32-bit architectures, sibling calls are not
possible for functions which return a float value on the register stack of the
Floating Point Unit 80387, if the calling function is not doing the same. Sim-
ilar to the requirement of matching return types, such two functions would
expect different stack adjustments once they return.

The list could be continued, but the presented restrictions should be sufficient
to demonstrate the involved problems and to show where most of the work and
time is needed so that the situation can be improved.

CHAPTER FOUR

POSSIBLE ENHANCEMENTS

Normal people. . . believe that if it ain’t broke, don’t fix it. Engineers
believe that if it ain’t broke, it doesn’t have enough features yet.

— Scott Adams, The Dilbert Principle (1996)

During this work a lot of time was spent elaborating on different solutions
and scenarios to improve tail call support in GCC. Given the relatively huge set
of constraints and the complexity of the current sibling call implementation, it
is not obvious which approaches would lead to good results and which would
introduce new, unforeseen draw backs.

The purpose of this chapter is to outline several ideas that were examined
during this work and to discuss their implications in terms of portability, main-
tenance, and related issues. A solution labelled “Super Sibcalls” (see § 4.2)
is even partially implemented and the according source code changes included
with this thesis (see also Appendix C).

4.1 DESIGN ASPECTS

In § 1, the most important requirements GHC imposes as a front end for a
functional language, were already outlined, e. g. indirect sibling calls to support
a form of continuation passing. Therefore, the following elaboration is more
concerned with requisites of the back end itself, so that improved facilitation of
tail calls in GCC is possible at all.

Foremost, the presented ideas are a direct result of the constraints examined
in detail in § 3.3. However, not all of these constraints can be addressed with
equal effort. That is, improvements should be made to those restrictions that do
not directly depend on each other and that do not significantly affect portability,
otherwise it would be difficult to justify the changes to the maintainers of GCC.

Hence, the important question is “In what way can (and should) the back
end be enhanced for sibling calls to become more useful and general?” Various
different approaches and scenarios are possible to answer this question, as the
following examples show:

a) Ignore machine-dependent aspects. Obviously, not all platforms are
equally as important when it comes to today’s software development reality.

52

4.1 DESIGN ASPECTS 53

The number of people still actively using a Motorola 68000 system to write
code on, is likely to be smaller than the number of programmers relying on a
32-bit Intel platform. Therefore, it could be argued that changes, which may
break the existing sibling call optimisation on a less known architecture are
acceptable, if a commonly known platform, at the same time, would experience
significant benefits.

Indirect function calls are a perfect example for such thinking. As this thesis
will show, their optimisation is quite possible on (say) modern Intel or AMD
platforms, but imposes great difficulties on an implementation for ARM, or any
other platform deploying a similarly restrictive calling convention. ARMs, how-
ever, although not generally found inside desktop computers have widespread
use in other environments, e. g. in embedded systems.

In consequence, enabling indirect sibling calls, in general, during the plat-
form independent RTL generation is not a good idea, because this would sac-
rifice portability; a chief requirement for all changes to RTL processing code is
portability.

b) Wrapping the modifications. Sibling calls are only useful, if at least
basic compatibility to existing programs and libraries is given — somehow. That
is, either they fully comply to the C Calling Convention (or whatever convention
a system demands), or they introduce another layer of abstraction, making the
changes transparent to other processes.

Since proper tail recursion and the C Calling Convention do not mix very
well, one way to interface the two would be a function wrapper. Intentionally, it
would be used for those functions which are called in the tail position. While it
would be relatively straightforward to implement such an alternative entry point
for a function, it would be rather difficult to emit code for the corresponding
exit code which would need to adjust stack frames and pointers, because the
callee and caller may have very different signatures. So, the idea may sound
tempting but has also significant drawbacks. Some of the more obvious ones
are:

� Similar to a), a wrapper would be highly platform-dependent.

� De facto, the introduction and implementation of an alternative “wrapper
epilogue” requires no less work than making up a wholly new calling
convention from scratch.

� To “clean up” after functions return, the wrapper code would be required
to store temporaries on the stack representing parameter information, or
return values.

In other words, inventing an alternative function entry and exit code is, in
effect, the introduction of a new calling convention though, in scientific terms,
not quite complete to be regarded as such. So, the amount of work required
to introduce a wrapper around such changes could turn out to be even greater
than dealing with only the modifications of a previous calling convention. Plus,
implications of such code changes on the already existing parts of GCC must be

54 POSSIBLE ENHANCEMENTS 4.1

foreseeable, but at such an early stage of planning it is not quite clear, whether
the function wrapper would be ideal to capsule the concepts in a way that they
do not interfere with the compiler’s portability and flexibility.

In summary, one could say that wrapping a calling convention very much
defeats the purpose of deploying this convention.

c) Invent a new calling convention. The technical realisation of the ex-
isting sibling call optimisation could lead one to the proverb “Never touch a
running system.” Therefore, it has to be examined whether general tail calls
are easier to implement by introducing a custom calling convention rather than
by extending what is already there and works for a limited number of cases.
Sometimes, the effort of trying to understand a current mechanism and later
modifying it can be higher than creating a new solution from scratch. A more
detailed analysis of this idea can be found in § 4.3 though.

d) Consult the front end for help. Despite (or because of) the careful
examination of GCC’s back end in previous chapters of this work, one might be
interested in figuring out ways to shift the work load, required to enhance sibling
call detection and optimisation, partially into the front end, e. g. by syntactic
analysis, or by introducing new language constructs directly supporting the
concept (and, naturally, against all existing standards). While there are cases
in which this could be a real advantage, it is often hard to realise, because one
needs to have very good reasons to add custom keywords on top of the ANSI-
C standard, for example. However, GNU C understands another standard as
well, the GNU-C standard which supports nested subroutines, for instance. So,
despite all doubt, non-ANSI compliant front end modifications are possible, if
they are thought through and if pressure from GCC clients and developers is
high enough for the maintainers to adopt them.1

e) Sacrifice elegance and performance. The detailed examination of all
the obstacles preventing sibling calls in GCC’s back end could also lead to the
conclusion that trade offs have to be made, when trying to remove some of
them. For example, optimisation fails in cases where the function arguments
overlap, but only because GCC elegantly marshals values without allocating
any extra space for temporaries; a very efficient and also portable mechanism,
but unfortunately, at the same time, very restrictive. In such cases, a decision
has to be made whether the performance losses would be acceptable if e. g.
temporaries are allowed and cleaned up before issuing a sibling call. Clearly,
this would be less elegant and requires a few extra move instructions as well
as memory, but it may have the potential to solve the overlapping-argument
problem at the expense of run time speed. Such trade offs play, in fact, a big
role in sibling call optimisation and, naturally, for this work. (§ 3 has shown
that, in theory, far better support for sibling calls is possible, but the trade offs

1As a matter of fact, Appendix C contains a patch which does not conform to ANSI-C,
but lets the front end help with tail call detection. Not surprisingly, it can only be found in
this work, not in GCC.

4.2 SUPER SIBCALLS 55

made between the back end’s portability and functionality issues have lead to
a “minimal” sibling call implementation, in favour of portability.)

Summary. More aspects could be taken into account when thinking of a
good and sound solution for GCC’s “tail call problem”. Each programmer (or
client) will impose different requirements on a solution though, because some
may not care whether it is portable or not, or whether the GCC maintainers
consider the approach broad enough, etc. However, the goal of this thesis was to
achieve improvements that are permanent, i. e. that find acceptance in the free
software community and by the maintainers of GCC alike. Hence, portability,
compatibility, elegance and the possibility to realise the necessary code changes
within a relatively tight schedule were, indeed, most relevant for this thesis to
succeed.

4.2 SUPER SIBCALLS

The idea for Super Sibcalls comes as a direct result from analysing the tail call
restrictions and drawing a couple of pragmatic conclusions. The motivation
was to sacrifice a certain degree of elegance and, probably, even performance to
overcome more severe constraints.

4.2.1 Concept

Super Sibcalls are meant to add to the already existing function call mechanism
of GCC in a sense that the back end would create four instead of just three
different call chains, one of them being the Super Sibcall. Their main features
are a) no overlapping stack arguments, and b) allocation of extra argument
space in the caller’s stack frame for marshaling the values. Hence, Super Sibcalls
are supposed to work even if the stack frame offset is not zero, though the
declaration of locals imposes the same problems as it does on the ordinary
sibling call mechanism.

This can be achieved by combining the existing sibling call epilogue with ad-
ditional, mostly platform-independent instructions; chronologically, these are:

� Until the very end of RTL code generation for a particular call, the call-
ing function “assumes” an ordinary call, hence reserves stack slots for
outgoing arguments.

� The caller stores the arguments which are, from the perspective of the
Super Sibcall, in their temporary position.

� In a separate step, all arguments will be copied into the caller’s own
incoming argument space.

� The caller has to pop callee saved registers, should it be required.

� The caller restores the frame and stack pointers.

56 POSSIBLE ENHANCEMENTS 4.2

� A low level jump command is used to branch off execution to the callee.
(Basically, this is also what happens in the current sibling call mecha-
nism.)

The following example call sequence will help to illustrate how Super Sibcalls
work in practice. The functions f , b, and b′ all accept four 4-byte parameters
each (assumed is, like in previous examples, the Intel 32-bit run time stack):

f

b b′

Figure 1 depicts this situation, in particular when b is about to call b′: b allo-
cates additional slots for the callee’s arguments. The space is required for b to
temporarily store outgoing parameters, T0 − T3. Finally, before the execution
branches off to b′ all temporaries will be copied back in the incoming argument
space of b, A0 −A3, and the “top most” stack frame can be freed.

SP

Stack frame

for f

Stack frame

for b

RA to f

BP

Move instructions

A0

A1

A3

...

A2

T0

T1

T2

T3

Fig. 1. The Intel ix86 run time stack and Super Sibcalls; instead of copying the
outgoing arguments straight back into the own argument space of b, the parameters
are assigned temporary slots where they can reside until the jump occurs.

4.2.2 Implementation

Super Sibcalls were implemented as a prototype only. That means, the mod-
ifications were made to prove that the concept works and to see where the

4.2 SUPER SIBCALLS 57

disadvantages are, but especially to discuss a working model with other GCC
developers via the mailing lists.

To speed up development, they were based upon a rather crude extension
in GCC’s parser to explicitly mark calls as being “super”. For that purpose a
new keyword called “ tailcall” was added that should allow front ends and
programmers to explicitly annotate a tail call in which no local variables are
required to be alive after the call. This is a prediction the back end can not
make, presently.

The first, most important step of the implementation was to tag the tree
representation of the callee by adding a flag to the tree data structure called
“tailcall flag”, and a corresponding accessor macro, TREE TAILCALL. Next,
it is necessary to extend the definition of the CALL PLACEHOLDER pattern in
rtl.def. GCC uses its own, custom format to describe patterns and instruc-
tions, but it is fairly intuitive. Hence, it was merely necessary to add a single
“u” to the CALL PLACEHOLDER:

DEF_RTL_EXPR(CALL_PLACEHOLDER,"call_placeholder","uuuuu",’x’)

The letter “x” states that all instructions contained in this object are RTL
expressions (where an “i”, for example, would represent integers). However,
great care had to be taken when handling the modified placeholder pattern,
because the optimisation in the back end needs to be prepared, dealing with
yet another call chain, otherwise it would be “cut off” in the end. Since this is
a rather mechanical process with a lot of little “hacks” involved, it will not be
explained here.2

Basically, Super Sibcalls are being processed (almost) like ordinary calls up
to the point where normally the epilogue would be inserted. Then the RTL
generating code in calls.c determines the final destination for all arguments
and simply adds the required move instruction for shifting each parameter into
the correct place:

for (i = 0; i < num_actuals; i++)
{
...

/* First, determine offset. */
rtx slot_offset = ARGS_SIZE_RTX (argsi.slot_offset);

/* Now, determine real address. */
rtx addr = plus_constant (virtual_incoming_args_rtx,

INTVAL(slot_offset));

/* And finally, compute the correct stack slot. */

2Theoretically, it would have been possible to simply replace the sibcall chain with Super
Sibcalls, but sibcalls are more elegant and also faster and should still be offered in all those
cases where feasible. Super Sibcalls should be regarded as an add-on, not as a replacement.

58 POSSIBLE ENHANCEMENTS 4.2

rtx dest = gen_rtx_MEM (argsi.mode, addr);

/* Shift argument. */
emit_move_insn (dest, src);

}

A problem that has to be addressed when shuffling around arguments is the
byte alignment. Each ABI defines how data types are mapped into memory
and to what boundaries they need to be aligned to. On 32-bit Intel platforms,
data types are either 1-, 2-, or 4-byte aligned (see Table 1), but a compiler is

Table 1. SCALAR TYPES1

Type C sizeof Alignm.2 Intel i386 Architecture

Integral

char
1 1 signed byte

signed char

unsigned char 1 1 unsigned byte

short
2 2 signed halfword

signed short

unsigned short 2 2 unsigned halfword

int

4 4 signed word
signed int

long

signed long

enum

unsigned int
4 4 signed word

unsigned long

Pointer
any-type *

4 4 unsigned word
any-type (*) ()

Floating Point
float 4 4 single precision (IEEE)

double 8 4 double precision3 (IEEE)

long double 12 4 extend. precision (IEEE)

1Source: System V Application Binary Interface/Intel386 Architecture Processor
Supplement [The Santa Cruz Operation 1996, § 3]
2Alignment is given in bytes.
3On the Intel architecture it is not required to have doubleword alignment for double
precision values.

allowed to impose a different set up on the run time stack, according to the
deployed data structures, or specific features of the hardware. Besides GCC,
other compilers use this “freedom” to improve their generated code, as can be
concluded from the following quote, taken from the Intel Technology Journal,
issue Q2 [Wolf III 1999]:

4.2 SUPER SIBCALLS 59

“The Intel C/C++ Compiler. [...] Data must be 16-byte aligned to
obtain the best performance with the Streaming SIMD Extensions
of the Pentium III processor. In addition, exceptions can occur if
the aligned data movement instructions are used, but data are not
properly aligned.”

For example, under certain circumstances, a single integer value can be spread
across 16 bytes of stack space: 4 bytes to represent the actual value and 12 bytes
for padding [The Santa Cruz Operation 1996]. Commonly, this happens when
a function declares only a single local variable, because for the Intel ix86 archi-
tecture, GCC distributes data types usually into 16-byte chunks. (Specific op-
timisation switches, however, can be used to alter such alignment constraints.)
Apparently, GCC uses the following formula to calculate a function’s frame
offset O, including padding.:

O = L+ P1 +A+ P2

(On Intel) L is the space required by the data types of local variables; P1 is
the padding required to align them to 16-byte chunks; A is the space taken up
by arguments and P2 is the padding around them. This formula is important,
because Super Sibcalls must know which parts of the stack frame are arguments,
saved registers, padding, etc. An example is given in Fig. 2.

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

SP

16 byte barrier

16 byte barrier

A1

A0

P2

P1

16 byte barrier

L0

RA

...

BP

RA’

BP’

Fig. 2. Stack padding, as it can occur on Intel ix86 platforms when GCC does not
use a very high level of optimisation. L0 is a local variable, A1 and A0 are function
arguments.

60 POSSIBLE ENHANCEMENTS 4.3

It should be pointed out though, that, in recognition of portability require-
ments, all such platform-specific calculations were dropped, so that any com-
puter user could test Super Sibcalls and record their responses to the patch via
the GCC mailing lists. That is, the stack frame offset calculations were not nec-
essarily needed in order to merely demonstrate the concept for integer values,
for instance. However, if Super Sibcalls were to deal with long floating point
arguments or big C structures to be passed via the stack, then simply relocat-
ing arguments would cause great problems. On a per-platform basis smaller
data types would have to be fitted into large stack space segments and big data
types, in turn, broken into many smaller pieces, according to the alignment
requirements of GCC and the corresponding ABI.

The rest of the Super Sibcall patch is rather straightforward: at the end
of RTL generation, in sibcall.c the zero-stack-frame-offset constraint must
be bypassed. In this case, it is “safe” to do so, because, by deploying the
aforementioned extensions of the parser, the front end (or programmer) assures
the back end that no locals are live at this point.

4.2.3 Super Sibcalls vs. Normal Sibcalls

At first, Super Sibcalls appeared to be ideal to overcome the unpredictable
problems of overlapping stack arguments. During the process of reviewing,
however, subtle difficulties emerged, e. g. without extending the C grammar,
how could the back end know whether a non-negative stack frame offset is
merely due to temporaries, rather than storage to keep local variables? In
order to address such issues, further workarounds dealing with the promotion
and representation of temporaries in the back end would have to be examined.

Another weak spot of Super Sibcalls appears on more recent, especially 64-bit
architectures, deploying modern calling conventions. This weakness involves the
fact that a lot of processors are designed to pass arguments purely in registers,
if possible. That is, even if Super Sibcalls were used on such systems, the
arguments would still overlap, because the code addresses passing-on-stack,
rather than passing-in-registers. To properly handle registers in Super Sibcalls,
it would be necessary to introduce a generic algorithm for detecting which
registers could be temporarily used for parameter shuffling. Normal sibling
calls, however, perform equally for stack and register parameter passing: if it
fails it drops any further optimisation attempts on this particular call.

So, even if Super Sibcalls could be implemented in a way that they perform
well on many platforms, they do not bear the potential to substitute normal
sibling calls. Passing in registers is too important, and disabling tail call opti-
misation per se for all such architectures is likely to be regarded as an inferior
solution.

Even though, Super Sibcalls were not developed further in order to pursue
other approaches as well which were more likely to integrate into GCC, they
raised an interesting question: “Would it be suitable to improve tail call support

4.3 CREATING A NEW CALLING CONVENTION 61

in GCC by offering an alternative mechanism for those platforms able to deploy
it?” After all, the normal sibling calls would still work as expected.

4.3 CREATING A NEW CALLING CONVENTION

When thinking about the tail call problem of GCC, it is probably the most
tempting of all ideas to come up with a wholly new calling convention and
fade out concerns about other standards, at least temporarily. For reasons
outlined throughout the previous chapters of this work, the C Calling Conven-
tion is simply not suited to support proper tail calls and recursion, and most
of the constraints come down to the “caller deallocates” (function arguments)
mechanism of C.

Chapter § 3 has already outlined several aspects which would have to be taken
into account when designing such a new, custom calling convention. Foremost,
it must be possible to have mutually recursive tail calls optimised between
functions whose signature varies, for example:

float foo (int a, int b)
{
/* Declare a ’big’ C struct. */
struct big_c_struct local_struct;
...

if (condition)
return bar (local_struct);

else
return b;

}

float bar (struct big_c_struct arg)
{
...

return foo (arg.value_1, arg.value_2);
}

In other words, proper tail calls must be a generally applicable concept, rather
than an optimisation depending on technicalities of ABIs and CPUs. Therefore,
with disregard to all prior C language and hardware peculiarities, the according
epilogue instructions (for a run time stack growing downwards) should include
the following steps:

1. Compute stack space required to store outgoing arguments.

2. Restore callee saved registers, if required.

3. Shift down return address, if |outgoing arguments| > |incoming arguments|.
4. If a base pointer is present, restore base pointer and adjust stack accord-

ingly.

62 POSSIBLE ENHANCEMENTS 4.4

5. Issue jump to callee.

More or less, that is all that is required, as far as the epilogue is concerned. It
could be argued as to whether 3. should be extended to the case where the re-
turn address has to be shifted up, instead of down. This would be an interesting
move whenever the outgoing arguments require far less space than the incoming
ones. However, that could be considered as fine tuning, while appending stack
slots to the “bottom” would be absolutely essential.

In a second step, the designer of the calling convention has to decide whether
all C functions use it alike, or if it is feasible to explicitly annotate tail calls,
e. g. already in the source code. Both scenarios are possible, but get closer to
the question about binary compatibility. Annotating the declaration, for ex-
ample, would indicate that a certain function is removing its own arguments
from the stack, but every other function still relies on the caller for that matter.
While this works well, for example, with stdcall which basically resembles the
widespread calling convention for the Pascal programming language, it would,
using a custom convention, introduce an incompatibility when foreign C com-
pilers attempt to link against a properly tail recursive subroutine.

The next bigger obstacle is, again, portability: a fully general solution,
whether it is based on annotation or complete employment of a new conven-
tion, must be easy to port. That is, the alternative epilogue must also work on
machines using register windows, for example, such as Sun Sparc computers.
The GNU-C standard is very unlikely to be expanded with a calling convention
that works on platform XYZ, but fails on all the others. Plus, it defeats much
of the purpose of GHC using GCC as a portability layer.

Furthermore, an alternative calling convention for C has to deal with the
usual features of the language, like variable argument functions and indirect
calls. Unfortunately though (or luckily — depending on the point of view), in
GCC some of these features depend solely on the machine-dependent code,
rather than on RTL or tree code handling. In other words, even with a new
calling convention in place, it would not be possible to automatically support
indirect calls, for example.

4.4 SUMMARY

In this work, Super Sibcalls were the first approach to GNU C’s tail call problem
which were also implemented in parts. Because of the relatively huge overhead
of a clean implementation, for relatively little gain, i. e. improvements in terms
of overlapping stack arguments on Intel ix86 architectures, the prototype did
not get developed any further.

Discussions on the mailing lists have revealed weaknesses in Super Sibcalls
that could only be addressed by supporting them in the machine-dependent
parts of GCC and by porting the foundations for these changes to all platforms
alike, such as the handling of floating point and structure arguments.

Considering the fact that Super Sibcalls solve the overlapping-argument prob-
lem by disabling GCC’s existing code to marshal values without allocating stack

4.4 SUMMARY 63

space, it was also very questionable at the time, whether the GCC community
would accept such changes at all, even if an implementation would not have
been as “ugly” as the prototype was. On top of it all, Super Sibcalls did not
have the potential to solve GHC’s most urgent problems with GCC as its back
end (indirect tail calls).

A lot of time was also spent trying to design a calling convention which would
be compatible to existing C programs, portable and also possible to implement
for a single person in the time frame allowed for a “Diplomarbeit” (the German
equivalent to a Master’s Thesis). While it may have been possible to implement
such a calling convention for (say) Intel platforms, there would certainly not
have been enough time to transfer it on to others. Actually, an incomplete, new
calling convention, bears four major problems:

� It would never be accepted in the CVS tree of GCC.

� It would not be very useful to GHC, because Haskell programmers are
not necessarily bound to (say) Intel platforms, if. . .

� . . . no predictions can be made whether the calling convention is portable
at all.

� It would still miss GHC’s most urgent GCC-related pains (consider indi-
rect sibling calls, for instance).

In summary, a new calling convention is a bad idea under the given cir-
cumstances, because designing and prototyping the concepts which have been
outlined in the current chapter, would have been a worthwhile academic exer-
cise, but it would totally miss the point if the results are not in good enough
shape or even too incomplete to be adopted by the GCC project.3

So, in order to support the cause of this thesis, an entirely different approach
was chosen instead, not related to Super Sibcalls nor to the introduction of
a new calling convention. However, it is an approach that has, indeed, made
it into the official GCC sources and is definitely aimed at GHC’s back end
problems.

3After all, this is not the first thesis dealing with this problem (see Probst [2001], Nenzén
and R̊ag̊ard [2000]) and it can be seriously doubted whether more solutions are needed that
work really well in theory but, for some unknown reason, gather dust in a university’s library.

CHAPTER FIVE

IMPROVING GNU C

In GNU C development, as in most other open source projects, a contri-
bution is not valued by its comprehensiveness alone, but by the way how new
ideas are incorporated into a certain piece of code. If a (too) large patch is sent
to the mailing list it often gets “ignored”, simply because people lack the time
to properly review the code and to find out how the lengthy changes interact
with different parts of the compiler. Nonetheless, GCC is progressing fast, but
it is taking only small steps while, at the same time, its maintainers make sure
that no one steps on each other’s heels.

Therefore, this chapter deals with the design, implementation, maintenance
and also the process of contributing a whole series of smaller patches to improve
the existing tail call support of the GCC suite. Apparently, all of the source code
changes discussed in this chapter, have already been adopted by the maintainers
and have also undergone several months of intense, successful testing.

The individual steps of the implementation are outlined in great detail with
the intention of enabling other developers to create straightforward ports of the
presented concepts and ideas to other platforms.

5.1 INTRODUCTION

Discussing an idea, or a prototype for an idea on the GCC mailing list is often
very helpful to make the right decision on how to implement a feature, or to
see how much work is effectively required to accomplish a certain task. Usually,
people give helpful hints on how to improve things, or state their honest opinion
if something should be approached from a rather different angle.

However, getting an actual piece of source code accepted by the maintainers
of GCC requires more than just that (see also § 2). The reviewing process can
take a long time and often results in having to rewrite a patch several times,
i. e. presenting different versions of the very same piece of code multiple times
on the mailing list.

The changes discussed in the following sections did undergo this process quite
successfully, but in a distributed project like GCC it is also possible that a
certain patch “falls through”, because the developers with CVS write access
have to set different priorities at a time (as it commonly happens before official
program releases and the like) or, for example, go on holidays with their families

64

5.2 A PRAGMATIC APPROACH 65

and friends. (People sometimes tend to forget that open source projects are also
developed by real people, with real jobs, and who have real private lives, too.)

In the case of this thesis, however, nothing “fell through” and, fortunately,
the early adoption of the most important source code changes did not only
allow sufficient time for testing, but also for fixing some bugs.

5.2 A PRAGMATIC APPROACH

The most important single aspect of software development is to be
clear about what you are trying to build.

— Bjarne Stroustrup, The C++ Programming Language (2000)

In § 3, the most stringent restrictions of the current tail call optimisation were
presented; and in § 4, solutions were discussed that have the potential to solve
some of the involved problems but would, unfortunately, introduce new burdens
and obstacles. Hence, a new and more pragmatic optimisation approach had
to be chosen that would allow smooth integration into GCC, on the one hand
side, but would not cause new incompatibilities, on the other.

De facto, general support for indirect tail (or sibling) calls is not possible, be-
cause the calling conventions on platforms like ARM do not explicitly support
or allow them. However, at the beginning of this work, in a meeting with the
author, Prof. Simon Peyton Jones expressed how important those are, because
the GHC generated C source code uses mostly indirect calls, and if he can not
have the “£100 solution” (fully general), he would at least be interested in a
“£10 solution” (indirect tail calls) which is properly supported by GCC, and
which is not just part of the appendices of yet another thesis, and therefore, in
the long run, not usable by his compiler.

For many different reasons outlined earlier in this work, a new calling con-
vention itself did not offer the prospect of help under the circumstances, neither
did Super Sibcalls, despite the promising name. So, it had to be examined if
it is possible to introduce support for indirect sibling calls (which turns out to
be a highly platform-specific feature) into GCC without breaking the platform-
independent parts at the same time. In other words, is it possible to make a
“£10” solution work on (say) Intel, without affecting ARM and similar systems?

The simple answer to this probing question is: yes, it is. GCC offers a rather
poorly documented, yet powerful feature called “target hook” to handle such
tasks. A target hook holds functionality which is specific to a certain target,
without affecting others that do not support it. This is possible by defining
a “worst case” value or a fall back function as default, and allow improve-
ments whenever possible. For example, the functions to compute the costs of
instruction scheduling and RTL code optimisation are partially implemented as
a target hook. Each “machine” provides an independent way to determine the
costs and maps the according evaluation functions to several different macros
inside machine.c; the following snippet is taken from i386.c; it shows how a

66 IMPROVING GNU C 5.3

universal hook (TARGET SCHED ADJUST COST) gets assigned individual function-
ality (ix86 adjust cost):

#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST ix86_adjust_cost

Due to the fact that a target hook always defaults to at least some usable
value or function definition, it is a very powerful concept of GCC that allows
not only careful “fine tuning” of parameters and code optimisation, but also
offers great portability, because new platforms do not necessarily have to have
their own definitions for each hook in place; and if a certain hook is not suitable
at all, it can simply be ignored without facing further consequences.

However, there is also a down side to this mechanism: target hooks can not be
added arbitrarily, because they potentially slow down the compilation process
as a whole and shift decisions concerning code generation deeper into the back
end. That is, hooks should only be added when no other mechanism seems
suitable. (GCC has become a very mature project, so introducing new hooks
is not a very frequent procedure and, usually, is only performed by those who
already maintain ports or bigger parts of GCC; hence, the lack of documentation
for this process.)

5.3 INTRODUCING A NEW TARGET HOOK

Obviously, indirect sibling calls are predestined to be turned into a target hook,
because the only reason why GCC originally refused to optimise those is that
there is no sane way of supporting them in a platform-independent manner.

This thesis introduced TARGET FUNCTION OK FOR SIBCALL to give all plat-
forms the possibility to either support indirect sibling calls, or to ignore them.
Normally, the macro defaults to false, but it is up to the programmer to ex-
tend it with broader definitions and conditions as they seem fit for a particular
platform.

Since target hooks are a very important feature of GCC, but are not explained
in the documentation to an extent that would allow others to understand their
implementation, this section describes the most essential steps which are nec-
essary to introduce a new hook. Basically, these can be summarised as follows:

1. Declaring a new hook.

2. Defining a default.

3. Connecting the hook.

4. Modifying each target description.

Over the next pages, each of these steps is described in greater detail, trying
to turn this process into a “purely mechanical procedure” for future hooks to
be added.

5.3 INTRODUCING A NEW TARGET HOOK 67

Step 1. Implementation should always begin with the file target.h which
describes a data structure called “gcc target”. Inside, further structures are
defined, such as sched which is used for hooks related to instruction scheduling
and general cost calculations. Sibling calls, however, do not need to be nested
any further and thus, can be added directly at the end of gcc target:

bool
(*function_ok_for_sibcall) PARAMS ((tree decl, tree exp));

This instruction declares a function (upon which the actual hook will be based)
called “function ok for sibcall”. It accepts a tree declaration and expres-
sion as arguments; the former pointing to the function’s declaration, should it
be available.1

Step 2. The file hooks.c contains generic hooks which can be used as de-
faults by hook initialisers. A hook initialiser can be considered as the actual
connection between the hook and a value, function, or predicate. For this work,
the following “default function” had to be introduced:

bool
hook_tree_tree_bool_false (a, b)

tree a ATTRIBUTE_UNUSED;
tree b ATTRIBUTE_UNUSED;

{
return false;

}

Obviously, hook tree tree bool false does not serve a specific purpose other
than accepting two arguments of type tree and returning the value false.
However, the advantage of such a general definition is that further, future hooks
are able to use it as their fall back mechanism as well, should they also depend
on two tree-type arguments.

The corresponding function declaration needs to be appended to the file
hooks.h, so that the compiler knows about it at all. The code for that can
be found in Appendix C.

Step 3. The hook needs to be initialised in order to use the function which
was defined in Step 1 as a default. This happens in the file target-def.h,
where the macro TARGET FUNCTION OK FOR SIBCALL first gets “connected” to
an actual function declaration:

#define
TARGET_FUNCTION_OK_FOR_SIBCALL hook_tree_tree_bool_false

1A declaration is available if the call is direct. If a call is indirect, the macro TREE TYPE

has to be applied on the expression node in order to trace the callee’s return type, number of
arguments, and other properties (see also Fig. 3, p. 28).

68 IMPROVING GNU C 5.4

In other words, whenever the macro TARGET FUNCTION OK FOR SIBCALL is ac-
cessed anywhere inside GCC, it will default to false, unless specifically defined
otherwise.

The main initialisation, however, is invoked by attaching the new hook to
another macro called “TARGET INITIALIZER”. It consists of the names of all
deployed target hooks:

#define TARGET_INITIALIZER \
{ \
TARGET_ASM_OUT, \
TARGET_SCHED, \
TARGET_MERGE_DECL_ATTRIBUTES, \
TARGET_MERGE_TYPE_ATTRIBUTES, \
...

TARGET_CANNOT_MODIFY_JUMPS_P, \
TARGET_FUNCTION_OK_FOR_SIBCALL, \
TARGET_IN_SMALL_DATA_P, \
TARGET_BINDS_LOCAL_P, \
...

}

Step 4. In a final step, the hook gets tied to the actual targets, i. e. each
target that is able to support (indirect) sibling calls must be given the possibil-
ity to overwrite the default function hook tree tree bool false. Commonly,
this is done by adding two preprocessor instructions to the file machine.c (or
machine-protos.h, should a static definition be required):

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define
TARGET_FUNCTION_OK_FOR_SIBCALL machine_function_ok_for_sibcall

The first directive disables the hook’s default; the second ties it to another
custom function with the name “machine function ok for sibcall”, where
machine is the target name (see § 2 for an explanation of the GCC naming
conventions).

5.4 EXTENDING THE MACHINE DESCRIPTION

Introducing the new hook was the “easy” part, and, at this stage, it is important
to know how it works, but this step itself does not as yet solve any real problems.
The main concern, enabling indirect sibling calls, has yet to be addressed, on
each platform individually.

Even though the methodology discussed in this section is not meant to be a
step-by-step manual, it can be divided, roughly, into the following parts, each
described in great detail, not only to document the work involved, but also to
present a comprehensive guideline for future ports:

5.4 EXTENDING THE MACHINE DESCRIPTION 69

� Converting the (old) macro.

� Improving the (new) hook.

� Adjusting the 32-bit call patterns.

� Adjusting the 64-bit call patterns.

� Using the (new) hook.

Since most of this work was accomplished on a 32-bit Intel platform, the
text of this section will usually refer to the situation as it is (and was) on i386
systems, unless specifically denoted otherwise. However, changes on the Intel
platform are only meant as a reference implementation. All of the presented
concepts can be transferred to other architectures, as this chapter will show.
As a matter of fact, it is this high degree of flexibility which is the strong point
of this work’s solution.

5.4.1 Initial Situation

Before TARGET FUNCTION OK FOR SIBCALL existed, a target description contained
several different macros, indicating whether a target supported, for example, an
alternative sibling call epilogue, or sibling calls to position independent code, as
well as other features. These macros were typically “rather simple” (semanti-
cally, not syntactically), because most of the decisions on successful sibling call
optimisation had to be made in the platform-independent part of GCC’s back
end. For example, the following macro from the file i386.h was formerly used
as a predicate on 32-bit Intel platforms to examine whether it was possible to
optimise a tail call to a subroutine defined by its declaration DECL:

#define FUNCTION_OK_FOR_SIBCALL(DECL) \
((DECL) \
&& (! flag_pic || ! TREE_PUBLIC (DECL)) \
&& (! TARGET_FLOAT_RETURNS_IN_80387 \

|| ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
|| FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE \

(cfun->decl))))))

Basically, this piece of code contains the constraints described in § 3.3, with
the first line “((DECL)”, being the most stringent one in terms of this thesis’
subject; it basically means that the only parameter of this macro, the function
declaration, must not be undefined, i. e. the function has to be called directly,
but not via a pointer.

5.4.2 Converting the Macro

In an intermediate step, in order to get the new target hook working, the “old”
macro should be merely converted without further extensions. In fact, this step
turned out to be a necessity, because the GCC maintainers refused to have
all of the changes incorporated into a single patch. The conversion itself is
straightforward though and results in this new function definition:

70 IMPROVING GNU C 5.4

static bool
ix86_function_ok_for_sibcall (decl, exp)

tree decl;
tree exp ATTRIBUTE_UNUSED;

{
/* This is the previous FUNCTION_OK_FOR_SIBCALL macro. */
return ((decl)

&& (! flag_pic || ! TREE_PUBLIC (decl))
&& (! TARGET_FLOAT_RETURNS_IN_80387

|| ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE
(TREE_TYPE (decl))))

|| FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE
(cfun->decl))))));

}

Declaring an attribute “unused” means that the interface for the new macro
is in place, but that the corresponding function yet ignores the additional pa-
rameter. All the other instructions may (and, in most cases, should) remain
unchanged by this process.

5.4.3 Improving the Hook

ix86 function ok for sibcall, in the present state, is no more useful than
FUNCTION OK FOR SIBCALL originally was, because at this point it lacks the
necessary improvements which would allow indirect sibling calls. Surprisingly
enough, the main improvements to the macro do not require huge source code
changes, if one is aware of the way GCC uses its machine.c files: simply re-
moving the check for a sane function declaration is basically all that is required.
However, without any further precautions this would result in (almost) all sys-
tems which have relations to the 32-bit Intel platform in one way or another
“suddenly” supporting indirect sibling calls which is, of course, too optimistic.

It is so, because the 64-bit Intel-based systems may deploy different call-
ing conventions which could hinder indirect sibling calls by demanding all call
clobbered registers to be used for argument passing, for instance. In the case
of AMD’s “Hammer” this was not a problem though, because the authors of
its calling convention are, in fact, all maintainers of GCC (see Hubicka et al.
[2002]). The conventions for Intel’s “Itanium”, on the other hand, appear to be
so fundamentally different that GCC has to support this architecture with in-
dependent machine descriptions. Even though this imposes difficulties in terms
of maintenance, it was an advantage for this work, because all changes, made
inside the i386 directory of GCC’s source tree, were isolated from the Itanium
port.

The macro TARGET 64BIT checks whether GCC compiles code for a 64-bit
architecture. Temporarily using it, when removing the “no indirect calls” check,
leads to the desired bypass of indirect sibling calls on only the 64-bit platforms:

5.4 EXTENDING THE MACHINE DESCRIPTION 71

static bool
ix86_function_ok_for_sibcall (decl, exp)

tree decl;
tree exp;

{
/* 64-bit architectures may not use indirect sibling

calls. */
if (TARGET_64BIT && !decl)
return false;

/* If we are generating position-independent code, we cannot
sibcall optimize any indirect call, or a direct call to a
global function, as the PLT requires %ebx be live. */

if (!TARGET_64BIT && flag_pic
&& (!decl || TREE_PUBLIC (decl)))

return false;
...

/* Otherwise okay. That also includes certain types of
indirect calls. */

return true;
}

5.4.4 Adjusting the 32-bit Call Patterns

At a first look, the improvements described in § 5.4.3 may seem peculiar, be-
cause it is not obvious at all why the 64-bit platforms can not deploy the same
mechanisms and features as their predecessors, even though their properties are
defined in the same set of GCC input files. However, the reason for this strict
logical dissociation is that the introduction of a new and more liberal hook is
not alone sufficient for a family of systems to actually support indirect sibling
calls in terms of code generation; because, a hook merely tells the front end
about the availability of a feature, not how it can actually be used to emit more
efficient code for a platform.

As explained in § 2.2.4, a complete machine description consists of at least
three files: machine.h and machine.c to describe platform properties and
machine.md to match RTL instructions with actual assembly templates. Dif-
ferent platforms from the same family of architectures (called “family”) may
share family.c and family.h to generate RTL code, but may still rely on al-
ternative .md files containing individual templates for emitting custom machine
language. This is exactly what is happening with descriptions for the Intel pro-
cessor family: the systems share most of the code, responsible for handling RTL,
but require different patterns to translate it into assembly instructions within
GCC’s final pass, because the number of registers is varying, or the way they
are used during a call, etc. Therefore, indirect calls need to be integrated into a
target system’s call pattern definition as well, not just in the C files. However,
it should be clear, that extending the call patterns inside the .md files requires

72 IMPROVING GNU C 5.4

a very good understanding of the according processor and the corresponding
calling convention, because even the smallest flaw in just a single pattern could
lead to fundamentally broken programs.

Table 1. IMPORTANT 32-BIT CALL PATTERNS

Pattern Function Call is Return Type

call 0 direct void

call 1 indirect void

call value 0 direct value∗

call value 1 indirect value∗

call pop 0 direct struct

call pop 1 indirect struct

* “value” means that any value may be returned except for a C struct,
because returning a struct requires a different call mechanism (see 3.3 e).

Table 1 shows the most important call patterns of the i386.md file and
sketches their purpose. The deployed naming scheme should be rather obvi-
ous: if the pattern ends with “1”, it means that the call is indirect, otherwise
it is direct. Furthermore, the patterns differentiate between making a call to a
function that returns a value, a struct, or nothing at all (void).

The alert reader, however, may have noticed that the table in its current
state, seems to lack any specific sibling call supporting patterns at all, even
though GCC has been optimising those for several years already, in cases where
the function call in the tail position is direct and the typical constraints are
fulfilled. Actually, this is not a bug, it is a feature: until now, no special call
patterns were necessary, because direct sibling calls can make use of what is
already there, like call value 0 or call 0, for instance. As explained in § 3, no
extra (call clobbered) register is needed when making a direct call, regardless
of whether it is in the tail position or not. Hence, the existing call patterns
could be applied without any further changes in order to issue at least the direct
sibling calls.

In order to support indirect sibling calls for 32-bit Intel-based systems, how-
ever, two new patterns need to be added to this list: sibcall 1 for indirect
sibling calls to void functions, and sibcall value 1 for indirect sibling calls
to functions which return a value other than a C struct.

The call pattern call 1 originally looked like this, which should come as a
surprise, after all that has been said about sibling call support in GCC (or the
lack thereof):

(define_insn "*call_1"
[(call (mem:QI (match_operand:SI 0 "call_insn_operand" "rsm"))

(match_operand 1 "" ""))]
"!TARGET_64BIT"
{
if (constant_call_address_operand (operands[0], QImode))
{

5.4 EXTENDING THE MACHINE DESCRIPTION 73

if (SIBLING_CALL_P (insn))
return "jmp\t%P0";

else
return "call\t%P0";

}
if (SIBLING_CALL_P (insn))
return "jmp\t%A0";

else
return "call\t%A0";

}
[(set_attr "type" "call")])

The pattern does, indeed, address indirect sibling calls (SIBLING CALL P), even
though GCC did not allow those on a much higher level of code generation.2 In
other words: during RTL generation, GCC used to disable all indirect sibling
calls while, further down the back end, it had the concepts in place that were
meant to support them — theoretically.

However, the correct way to handle this, in regard to the new target hook,
is to split the pattern into two: call 1 would then only handle indirect calls
which are not in the tail position of a function, and the new sibcall 1 gets
assigned the responsibility for indirect sibling calls. Figure 1 shows the differing
conditions (see double framed text) which clearly separate the task of each
pattern and indicate that those are meant to work only on 32-bit platforms.
The differentiation is very important, because of the new constraints (see framed
text) in sibcall 1 that demand the call’s destination address to be either
available as immediate integer operand, or to be stored in register %ecx, %edx,
or %eax. Of course, this constraint is not portable at all, because another
platform, even if it is (historically) related to 32-bit Intel, most certainly has a
different number and also usage of registers.

It should become clear now, why the original definition of call 1 was bro-
ken (that is, if GCC would have passed indirect sibling calls on to the level of
machine code generation): the pattern’s constraints were yet not appropriate,
i. e. did not impose restrictions on proper register usage. The old and general
constraint “rsm” basically means that the operand can either be any general
purpose register, an immediate integer, or a memory location with any kind of
address that the machine generally supports. That is, the pattern did not take
into account at all that not all registers are equally well suited to carry a ma-
chine’s “jump target”. In many cases, and by pure coincidence, the pattern may
have been assigned the “right” register; in many cases, however, the register
allocator may have come up with the wrong decision, leading to unpredictable
program crashes.

Although comprehensive, the above work for 32-bit systems is only half com-
plete. That is, the process needs to be repeated in almost exactly the same

2The author of this text has to admit that he does not know whether this is merely a relict
from the past, a test case for a particular purpose, or whether the code is just plain wrong.

74 IMPROVING GNU C 5.4

(define_insn "*call_1"
[(call (mem:QI (match_operand:SI 0 "call_insn_operand" "rsm"))

(match_operand 1 "" ""))]
"!SIBLING_CALL_P (insn) && !TARGET_64BIT"

{
if (constant_call_address_operand (operands[0], QImode))

return "call\t%P0";
return "call\t%A0";

}
[(set_attr "type" "call")])

(define_insn "*sibcall_1"
[(call (mem:QI (match_operand:SI 0 "call_insn_operand" " s,c,d,a "))

(match_operand 1 "" ""))]

" SIBLING_CALL_P (insn) && !TARGET_64BIT "

{
if (constant_call_address_operand (operands[0], QImode))

return "jmp\t%P0";
return "jmp\t%A0";

}
[(set_attr "type" "call")])

Fig. 1. The old call pattern call 1 has been split into a revised call 1 and a new
sibcall 1 pattern.

manner for the pattern sibcall value 1, in order to support indirect calls
to functions returning a value. Albeit, the concepts and techniques presented
here can be transferred straightforward which means there is no need to wade
through this process in greater detail; instead, the corresponding source code
changes can be found in Appendix C.

5.4.5 Adjusting the 64-bit Call Patterns

The restrictions inside call patterns like call 1 point up to the need for spe-
cialised 64-bit versions. It is not possible to implement a new feature, which
involves changes in GCC’s call patterns, only for 32-bit systems if the 64-bit suc-
cessor depends on the availability of the according pattern changes just as much.
In consequence, there are two possible options for implementing such a feature:
1. create one pattern which is able to cover both platforms at the same time,
or 2. create a pattern pattern x rex64 for each pattern pattern x. In order
to implement indirect sibling calls for the “Intel family”, the second approach
must be chosen, especially in light of all previous changes to the 32-bit patterns.

Table 2 shows the most important call patterns GCC originally offered to sup-
port 64-bit systems based upon the x86-64 machine description. Even though
the table does not include great surprises, it is interesting to see that there is
no custom pattern for call 0. The reason for this has already been outlined in

5.4 EXTENDING THE MACHINE DESCRIPTION 75

Table 2. IMPORTANT CALL PATTERNS FOR 64-BIT

Pattern Function Call is Return Type

call 0 direct void

call 1 rex64 indirect void

call value 0 rex64 direct value
call value 1 rex64 indirect value

the previous paragraph: a direct (sibling) call does not demand any special con-
straints imposed upon register usage, as can be clearly seen from the relatively
simple pattern code:

(define_insn "*call_0"
[(call (mem:QI (match_operand 0

"constant_call_address_operand" ""))
(match_operand 1 "" ""))]

""
{
if (SIBLING_CALL_P (insn))
return "jmp\t%P0";

else
return "call\t%P0";

}
[(set_attr "type" "call")])

Without any stringent checks, the patterns treat “normal” and sibling calls
almost identically, choosing the built in jmp command over call, if the RTL
instruction is, indeed, labelled as sibling call.

What needs to be added to the machine description is an equivalent of
sibcall 1, namely sibcall 1 rex64. This pattern is intended to be used when
the RTL instructions for indirect sibling calls are matched onto machine code
templates on a 64-bit Intel-based platform, like x86-64. For various internal
optimisation and performance related issues which are beyond the scope of this
thesis, sibcall 1 rex64 is actually divided into two parts, sibcall 1 rex64
and sibcall 1 rex64 v:

(define_insn "*sibcall_1_rex64"
[(call (mem:QI (match_operand:DI 0

"constant_call_address_operand" ""))
(match_operand 1 "" ""))]

"SIBLING_CALL_P (insn) && TARGET_64BIT"
"jmp\t%P0"
[(set_attr "type" "call")])

(define_insn "*sibcall_1_rex64_v"
[(call (mem:QI (reg:DI 40))

76 IMPROVING GNU C 5.4

(match_operand 0 "" ""))]
"SIBLING_CALL_P (insn) && TARGET_64BIT"
"jmp\t*%%r11"
[(set_attr "type" "call")])

The patterns appear to be fairly simple due to the usage of register classes
for 64-bit systems, i. e. rather than explicitly suggesting registers that can be
potentially used for an indirect sibling call, an entire class of available registers
is already predefined and used by those patterns containing the suffix rex64.
The additional v indicates that a special volatile, call clobbered register, which
is not part of the standard class, may be used to hold the call’s operand as well;
this increases flexibility.

Another noticeable difference is that the template generally matches 64-bit
DI-mode integer operands which are eight times the size of the smallest ad-
dressable unit QI which is only 8 bits long. In contrast, Fig. 1 shows how the
32-bit patterns handle only 32-bit SI-mode integer operands. Even though, this
is a obvious and logical difference, it is a noteworthy detail and especially im-
portant for other developers trying to port the patterns because, at this stage,
GCC does not really know about int or float types anymore, rather than
about units which are mapped to C types, and are summarised in the following
table [Stallman 2002]:

QI: An integer that is as wide as the smallest addressable unit, usually 8 bits.

HI: An integer, twice as wide as a QI-mode integer, usually 16 bits.

SI: An integer, four times as wide as a QI-mode integer, usually 32 bits.

DI: An integer, eight times as wide as a QI-mode integer, usually 64 bits.

SF: A floating point value, as wide as a SI-mode integer, usually 32 bits.

DF: A floating point value, as wide as a DI-mode integer, usually 64 bits.

The reason why the 64-bit call pattern(s) are designed the way they are
goes beyond the scope of this work though. Originally, the author of this text
suggested how these could be implemented, but several months of testing on
the x86-64 platform (and the corresponding cross compiler) showed various,
sometimes hard to detect weaknesses, either in the quality of the generated
code or in terms of compile time when, for instance, additional or modified
register classes were added.

Today’s version of the patterns was implemented and continuously tested,
mainly by the same (SuSE) engineers who also helped design the ABI for x86-64
[Hubicka et al. 2002] and who happen to host some of the biggest automated
test suites available for GCC (see also § 2.1).

Just as it was the case with 32-bit call pattern changes, the description of
the counterpart sibcall 1 value rex64 will be omitted, because it is rather
similar to implementing sibcall 1 rex64 and can also be found in full length
in Appendix C.

5.4 EXTENDING THE MACHINE DESCRIPTION 77

5.4.6 Using the Hook

Finally, with both the new 32 and 64-bit call patterns in place, the target
hook ix86 function ok for sibcall can be extended to accept also indirect
function calls on x86-64 platforms. Considering the code excerpt on page 70
again, all that is necessary is removing the check for TARGET 64BIT at the
beginning, which results in this new function definition:

static bool
ix86_function_ok_for_sibcall (decl, exp)

tree decl;
tree exp;

{
/* If we are generating position-independent code, we cannot

sibcall optimize any indirect call, or a direct call to a
global function, as the PLT requires %ebx be live. */

if (!TARGET_64BIT && flag_pic
&& (!decl || TREE_PUBLIC (decl)))

return false;
...

/* Otherwise okay. That also includes certain types of
indirect calls. */

return true;
}

The new hook and the according call pattern improvements can be used by
telling the RTL generating front end about it. Inside calls.c, where most of
the important decisions concerning sibling call optimisation are made (see § 3),
the previous constraints imposed by the following condition

01 if (...
02 || fndecl == NULL_TREE
03 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP))
04 || TREE_THIS_VOLATILE (fndecl)
05 || !FUNCTION_OK_FOR_SIBCALL (fndecl) ...)
06 try_tail_call = 0;

can be replaced with the more elegant and also flexible solution:

01 if (...
02 || !(*targetm.function_ok_for_sibcall) (fndecl, exp)
03 /* Functions that do not return exactly once
04 may not be sibcall optimized. */
05 || (flags &
06 (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
07 || TYPE_VOLATILE
08 (TREE_TYPE
09 (TREE_TYPE
10 (TREE_OPERAND (exp, 0)))) ...)
11 try_tail_call = 0;

78 IMPROVING GNU C 5.4

In other words, calls.c does not depend on a valid function declaration
anymore (lines 7–10: the expression node exp is sufficient and is the only link
to the callee, should it be invoked via a pointer) and it lets other parts of
the back end make a decision on whether the call should be optimised or not
(line 2). Hence, with this last minor modification, 32 and 64-bit Intel-based
systems both fully support indirect sibling calls. Other platforms which are, in
theory, not bound by their ABI to not support this notion, can be extended
in a similar way, if one has sufficient information on the use and availability of
call clobbered registers on the corresponding target.

CHAPTER SIX

RESULTS

The code changes discussed in § 5 aim to support indirect sibling calls in
mainline GCC. The impact, however, might not be obvious yet and so some
results and real world examples are presented to demonstrate how developers
and their programs may benefit from this work. Hence, this chapter will ex-
plain the new GCC features by examining various source code snippets and the
corresponding machine code on 32 and 64-bit Intel platforms.

6.1 TECHNICAL IMPACT

Rule: It is a mistake to use the manufacturer’s special call instruction.

— Ken Thompson, Plan 9: The Early Papers
A New C Compiler (1990)

The improved sibling call optimisation will be officially available when GCC
3.4 is released, and can be already tested by downloading the contents of the
basic-improvements CVS branch. The following examples have all been com-
piled using a current snapshot of this branch and will, of course, lead to funda-
mentally different results if tested with any older version of the compiler.

Example 1.

extern int bar (int);
int (*ptr) (int);

int foo (int a)
{
ptr = bar;
return a? (*ptr) (a) : 0;

}

The code has to be compiled using the command line switches -O1 -dp -S
-foptimize-sibling-calls to obtain an annotated assembler output which
contains the names of the deployed instruction patterns. On an Intel-based
32-bit platform, GCC will produce the following output:

79

80 RESULTS 6.1

foo:
pushl %ebp # 46 *pushsi2
movl %esp, %ebp # 47 *movsi_1/2
movl 8(%ebp), %eax # 3 *movsi_1/1
testl %eax, %eax # 11 *cmpsi_ccno_1/1
je .L2 # 12 *jcc_1
movl ptr, %ecx # 16 *movsi_1/2
popl %ebp # 53 popsi1
jmp *%ecx # 17 *sibcall_value_1/2

.L2:
movl $0, %eax # 35 *movsi_1/1
popl %ebp # 50 popsi1
ret # 51 return_internal

The interesting parts are underlined: instead of using the processor’s built in
call command to issue a function call to bar, GCC optimises the indirect tail
call into a sibling call by using the new pattern sibcall value 1 to jump to
the desired subroutine.

In Example 1 the improvements are obvious: by jumping to the subroutine,
instead of using the built in call instruction, bar does not have to allocate a
new stack frame; and foo’s incoming argument space can be “recycled”.

Another noticeable property of this example is the jump’s target: %ecx. In-
stead of jumping straight to a function label, the pattern has to store the address
in a register, predestined by sibcall value 1.

In comparison, the assembler output looks like this, if compiled without sib-
ling call optimisation or, alternatively, with a version of GCC prior to 3.4:

foo:
pushl %ebp # 37 *pushsi2
movl %esp, %ebp # 38 *movsi_1/2
subl $8, %esp # 39 *pro_epilogue_

adjust_stack_1/1
movl 8(%ebp), %edx # 3 *movsi_1/2
movl $0, %eax # 21 *movsi_1/1
testl %edx, %edx # 11 *cmpsi_ccno_1/1
je .L1 # 12 *jcc_1
movl %edx, (%esp) # 13 *movsi_1/4
call *ptr # 15 *call_value_1

.L1:
movl %ebp, %esp # 42 *pro_epilogue_

adjust_stack_1/2
popl %ebp # 43 popsi1
ret # 44 return_internal

Clearly, this produces less efficient code, because a) the call is more expensive
than a jmp, b) foo does not really return when it calls bar and c), because bar
will have to allocate its own stack frame. Hence, Example 1 is (asymptotically)
faster and consumes no extra memory when issuing control to the callee.

6.1 TECHNICAL IMPACT 81

Example 2. As pointed out in § 3, sibling calls are not restricted to functions
sharing a common signature. The improvements, made to the sibling call opti-
misation do not constrict this mechanism. Hence, the following example is also
subject to optimisation on all platforms which use the same byte representation
for integer and long integer values:

int (*ptr) (int);
... /* Assign *ptr here somewhere. */

long foo (long a)
{
...

return ((*ptr) ((int) a));
}

It is, however, not “clean” in a sense that the return value should really be
explicitly casted, but for the purpose of demonstrating a concept it does not re-
ally matter. Albeit, in i386 platforms, the following machine code is generated
from the example:

foo:
pushl %ebp # 47 *pushsi2
movl %esp, %ebp # 48 *movsi_1/2
subl $4, %esp # 49 *pro_epilogue_

adjust_stack_1/1
fnstcw -2(%ebp) # 41 x86_fnstcw_1
movzwl -2(%ebp), %eax # 42 *movhi_1/4
fldl 8(%ebp) # 45 *movdf_nointeger/1
orw $3072, %ax # 43 *iorhi_1/1
movw %ax, -4(%ebp) # 44 *movhi_1/6
fldcw -4(%ebp) # 14 fix_truncsi_memory
fistpl 8(%ebp)
fldcw -2(%ebp)
movl ptr, %ecx # 15 *movsi_1/2
leave # 51 leave
jmp *%ecx # 16 *sibcall_value_1/2

On x86-64, where int corresponds to 4 bytes and long to 8, this is not possible
(see also Hubicka et al. [2002]). However, if both foo and bar are integer
returning functions, one obtains the following machine code fragment:

foo:
cvttsd2si %xmm0, %edi # 13 fix_truncdfsi_sse
movq ptr(%rip), %r11 # 17 *movdi_1_rex64/2
jmp *%r11 # 18 *sibcall_value_1_rex64_v

Example 3. This last example is one which demonstrates a case where the
improved GCC correctly disregards sibling call optimisation. As outlined in § 3,
a function which does not return, or is marked as being volatile, must not be
sibcall optimised:

82 RESULTS 6.2

typedef void no_return_func (void);
no_return_func (*ptr) __attribute__((noreturn));

int foo (void)
{
(*ptr) ();

}

Correctly, on 32-bit Intel platforms, GCC produces the following machine code
making use of the standard call mechanism by deploying the low level pattern
call 1:

foo:
pushl %ebp # 23 *pushsi2
movl %esp, %ebp # 24 *movsi_1/2
subl $8, %esp # 25 *pro_epilogue_adjust_stack_1/1
call *ptr # 9 *call_1

What is shown in Example 3 is not self evident, because when issuing an
indirect call (in the tail position), GCC can not use the target function’s dec-
laration. Instead, similar to Fig. 3, shown on page 28, the expression node has
to be “traversed” to find out whether the callee eventually returns.

6.2 A NEW TEST SUITE FOR SIBCALLS

A new feature with a substantial influence on GCC’s code generation abilities
should not be adopted without a corresponding test suite in place. As men-
tioned in § 2.1, DejaGnu is the preferred test environment for GCC. That is,
inside the testsuite/ directory of the source tree, hundreds of DejaGnu input
files can be found, either for rather broad “stress tests”, or for special fea-
tures and correlating problem report numbers (on the mailing lists, commonly
referred to as PRs).

During this work, the maintainer of GCC’s MMIX port [Nilsson 2001] has
started building a systematic sibling call test suite by contributing five different
DejaGnu input files mainly addressing recursion. These files are automatically
called by many automated test systems employed by companies like SuSE or
Red Hat and show up regressions, promptly.

Since this work’s new sibling call mechanism was accepted for GCC, it was
another aim of this thesis to make sure it is maintainable by any third party
and that it can be addressed by today’s test systems in the usual way. In other
words, potential sibling call port maintainers must be automatically notified, in
case their efforts do not pass the most common sibling call use and test cases.

This work introduced a new DejaGnu test which targets specifically indirect
sibling calls. Basically, the input file is straightforward C, but contains special
annotations to instruct DejaGnu how it should treat the example:

/* { dg-do run { target i?86-*-* x86_64-*-*} } */
/* { dg-options "-O2 -foptimize-sibling-calls" } */

6.2 A NEW TEST SUITE FOR SIBCALLS 83

int foo (int);
int bar (int);

int (*ptr) (int);
int *f_addr;

int
main ()
{
ptr = bar;
foo (7);
exit (0);

}

int
bar (b)

int b;
{
if (f_addr == (int*) __builtin_return_address (0))
return b;

else
abort ();

}

int
foo (f)

int f;
{
f_addr = (int*) __builtin_return_address (0);
return (*ptr)(f);

}

The first two lines are commented out, so the C compiler does not complain,
but they do contain valuable DejaGnu information: dg-do run means that
the source code should be run on targets whose description matches the tem-
plate i?86-*-* x86 64-*-*, and the dg-options set the appropriate compiler
switches.

If the example exits with error status 0, the test is passed. If abort was
called, it failed. However, the interesting part of the test is the custom function
builtin return address which gives back the return address of the current

function, or of one of its callers. Its argument is the number of frames to scan
up the call stack. A value of 0 yields the return address of the current function,
a value of 1 yields the return address of the caller of the current function, and
so forth.

With sibling calls, the callee does not create a new stack frame, hence a sibling
call shares the return address with its caller. Therefore, function foo stores the

84 RESULTS 6.3

return address in a global variable f addr and lets bar compare its value with
its own current return address. If they match, the test was successful, otherwise
it would mean that a new stack was opened, indeed (or something else went
terribly wrong).

Alternatively, a test could have been written, using the directive dg-do
compile and then the assembler output would be checked for the keyword jmp.
This solution, however, is not portable, but it provides yet another example of
DejaGnu’s flexibility.

The presented test has become an integrated part of GCC’s test suite and
can also be found in full length in Appendix C. It can be invoked manually
(assuming the file name sibcall-6.c) by using the following directive:

$ make check-gcc RUNTESTFLAGS="dg.exp=sibcall-6.c"

It is also possible to run the entire test suite manually by omitting the vari-
able definition for RUNTESTFLAGS. Further information on using the entire test
suite and selected tests are also available in Stallman [2002] and on the GCC
homepage (see Appendix B).

6.3 A PRACTICAL GUIDE TO WORKING ON GCC

Working on GCC can be a somewhat Bohemian experience, when only having
the common notions and terms of “traditional” software engineering in mind:
in GCC, there are no Waterfalls or Spirals, and its design often results from
immediate necessity, rather than from a cost benefit analysis and careful forward
planning. In some ways this has bitten the developers and users of GCC alike
(e. g. when the C++ ABI had to be replaced with a new and incompatible cross
vendor ABI [Intel Corporation 2001], in version 3.0 of GCC), but over nearly
the last two decades, the community has benefited from GCC’s unconventional
ways of getting things done. The high number of supported platforms and its
many users second that and are a testimony to GCC’s broad acceptance and
success.

It was yet another aim of this thesis to outline the process of getting involved
in an unusual project like GCC which does not really know about a single
project leader, a quality assurance department, and flashy (introductory) man-
uals. So, where to start?

Documentation. Surprisingly enough, the work involved for this thesis did
not begin with an extensive study of the GCC documentation, even though it
should be pointed out that the GNU Compiler Collection Internals [Stallman
2002] provided valuable information on the various source files involved in each
pass of the compiler. At least this rather basic information is necessary to be
even able to ask the right questions on the mailing lists and to find out which
parts of GCC’s code base may be subject of change during the work. Hence,
the most crucial hurdle to overcome was understanding how the sources work
and interact. As a matter of fact, there are many references and symbols in

6.3 A PRACTICAL GUIDE TO WORKING ON GCC 85

GCC’s documentation which may not even make sense, unless one is deeply
familiar with the source code already.

This basically means that there is no other way to become involved except
by reading and making sense of GCC’s source code. However, for an experi-
enced programmer this should not impose huge difficulties, because very often
a piece of code is easier to understand than a lengthy (and not always accurate)
description in prose.

As a rule of thumb, an upcoming contributor should at least read the files
tree.* and rtl.*, because they contain the definition and accessor macros for
GCC’s intermediate program representation. Major parts of the GCC docu-
mentation are nothing else but a summary of these two files and will be easier
to comprehend given the right background information.

Good code is its own best documentation. As you’re about to add
a comment, ask yourself, ‘How can I improve the code so that this
comment isn’t needed?’ Improve the code and then document it to
make it even clearer.

— Steve McConnell, Code Complete:
A Practical Handbook of Software Construction (1993)

Creating good patches. Getting comfortable with GCC’s internals and the
way it is being developed was, of course, inevitable for this work and did cause —
no doubt — initial difficulties. The real problem (despite finding the “right”
approach to GCC’s tail call problem at all), however, was to integrate the
necessary changes into compact patch files which would be accepted by the
maintainers.

As can be seen in Appendix C, all the required changes were fed to the
list in “small packets”, each addressing only one problem at a time. What is
more, each packet required a lengthy discussion with various experienced GCC
developers who would suggest improvements and point out mistakes. Hence, a
patch had not only to be written, but also maintained over a long period of time
in which the underlying GCC code base keeps changing. Admittedly, this can
be a rather stressing and frustrating process at times, but it is very rewarding
once an e-mail from a maintainer is received that says: “Applied.” (Some of
the patches for this work took longer than two months from their initial posting
until they have been considered fit to be applied.)

Maintaining a patch means keeping up to date with current development, but
also with the ongoing discussions on the lists. Thus, good communication skills
are not only required in an office environment, but also in a distributed project
like GCC (even, if on a different level only), because the other developers are not
obliged to help, and receiving a detailed code review should be mostly regarded
as a privilege rather than a “right”. But exactly here lies another crucial point
which has to be fully understood: no one will review different versions of one and
the same patch over and over again, if the rewritten patches are not progressing
into a “sensible direction”. In other words, creating good patches is usually
an evolutionary process which must result in measurable improvements to be
successful.

86 RESULTS 6.3

Then again, new code can also get rejected, either because it is not explained
well enough in its comments, or because misleading terminology issued. The
GCC community is very much concerned about the readability of their code
and the corresponding comments, because often the comments are not only the
best but also the only documentation available for a specific feature.

The price of correct programming is eternal vigilance.

— Rob Pike
(personal communication, Dec. 7, 2002)

Bug Fixing. Maintenance for a patch does not end upon adoption, i. e. people
will get back to the author of a piece of code, in case the automatic regression
tests report problems. In fact, it sometimes happens that an already committed
patch gets removed again, just because it introduced a problem which is too
difficult to fix for others while the original author is on vacation, for example.

Indeed, this work introduced two minor bugs which would cause many of
the bigger test suites available for GCC to fail. One of the glitches caused by
the author’s patch was due to a typo which was correctly addressed by fellow
developer Zack Weinberg (see Fig. 1).

Index: config/i386/i386.c
--- config/i386/i386.c 17 Oct 2002 15:43:22 -0000 1.447.2.13
+++ config/i386/i386.c 20 Oct 2002 18:10:56 -0000
@@ -1377,7 +1377,7 @@ ix86_function_ok_for_sibcall (decl, exp)

/* If we are generating position-independent code, we cannot sibcall
optimize any indirect call, or a direct call to a global function,
as the PLT requires %ebx be live. */

- if (flag_pic && (!decl || !TREE_PUBLIC (decl)))
+ if (flag_pic && (!decl || TREE_PUBLIC (decl)))

return false;

/* If we are returning floats on the 80387 register stack, we cannot

Fig. 1. This patch was sent to the GCC mailing list to remove a bug introduced by a
typo (underlined).

Another mistake was fixed by the author himself, even before the various test
suites were given the chance to complain: the conversion from working with a
function’s tree declaration to using the expression node, made it necessary
to access the callee’s arguments and return types via linked struct members,
rather than directly. In other words, when dealing with indirect calls it is not
possible to check, for example, whether the volatile bit of the declaration is
set; instead, the macro TREE TYPE has to be recursively applied on the expres-
sion node to reach the FUNCTION TYPE.1 Figure 2 contains the brief patch to
clean up this misconception.

1A little bit of extra information may be necessary at this point: if the callee is marked
being volatile, it does not mean that the function pointer is as well. Therefore, it is wrong to
examine only the function’s pointer object.

6.3 A PRACTICAL GUIDE TO WORKING ON GCC 87

Index: calls.c
--- calls.c 1 Oct 2002 20:22:34 -0000 1.231.4.7
+++ calls.c 7 Oct 2002 03:49:59 -0000
@@ -2444,7 +2444,7 @@ expand_call (exp, target, ignore)

|| !(*targetm.function_ok_for_sibcall) (fndecl, exp)
|| (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP))
/* Functions that do not return may not be sibcall optimized. */

- || TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (exp, 0)))
+ || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))

/* If this function requires more stack slots than the current
function, we cannot change it into a sibling call. */

|| args_size.constant > current_function_args_size

Fig. 2. Functions marked as being volatile may not be sibcall optimised; this patch
fixes a bug where GCC would check a POINTER TYPE for the volatile bit instead of
its TREE TYPE, which is a FUNCTION TYPE.

These two examples show how important it is to create readable and therefore
maintainable code. Even though, the author of a patch is made responsible for
any impacts it has — good or bad — code should always be designed in a way
that it allows others to find and remove bugs in it as well.

Summary. Although, GCC is a breathtakingly large software development
project, it is not impossible to get involved in it, even in such a short period of
time, as is the case when writing a “Diplomarbeit”. The lack of introductory
manuals and a “professional helpdesk” is compensated by consistent code design
and informative comments in the code.

It is a necessity to study certain source files, before even getting started in
development (the fact that the tree definitions exceed 3000 lines of code does
not make the task any easier), because descriptions and manuals can not replace
the information given in the sources themselves. After all, these are what the
GCC developer aims to modify.

In the very early beginning of this thesis, and due to the complexity of GCC,
the thought arose, whether it would be a worthwhile undertaking to approach
the main (tail call) problem independent of an already existing compiler; but,
the results of this thesis strengthen the argument that the improvements gained
are far greater than they would be, should someone try to write his own opti-
mising C back end in only six months time.

A few pieces of advice which this chapter could give to the GCC beginner
are as follows:

� “Get the hands dirty” (i. e. start to code) as quickly as possible: people
should not spend too much time trying to figure out manuals. It all
becomes clear (even the manuals!), once people are more familiar with
GCC’s basic data structures and the sources in general.

88 RESULTS 6.3

� “Keep it simple.” This is an old UNIX philosophy [Kernighan and Pike
1984, § 2] which also translates to GCC as one of its most widespread
compilers. A patch that adds a feature by sacrificing maintainability or
bloating the code base is unlikely to find acceptance in the community. If
help is required to redesign something, the mailing lists are a formidable
entry point to find assistance in these matters.

� Testing, testing, and even more testing. Patches sent to the list are ex-
pected to be thoroughly tested by the contributor. In fact, each patch
should go with a detailed description on how this new piece of code was
tested. The usual methods include bootstrapping (a cross compiler) and
using the internal DejaGnu stress test suite.

� The involved paper work must not be underestimated! As pointed out
in § 2, all contributors must sign a Copyright Agreement with the Free
Software Foundation (FSF), before their work can be adopted. Depending
on how busy the FSF is, this may take quite some weeks, sometimes even
months.

The list could be continued, but further concepts come in naturally once
the initial obstacles are out of the way. The intention of this chapter was to
give people a couple of simple to follow guidelines on how to approach a huge
open source project like GCC and to show how and why it may differ from
conventional closed source undertakings. From this perspective, four simple
rules should be sufficient, at least to get started.

CHAPTER SEVEN

CONCLUSIONS

Due to the results of this thesis, mainstream GCC is now able to offer sup-
port for indirect sibling calls on Intel-based platforms, such as i?86 and x86-64.
The implementation is flexible enough to be ported to PowerPC, Alpha, or
Sparc-based systems (amongst others) simply by extending the corresponding
GCC machine descriptions. However, the idea for this particular approach did
not arise until late, when GCC’s various sibcall constraints had been carefully
analysed (see § 3) and other potential solutions had been abandoned due to
shortcomings which could not be solved, given the time constraints imposed by
a “Diplomarbeit” (see § 4).

7.1 CURRENT STATE

Prof. Simon Peyton Jones now has an integrated and well maintained “£10
solution” (see § 5.1) in the GNU compiler suite which brings the Evil Mangler
closer to the end of its life time. Despite previous approaches and hopes to
dispose this script earlier (see Fig. 1), GCC versions prior to 3.4 did not even
offer the prospect of achieving this goal, because the front end GHC depends
especially on the optimisation of indirect function calls. With the lack of such an
important optimisation feature, additional annotations and compiler switches
alone do not possess the power and flexibility to make up for it.

However, even with the achievements of this work, it is still unlikely that
the mangler script can yet be removed for good. GCC still imposes many
constraints on the sibcall optimisation stage of the compiler; these resemble
those that have already been examined in § 3 of this work. Unfortunately, one
of the main reasons why it is so difficult to overcome these constraints is, at
the same time, one of GCC’s biggest strengths: the compiler suite makes a
great cross compiler for more than 200 software and hardware platforms [Pizka
1997], which means that new features have to be implemented in a mostly
platform-independent manner to be supported properly (see § 2.2). If a certain
functionality is not compatible with a system’s ABI, or the way its underlying
processor operates, it often means that this particular feature can not be made
available to any platform, because it would not be possible to represent it
properly in the machine-independent part of the back end. Indirect sibling

89

90 CONCLUSIONS 7.2

From: Duncan Coutts <dcoutts@cray.com>
Date: Tue, 21 Aug 2001 11:34:23 -0500
Subject: end of the ’evil mangler’ ?

Hi all,

Are we ever likely to see the end of the ’evil mangler’?
With gcc 3.x and it’s selection of __atribute__ annotations (eg
noreturn, pure, const, naked etc) would we be able to iliminate the
need for the mangler?

http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_5.html#SEC92

What kind of annotations would gcc need before we could dump the
mangler?

Duncan

Ps. this is all just wishful thinking, as I’m currently faced with the
prospect of modifying the EM.
http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/the-beast/
mangler.html

Fig. 1. This message was sent to the glasgow-haskell-users list upon availability of
GCC version 3.0. (Message taken from the mailing list archive, http://www.haskell.
org/pipermail/glasgow-haskell-users/2001-August/002211.html.)

calls are a good example for this notion, but also show that there are, indeed,
work arounds, like the introduction of a new target hook as it is described in
§ 5.3.

In other words, this work made indirect sibling calls potentially available to
the vast majority of supported GCC targets, but “incompatible systems” like
the ARM-based ones are bound to miss out due to the design shortcomings in
their own ABI.

7.2 FUTURE WORK

Due to the flexibility of the presented solution, without doubt, a lot of future
work will go into porting the GCC changes on to other platforms. While the
author wrote down the results of his thesis, several people have already raised
interest to help with this task in regard to the platforms Sparc, Alpha and
PowerPC.

Furthermore, it is also worth thinking about concepts that would help, in
particular, lifting the “zero stack frame” constraint, because many GCC front
ends are, and would be, able to do a liveness analysis themselves, hence knew
about the cases in which it is safe to optimise a tail call, even if there are
local variables stored on the current stack frame. As a matter of fact, the

7.3 RESUMÉ 91

author’s Super Sibcall patch does contain code which adds another keyword,
“ tailcall”, to GCC’s parser module to let a front end or a programmer
enforce optimisation (see § 4.2) for these cases.

Related to that, it would also be very interesting to find out whether it is
practical to implement an extended scope or liveness analysis in a C compiler
back end and to examine how optimisation could benefit from that as a whole.
Chapters § 1.5 and § 3.3 have already outlined sibcall constraints which could
be bypassed with such a mechanism in place, but it has yet to be examined
how it would integrate into a mature and portable compiler such as GCC.

C is certainly not designed to prevent the programmer or a custom language
front end from doing something stupid with pointers; so additional precautions
could prove useful, even if they would not reach the level of sophistication as,
for example, Java’s garbage collection did, which relies strongly on liveness
and scope information associated with program variables. In fact, a concept
like garbage collection, which frees memory allocated by objects not referenced
or needed any longer, has already been proposed by Baker [1995] to address
GCC’s tail call problem. Baker proposed a solution where he would allow the
run time stack to nearly overflow, before he systematically removes old stack
frames. The advantage of this approach is that neither the C epilogue, nor the
prologue require any modifications as they still open a new stack frame for each
and every call; the downside, however, would be that this method is bound
to fail for general purpose C programs where tail calls and normal calls can
occur at the same frequency, because for normal calls the stack frames must
not be destroyed. Asymptotically, in such cases, the garbage collection would
always collect at the very end of the run time stack, not being able to remove
a sufficient number of frames. When Baker proposed his idea, he had a front
end for the language Scheme in mind, but he did not suggest it would also be
general enough to be applicable for all C code alike. This, however, is a point
that played a significant role for this work and for almost all GNU C developers
alike because, foremost, GNU C should serve as a reliable and greatly portable
C compiler.

7.3 RESUMÉ

Even though this work brought GCC one important step closer to a solution
of the tail call problem, it is not yet fully solved. However, the extensions can
already be used to improve compilation of functional programming languages,
but can have a noticeable impact on imperative programs as well. For example,
it is now possible to elegantly implement a simple state machine in C, where
each function represents a state in the state machine and the state transition
is an indirect function call in the tail position. Obviously, such an application
of continuation passing is, therefore, not only useful for (say) the Haskell com-
munity.

For the author, this thesis has also been very important, personally, because
it lead to a very deep commitment and interest in this not entirely new, but,

92 CONCLUSIONS 7.3

nonetheless, exciting field of computer science. With the skills and knowledge
gained during this work, he will be able to contribute source code to the GCC
project in the future as well. This aspect is an especially rewarding one, because
GCC happens to be one of those prestigious open source projects which is
normally rather picky about its contributors. Of course, due to the General
Public License, everyone is welcome and allowed to modify GCC as they please
but sometimes, it can be very difficult to convince the community to adopt one’s
changes, especially if the maintainers have no reason to “trust” a contributor,
yet.

APPENDIX A

COMPILER FOUNDATIONS

The definitions presented in this chapter are done so for the convenience
of readers who are not yet fully comfortable with terminology deployed in the
field of compiler construction. Every (good) text book ought to cover these
expressions as well, but rather than making only references to the literature the
author considered it a good idea to add the relevant terms to this work, so they
are all in one place.

A.1 ACTIVATION RECORD

The Activation Record is a data structure which holds information needed by
a program’s function in execution. Its values include:

� return value

� parameters

� optionally: a control link

� optionally: an access link

� saved machine status (registers, etc.)

� local data

� temporaries

Typically, an Activation Record is stored on the run time stack by allocating
a contiguous block of memory, called “stack frame”. Not all compilers and pro-
gramming languages use the exact same stack frame layout, because sometimes
registers can take place of one or more of its fields [Aho et al. 1986].

The return value points to the calling function; the parameters are a func-
tion’s incoming arguments, and the optional links fields are usually references
to other stack frames in order to access foreign variables, for instance. Sav-
ing a machine’s state usually refers to pushing representative registers on the
stack; and temporaries are necessary, if the compiler needs space to marshal
arguments, or register values. The function’s local variables are stored in the
area reserved for local data.

93

94 COMPILER FOUNDATIONS A.3

A.2 BASIC BLOCK ANALYSIS

Aho et al. [1986, § 9.4] describe a basic block as follows: “A basic block is
a sequence of consecutive statements in which flow of control enters at the
beginning and leaves at the end without halt or possibility of branching except
at the end.” Basic blocks are a very important concept in the field of compiler
construction, because they are the cornerstone for building directed flow graphs.

The analysis of an input program’s control flow is important for many optimi-
sation and transformation techniques, and especially when trying to determine
whether an instruction (e. g. a call) is in a function’s tail position, or not. Fig-
ure 1 shows a brief, but typical flow graph consisting of two basic blocks, B1

and B2:

prod := 0
i := 1

t1 := 4 * 1
t2 := a [t1]
t3 := 4 * i
t4 := b [t3]
t5 := t2 * t4
t6 := prod + t5
prod := t6
t7 := i + 1
i := t7
if i <= 20 goto B2

B1

B2

Fig. 1. A typical flow graph for a program [Aho et al. 1986, § 9.4].

A.3 BOOTSTRAPPING

A compiler is characterised by three languages: the source language S that it
translates, the target (language) T that it generates code for, and the imple-
mentation language I that it is written in. This is commonly represented with
a so called T-diagram and can also be textually expressed as S IT:

I

S T

Hence, one way of obtaining a C-written cross compiler for language L and
foreign target N on a machine M, which can be programmed using machine
code M, can be depicted as follows:

A.3 BOOTSTRAPPING 95

C

M

M

L L

C M

N N

L CN is the compiler implementation written in C. It should be obvious from
the diagram that the working, native C-compiler C MM is the chief prerequisite
for creating the new cross compiler L MN.

This is where the concept of bootstrapping comes in, because if this process
is applied multiple times for one and the same language, the result will be a
compiler which is basically implemented in the same language it is supposed
to translate. Therefore, bootstrapping can be thought of as the ability of a
programming language to compile itself [Aho et al. 1986, § 11.2].

Example. In this example, bootstrapping of a C compiler for language (or
platform) N is depicted. The main implementation C CN is first used to obtain
C MN and then again to obtain the final result C NN:

C

M

C

M

NC

C M

C N C N

NNC

The main point is that, bootstrapping is extremely useful for a wide variety
of different areas. For example, it can not only be deployed to implement a
compiler for language L+ in L+ itself, but it can also be used to successively
bring up an optimising compiler for L+, beginning with merely a small subset of
it, (say) L– (see Aho et al. [1986, § 11.2, ex. 11.3]); and, of course, bootstrapping
proves useful to thoroughly test a compiler by feeding it with its very own code
base as it commonly happens in a lot of the GCC tests.

APPENDIX B

INTERNET ADDRESSES

Binutils <http://sources.redhat.com/binutils/>
The GNU Binutils are a collection of binary tools. The main ones are an as-
sembler and a linker to gain executable binary files on a system. The Binutils
are, like other GNU software, free and open.

DDD <http://www.gnu.org/software/ddd/>
DDD is a graphical front end for command line debuggers such as GDB, DBX,
WDB, Ladebug, JDB, XDB, the Perl debugger, or the Python debugger. Be-
sides “usual” front end features such as viewing source texts, DDD has become
popular through its interactive graphical data display, where data structures
are displayed as graphs.

diet libc <http://www.dietlibc.org/>
The diet libc is a C system library that is optimised for small size. It can be
used to create small statically linked binaries for Linux on alpha, arm, hppa,
ia64, i386, mips, s390, sparc, sparc64, ppc and x86 64.

DejaGnu <http://www.gnu.org/software/dejagnu/>
DejaGnu is a free framework for testing other programs. Its purpose is to pro-
vide a single front end for all tests. It can be thought of as a custom library of
Tcl procedures crafted to support writing a test harness. A test harness is the
testing infrastructure that is created to support a specific program or tool.

Emacs <http://www.gnu.org/software/emacs/>
Emacs is the extensible, customisable, self documenting real time display editor,
freely available for many different platforms. It offers content sensitive modes
for a wide variety of file types, from plain text to source code to HTML files
and is scriptable using the Lisp programming language.

Glasgow Haskell Compiler <http://www.haskell.org/ghc/>
The Glasgow Haskell Compiler is a robust, fully featured, optimising compiler
and interactive environment for Haskell 98. Apart from documentation, it also
freely provides a generational garbage collector, and a space and time profiler.

96

INTERNET ADDRESSES 97

GNU C Library <http://www.gnu.org/software/libc/>
Any UNIX-like operating system needs a C library: the library which defines
system calls and other basic facilities such as open, malloc, printf, exit, and
so on. The GNU C library is used as the C library in the GNU system and
most newer systems based upon the Linux kernel.

GNU Compiler Collection <http://www.gnu.org/software/gcc/>
The GNU Compiler Collection contains front ends for C, C++, Objective C,
Fortran, Java, and Ada, as well as libraries for these languages. It is free and
open to anyone who is interested in the project, or in getting a widespread and
established cross platform compiler.

GNU Debugger <http://sources.redhat.com/gdb/>
GDB, the GNU Project debugger, allows one to see what is going on “inside”
another program while it executes — or to see what another program was doing
at the moment it crashed. Many people use DDD as a front end to GDB.

Mercury <http://www.cs.mu.oz.au/research/mercury/>
Mercury is a new logic/functional programming language, which combines the
clarity and expressiveness of declarative programming with advanced static
analysis and error detection features. Similar to GHC, compilation relies mainly
on the GCC back end, due to the translation of Mercury code into either a high
or low level C program.

Newlib <http://sources.redhat.com/newlib/>
Newlib is a C system library intended for use on embedded systems. It is a con-
glomeration of several library parts, all under free software licenses that make
them easily usable on embedded products. It can be compiled for a wide array
of processors, and will usually work on any architecture.

OpenOffice <http://www.openoffice.org/>
The OpenOffice suite is the open source predecessor of the commercial, Sun
owned StarOffice. It contains a text processor similar to Microsoft Word, cal-
culation software along the lines of Microsoft Excel, and many other programs
used in everyday office work.

APPENDIX C

SOURCE CODE

The various patches described in C.1 are now integral part of the GCC
suite and have been created by the author of this thesis. Due to the copyright
agreement with the Free Software Foundation, the source code is published
under the terms of the GNU General Public License, version two or higher
[Free Software Foundation 1991].

Each patch starts with an individual ChangeLog entry explaining what has
been addressed and changed. Apart from being available in this appendix,
the patches can also be obtained electronically, either by sending e-mail to the
author, via download from http://www.andreasbauer.org/, or by putting a
query into the searchable mailing list archives of GCC.

The source code of sections C.2 and C.3 is not part of the official CVS repos-
itory and, therefore, copyright by the author of this thesis.

C.1 INDIRECT SIBLING CALLS

The patches, enabling indirect sibling calls in GCC, have been applied to the
basic-improvements CVS branch and will first appear in official releases of
version 3.4 of GCC.

Patch 1: Turning FUNCTION OK FOR SIBCALL into a Target Hook

01 2002-10-01 Andreas Bauer <baueran@in.tum.de>

02

03 * calls.c (expand_call): Remove the ‘no indirect check’

04 for sibcall optimization; use function_ok_for_sibcall

05 target hook; refine check for ‘function is volatile’.

06 (FUNCTION_OK_FOR_SIBCALL): Remove the redefinition.

07 * hooks.c (hook_tree_tree_bool_false): New.

08 * hooks.h (hook_tree_tree_bool_false): Declare.

09 * target-def.h (TARGET_FUNCTION_OK_FOR_SIBCALL): New.

10 (TARGET_INITIALIZER): Add it.

11 * target.h (struct gcc_target): Add function_ok_for_sibcall.

12 * config/alpha/alpha.c: (alpha_function_ok_for_sibcall): New.

13 (TARGET_FUNCTION_OK_FOR_SIBCALL): Redefine accordingly.

14 * config/alpha/alpha.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

15 * config/arm/arm-protos.h: (arm_function_ok_for_sibcall):

16 Remove function declaration.

17 * config/arm/arm.c: (arm_function_ok_for_sibcall): Make

98

C.1 INDIRECT SIBLING CALLS 99

18 function static and accept another argument of type ‘tree’.

19 (TARGET_FUNCTION_OK_FOR_SIBCALL): Redefine accordingly.

20 * config/arm/arm.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

21 * config/frv/frv.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

22 * config/i386/i386.c: (ix86_function_ok_for_sibcall): New.

23 (TARGET_FUNCTION_OK_FOR_SIBCALL): Redefine accordingly.

24 * config/i386/i386.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

25 * config/pa/pa-linux.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

26 (TARGET_HAS_STUBS_AND_ELF_SECTIONS): New definition.

27 * config/pa/pa.c: (pa_function_ok_for_sibcall): New.

28 (TARGET_FUNCTION_OK_FOR_SIBCALL): Redefine accordingly.

29 * config/pa/pa.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

30 * config/rs6000/rs6000-protos.h: (function_ok_for_sibcall):

31 Remove function declaration.

32 * config/rs6000/rs6000.c: (rs6000_function_ok_for_sibcall):

33 Rename function_ok_for_sibcall to rs6000_function_ok_for_sibcall;

34 rename first argument to ‘decl’; accept another argument

35 of type ‘tree’; make static.

36 (TARGET_FUNCTION_OK_FOR_SIBCALL): Redefine accordingly.

37 * config/rs6000/rs6000.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

38 * config/sh/sh.c: (sh_function_ok_for_sibcall): New.

39 (TARGET_FUNCTION_OK_FOR_SIBCALL): Redefine accordingly.

40 * config/sh/sh.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

41 * config/sparc/sparc.c: (sparc_function_ok_for_sibcall): New.

42 (TARGET_FUNCTION_OK_FOR_SIBCALL): Redefine accordingly.

43 * config/sparc/sparc.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

44 * config/xtensa/xtensa.h: (FUNCTION_OK_FOR_SIBCALL): Remove.

45

46 Index: calls.c

47 ===

48 RCS file: /cvsroot/gcc/gcc/gcc/calls.c,v

49 retrieving revision 1.231.4.5

50 diff -w -u -p -r1.231.4.5 calls.c

51 --- calls.c 20 Sep 2002 01:29:06 -0000 1.231.4.5

52 +++ calls.c 28 Sep 2002 05:00:02 -0000

53 @@ -36,10 +36,6 @@ Software Foundation, 59 Temple Place - S

54 #include "langhooks.h"

55 #include "target.h"

56

57 -#if !defined FUNCTION_OK_FOR_SIBCALL

58 -#define FUNCTION_OK_FOR_SIBCALL(DECL) 1

59 -#endif

60 -

61 /* Decide whether a function’s arguments should be processed

62 from first to last or from last to first.

63

64 @@ -2443,17 +2439,12 @@ expand_call (exp, target, ignore)

65 It does not seem worth the effort since few optimizable

66 sibling calls will return a structure. */

67 || structure_value_addr != NULL_RTX

68 - /* If the register holding the address is a callee saved

69 - register, then we lose. We have no way to prevent that,

70 - so we only allow calls to named functions. */

71 - /* ??? This could be done by having the insn constraints

72 - use a register class that is all call-clobbered. Any

73 - reload insns generated to fix things up would appear

74 - before the sibcall_epilogue. */

100 SOURCE CODE C.1

75 - || fndecl == NULL_TREE

76 + /* Check whether the target is able to optimize the call

77 + into a sibcall. */

78 + || !(*targetm.function_ok_for_sibcall) (fndecl, exp)

79 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP))

80 - || TREE_THIS_VOLATILE (fndecl)

81 - || !FUNCTION_OK_FOR_SIBCALL (fndecl)

82 + /* Functions that do not return may not be sibcall optimized. */

83 + || TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (exp, 0)))

84 /* If this function requires more stack slots than the current

85 function, we cannot change it into a sibling call. */

86 || args_size.constant > current_function_args_size

87 Index: hooks.h

88 ===

89 RCS file: /cvsroot/gcc/gcc/gcc/hooks.h,v

90 retrieving revision 1.5

91 diff -w -u -p -r1.5 hooks.h

92 --- hooks.h 21 Aug 2002 02:41:44 -0000 1.5

93 +++ hooks.h 28 Sep 2002 05:00:03 -0000

94 @@ -27,5 +27,5 @@ bool hook_tree_bool_false PARAMS ((tree)

95 void hook_tree_int_void PARAMS ((tree, int));

96 void hook_void_void PARAMS ((void));

97 void hook_FILEptr_constcharptr_void PARAMS ((FILE *, const char *));

98 -

99 +bool hook_tree_tree_bool_false PARAMS ((tree, tree));

100 #endif

101 Index: hooks.c

102 ===

103 RCS file: /cvsroot/gcc/gcc/gcc/hooks.c,v

104 retrieving revision 1.5

105 diff -w -u -p -r1.5 hooks.c

106 --- hooks.c 21 Aug 2002 02:41:44 -0000 1.5

107 +++ hooks.c 28 Sep 2002 05:00:03 -0000

108 @@ -62,3 +62,12 @@ hook_FILEptr_constcharptr_void (a, b)

109 const char *b ATTRIBUTE_UNUSED;

110 {

111 }

112 +

113 +/* Hook that takes two trees and returns false. */

114 +bool

115 +hook_tree_tree_bool_false (a, b)

116 + tree a ATTRIBUTE_UNUSED;

117 + tree b ATTRIBUTE_UNUSED;

118 +{

119 + return false;

120 +}

121 Index: target.h

122 ===

123 RCS file: /cvsroot/gcc/gcc/gcc/target.h,v

124 retrieving revision 1.33.2.3

125 diff -w -u -p -r1.33.2.3 target.h

126 --- target.h 17 Sep 2002 22:58:47 -0000 1.33.2.3

127 +++ target.h 28 Sep 2002 05:00:04 -0000

128 @@ -244,6 +244,11 @@ struct gcc_target

129 not, at the current point in the compilation. */

130 bool (* cannot_modify_jumps_p) PARAMS ((void));

131

C.1 INDIRECT SIBLING CALLS 101

132 + /* True if it is OK to do sibling call optimization for the specified

133 + call expression EXP. DECL will be the called function, or NULL if

134 + this is an indirect call. */

135 + bool (*function_ok_for_sibcall) PARAMS ((tree decl, tree exp));

136 +

137 /* True if EXP should be placed in a "small data" section. */

138 bool (* in_small_data_p) PARAMS ((tree));

139

140 Index: target-def.h

141 ===

142 RCS file: /cvsroot/gcc/gcc/gcc/target-def.h,v

143 retrieving revision 1.30.2.3

144 diff -w -u -p -r1.30.2.3 target-def.h

145 --- target-def.h 17 Sep 2002 22:58:47 -0000 1.30.2.3

146 +++ target-def.h 28 Sep 2002 05:00:05 -0000

147 @@ -245,6 +245,7 @@ Foundation, 59 Temple Place - Suite 330,

148

149 /* In hook.c. */

150 #define TARGET_CANNOT_MODIFY_JUMPS_P hook_void_bool_false

151 +#define TARGET_FUNCTION_OK_FOR_SIBCALL hook_tree_tree_bool_false

152

153 #ifndef TARGET_IN_SMALL_DATA_P

154 #define TARGET_IN_SMALL_DATA_P hook_tree_bool_false

155 @@ -271,6 +272,7 @@ Foundation, 59 Temple Place - Suite 330,

156 TARGET_EXPAND_BUILTIN, \

157 TARGET_SECTION_TYPE_FLAGS, \

158 TARGET_CANNOT_MODIFY_JUMPS_P, \

159 + TARGET_FUNCTION_OK_FOR_SIBCALL, \

160 TARGET_IN_SMALL_DATA_P, \

161 TARGET_BINDS_LOCAL_P, \

162 TARGET_ENCODE_SECTION_INFO, \

163 Index: config/alpha/alpha.c

164 ===

165 RCS file: /cvsroot/gcc/gcc/gcc/config/alpha/alpha.c,v

166 retrieving revision 1.272.2.3

167 diff -u -p -r1.272.2.3 alpha.c

168 --- config/alpha/alpha.c 20 Sep 2002 01:29:08 -0000 1.272.2.3

169 +++ config/alpha/alpha.c 1 Oct 2002 00:25:44 -0000

170 @@ -118,6 +118,8 @@ int alpha_this_literal_sequence_number;

171 int alpha_this_gpdisp_sequence_number;

172

173 /* Declarations of static functions. */

174 +static bool alpha_function_ok_for_sibcall

175 + PARAMS ((tree, tree));

176 static int tls_symbolic_operand_1

177 PARAMS ((rtx, enum machine_mode, int, int));

178 static enum tls_model tls_symbolic_operand_type

179 @@ -292,6 +294,9 @@ static void unicosmk_unique_section PARA

180 #undef TARGET_EXPAND_BUILTIN

181 #define TARGET_EXPAND_BUILTIN alpha_expand_builtin

182

183 +#undef TARGET_FUNCTION_OK_FOR_SIBCALL

184 +#define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall

185 +

186 struct gcc_target targetm = TARGET_INITIALIZER;

187 ^L

188 /* Parse target option strings. */

102 SOURCE CODE C.1

189 @@ -2267,6 +2272,19 @@ alpha_legitimize_address (x, scratch, mo

190

191 return plus_constant (x, low);

192 }

193 +}

194 +

195 +/* We do not allow indirect calls to be optimized into sibling calls, nor

196 + can we allow a call to a function in a different compilation unit to

197 + be optimized into a sibcall. */

198 +static bool

199 +alpha_function_ok_for_sibcall (decl, exp)

200 + tree decl;

201 + tree exp ATTRIBUTE_UNUSED;

202 +{

203 + return (decl

204 + && (! TREE_PUBLIC (decl)

205 + || (TREE_ASM_WRITTEN (decl) && (*targetm.binds_local_p) (decl))));

206 }

207

208 /* For TARGET_EXPLICIT_RELOCS, we don’t obfuscate a SYMBOL_REF to a

209 Index: config/alpha/alpha.h

210 ===

211 RCS file: /cvsroot/gcc/gcc/gcc/config/alpha/alpha.h,v

212 retrieving revision 1.176.4.7

213 diff -u -p -r1.176.4.7 alpha.h

214 --- config/alpha/alpha.h 23 Sep 2002 04:38:44 -0000 1.176.4.7

215 +++ config/alpha/alpha.h 1 Oct 2002 00:25:52 -0000

216 @@ -1165,14 +1165,6 @@ extern int alpha_memory_latency;

217 } \

218 }

219

220 -/* We do not allow indirect calls to be optimized into sibling calls, nor

221 - can we allow a call to a function in a different compilation unit to

222 - be optimized into a sibcall. */

223 -#define FUNCTION_OK_FOR_SIBCALL(DECL) \

224 - (DECL \

225 - && (! TREE_PUBLIC (DECL) \

226 - || (TREE_ASM_WRITTEN (DECL) && (*targetm.binds_local_p) (DECL))))

227 -

228 /* Try to output insns to set TARGET equal to the constant C if it can be

229 done in less than N insns. Do all computations in MODE. Returns the place

230 where the output has been placed if it can be done and the insns have been

231 Index: config/arm/arm-protos.h

232 ===

233 RCS file: /cvsroot/gcc/gcc/gcc/config/arm/arm-protos.h,v

234 retrieving revision 1.29.8.2

235 diff -u -p -r1.29.8.2 arm-protos.h

236 --- config/arm/arm-protos.h 17 Sep 2002 22:58:53 -0000 1.29.8.2

237 +++ config/arm/arm-protos.h 1 Oct 2002 00:25:54 -0000

238 @@ -41,7 +41,6 @@ extern unsigned int arm_compute_initial

239 #ifdef TREE_CODE

240 extern int arm_return_in_memory PARAMS ((tree));

241 extern void arm_encode_call_attribute PARAMS ((tree, int));

242 -extern int arm_function_ok_for_sibcall PARAMS ((tree));

243 #endif

244 #ifdef RTX_CODE

245 extern int arm_hard_regno_mode_ok PARAMS ((unsigned int, enum

C.1 INDIRECT SIBLING CALLS 103

246 machine_mode));

247 Index: config/arm/arm.c

248 ===

249 RCS file: /cvsroot/gcc/gcc/gcc/config/arm/arm.c,v

250 retrieving revision 1.223.2.5

251 diff -u -p -r1.223.2.5 arm.c

252 --- config/arm/arm.c 20 Sep 2002 01:29:09 -0000 1.223.2.5

253 +++ config/arm/arm.c 1 Oct 2002 00:26:28 -0000

254 @@ -117,6 +117,7 @@ static void arm_set_default_type_attrib

255 static int arm_adjust_cost PARAMS ((rtx, rtx, rtx, int));

256 static int count_insns_for_constant PARAMS ((HOST_WIDE_INT, int));

257 static int arm_get_strip_length PARAMS ((int));

258 +static bool arm_function_ok_for_sibcall PARAMS ((tree, tree));

259 #ifdef OBJECT_FORMAT_ELF

260 static void arm_elf_asm_named_section PARAMS ((const char *, unsigned

261 int));

262 #endif

263 @@ -192,6 +193,9 @@ static void arm_internal_label PARAMS

264 #undef TARGET_ASM_INTERNAL_LABEL

265 #define TARGET_ASM_INTERNAL_LABEL arm_internal_label

266

267 +#undef TARGET_FUNCTION_OK_FOR_SIBCALL

268 +#define TARGET_FUNCTION_OK_FOR_SIBCALL arm_function_ok_for_sibcall

269 +

270 struct gcc_target targetm = TARGET_INITIALIZER;

271 ^L

272 /* Obstack for minipool constant handling. */

273 @@ -2266,16 +2270,17 @@ arm_is_longcall_p (sym_ref, call_cookie,

274

275 /* Return nonzero if it is ok to make a tail-call to DECL. */

276

277 -int

278 -arm_function_ok_for_sibcall (decl)

279 +static bool

280 +arm_function_ok_for_sibcall (decl, exp)

281 tree decl;

282 + tree exp ATTRIBUTE_UNUSED;

283 {

284 int call_type = TARGET_LONG_CALLS ? CALL_LONG : CALL_NORMAL;

285

286 /* Never tailcall something for which we have no decl, or if we

287 are in Thumb mode. */

288 if (decl == NULL || TARGET_THUMB)

289 - return 0;

290 + return false;

291

292 /* Get the calling method. */

293 if (lookup_attribute ("short_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))

294 @@ -2287,20 +2292,20 @@ arm_function_ok_for_sibcall (decl)

295 a branch instruction. However, if not compiling PIC, we know

296 we can reach the symbol if it is in this compilation unit. */

297 if (call_type == CALL_LONG && (flag_pic || !TREE_ASM_WRITTEN (decl)))

298 - return 0;

299 + return false;

300

301 /* If we are interworking and the function is not declared static

302 then we can’t tail-call it unless we know that it exists in this

104 SOURCE CODE C.1

303 compilation unit (since it might be a Thumb routine). */

304 if (TARGET_INTERWORK && TREE_PUBLIC (decl) && !TREE_ASM_WRITTEN (decl))

305 - return 0;

306 + return false;

307

308 /* Never tailcall from an ISR routine - it needs a special exit sequence. */

309 if (IS_INTERRUPT (arm_current_func_type ()))

310 - return 0;

311 + return false;

312

313 /* Everything else is ok. */

314 - return 1;

315 + return true;

316 }

317

318 ^L

319 Index: config/arm/arm.h

320 ===

321 RCS file: /cvsroot/gcc/gcc/gcc/config/arm/arm.h,v

322 retrieving revision 1.155.4.5

323 diff -u -p -r1.155.4.5 arm.h

324 --- config/arm/arm.h 20 Sep 2002 01:29:10 -0000 1.155.4.5

325 +++ config/arm/arm.h 1 Oct 2002 00:26:40 -0000

326 @@ -1502,12 +1502,6 @@ typedef struct

327 #define FUNCTION_ARG_REGNO_P(REGNO) (IN_RANGE ((REGNO), 0, 3))

328

329 ^L

330 -/* Tail calling. */

331 -

332 -/* A C expression that evaluates to true if it is ok to perform a sibling

333 - call to DECL. */

334 -#define FUNCTION_OK_FOR_SIBCALL(DECL) arm_function_ok_for_sibcall ((DECL))

335 -

336 /* Perform any actions needed for a function that is receiving a variable

337 number of arguments. CUM is as above. MODE and TYPE are the mode and type

338 of the current parameter. PRETEND_SIZE is a variable that should be set to

339 Index: config/frv/frv.h

340 ===

341 RCS file: /cvsroot/gcc/gcc/gcc/config/frv/frv.h,v

342 retrieving revision 1.3.2.5

343 diff -u -p -r1.3.2.5 frv.h

344 --- config/frv/frv.h 20 Sep 2002 01:29:12 -0000 1.3.2.5

345 +++ config/frv/frv.h 1 Oct 2002 00:27:28 -0000

346 @@ -3539,9 +3539,6 @@ frv_ifcvt_modify_multiple_tests (CE_INFO

347 scheduling. */

348 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead

349

350 -/* Return true if a function is ok to be called as a sibcall. */

351 -#define FUNCTION_OK_FOR_SIBCALL(DECL) 0

352 -

353 enum frv_builtins

354 {

355 FRV_BUILTIN_MAND,

356 Index: config/i386/i386.c

357 ===

358 RCS file: /cvsroot/gcc/gcc/gcc/config/i386/i386.c,v

359 retrieving revision 1.447.2.3

C.1 INDIRECT SIBLING CALLS 105

360 diff -u -p -r1.447.2.3 i386.c

361 --- config/i386/i386.c 17 Sep 2002 22:58:57 -0000 1.447.2.3

362 +++ config/i386/i386.c 1 Oct 2002 00:28:16 -0000

363 @@ -742,6 +742,7 @@ static int ix86_save_reg PARAMS ((unsign

364 static void ix86_compute_frame_layout PARAMS ((struct ix86_frame *));

365 static int ix86_comp_type_attributes PARAMS ((tree, tree));

366 const struct attribute_spec ix86_attribute_table[];

367 +static bool ix86_function_ok_for_sibcall PARAMS ((tree, tree));

368 static tree ix86_handle_cdecl_attribute PARAMS ((tree *, tree, tree, int, bool

369 *));

370 static tree ix86_handle_regparm_attribute PARAMS ((tree *, tree, tree, int,

371 bool *));

372 static int ix86_value_regno PARAMS ((enum machine_mode));

373 @@ -843,6 +844,9 @@ static enum x86_64_reg_class merge_class

374 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \

375 ia32_multipass_dfa_lookahead

376

377 +#undef TARGET_FUNCTION_OK_FOR_SIBCALL

378 +#define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall

379 +

380 #ifdef HAVE_AS_TLS

381 #undef TARGET_HAVE_TLS

382 #define TARGET_HAVE_TLS true

383 @@ -1286,6 +1290,24 @@ const struct attribute_spec ix86_attribu

384 #endif

385 { NULL, 0, 0, false, false, false, NULL }

386 };

387 +

388 +/* If PIC, we cannot make sibling calls to global functions

389 + because the PLT requires %ebx live.

390 + If we are returning floats on the register stack, we cannot make

391 + sibling calls to functions that return floats. (The stack adjust

392 + instruction will wind up after the sibcall jump, and not be executed.) */

393 +

394 +static bool

395 +ix86_function_ok_for_sibcall (decl, exp)

396 + tree decl;

397 + tree exp ATTRIBUTE_UNUSED;

398 +{

399 + return ((decl)

400 + && (! flag_pic || ! TREE_PUBLIC (decl))

401 + && (! TARGET_FLOAT_RETURNS_IN_80387

402 + || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (decl))))

403 + || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE

404 (cfun->decl))))));

405 +}

406

407 /* Handle a "cdecl" or "stdcall" attribute;

408 arguments as in struct attribute_spec.handler. */

409 Index: config/i386/i386.h

410 ===

411 RCS file: /cvsroot/gcc/gcc/gcc/config/i386/i386.h,v

412 retrieving revision 1.280.4.5

413 diff -u -p -r1.280.4.5 i386.h

414 --- config/i386/i386.h 23 Sep 2002 04:38:45 -0000 1.280.4.5

415 +++ config/i386/i386.h 1 Oct 2002 00:28:30 -0000

416 @@ -1674,18 +1674,6 @@ typedef struct ix86_args {

106 SOURCE CODE C.1

417

418 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0

419

420 -/* If PIC, we cannot make sibling calls to global functions

421 - because the PLT requires %ebx live.

422 - If we are returning floats on the register stack, we cannot make

423 - sibling calls to functions that return floats. (The stack adjust

424 - instruction will wind up after the sibcall jump, and not be executed.) */

425 -#define FUNCTION_OK_FOR_SIBCALL(DECL) \

426 - ((DECL) \

427 - && (! flag_pic || ! TREE_PUBLIC (DECL)) \

428 - && (! TARGET_FLOAT_RETURNS_IN_80387 \

429 - || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \

430 - || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))

431 -

432 /* Perform any needed actions needed for a function that is receiving a

433 variable number of arguments.

434

435 Index: config/pa/pa-linux.h

436 ===

437 RCS file: /cvsroot/gcc/gcc/gcc/config/pa/pa-linux.h,v

438 retrieving revision 1.24.2.1

439 diff -u -p -r1.24.2.1 pa-linux.h

440 --- config/pa/pa-linux.h 2 Sep 2002 02:54:02 -0000 1.24.2.1

441 +++ config/pa/pa-linux.h 1 Oct 2002 00:28:33 -0000

442 @@ -81,10 +81,6 @@ Boston, MA 02111-1307, USA. */

443 %{!dynamic-linker:-dynamic-linker /lib/ld.so.1}} \

444 %{static:-static}}"

445

446 -/* Sibcalls, stubs, and elf sections don’t play well. */

447 -#undef FUNCTION_OK_FOR_SIBCALL

448 -#define FUNCTION_OK_FOR_SIBCALL(x) 0

449 -

450 /* glibc’s profiling functions don’t need gcc to allocate counters. */

451 #define NO_PROFILE_COUNTERS 1

452

453 @@ -172,6 +168,11 @@ Boston, MA 02111-1307, USA. */

454 #undef TARGET_ASM_GLOBALIZE_LABEL

455 /* Globalizing directive for a label. */

456 #define GLOBAL_ASM_OP ".globl "

457 +

458 +/* This definition is used inside pa.c to disable all

459 + sibcall optimization, because sibcalls, stubs and

460 + elf sections don’t play well. */

461 +#define TARGET_HAS_STUBS_AND_ELF_SECTIONS 1

462

463 /* FIXME: Hacked from the <elfos.h> one so that we avoid multiple

464 labels in a function declaration (since pa.c seems determined to do

465 Index: config/pa/pa.c

466 ===

467 RCS file: /cvsroot/gcc/gcc/gcc/config/pa/pa.c,v

468 retrieving revision 1.177.2.3

469 diff -u -p -r1.177.2.3 pa.c

470 --- config/pa/pa.c 17 Sep 2002 22:59:03 -0000 1.177.2.3

471 +++ config/pa/pa.c 1 Oct 2002 00:28:59 -0000

472 @@ -116,6 +116,7 @@ static void pa_select_section PARAMS ((t

473 ATTRIBUTE_UNUSED;

C.1 INDIRECT SIBLING CALLS 107

474 static void pa_encode_section_info PARAMS ((tree, int));

475 static const char *pa_strip_name_encoding PARAMS ((const char *));

476 +static bool pa_function_ok_for_sibcall PARAMS ((tree, tree));

477 static void pa_globalize_label PARAMS ((FILE *, const char *))

478 ATTRIBUTE_UNUSED;

479

480 @@ -194,6 +195,9 @@ static size_t n_deferred_plabels = 0;

481 #undef TARGET_STRIP_NAME_ENCODING

482 #define TARGET_STRIP_NAME_ENCODING pa_strip_name_encoding

483

484 +#undef TARGET_FUNCTION_OK_FOR_SIBCALL

485 +#define TARGET_FUNCTION_OK_FOR_SIBCALL pa_function_ok_for_sibcall

486 +

487 struct gcc_target targetm = TARGET_INITIALIZER;

488 ^L

489 void

490 @@ -6631,6 +6635,44 @@ pa_asm_output_mi_thunk (file, thunk_fnde

491 function_section (thunk_fndecl);

492 }

493 current_thunk_number++;

494 +}

495 +

496 +/* Only direct calls to static functions are allowed to be sibling (tail)

497 + call optimized.

498 +

499 + This restriction is necessary because some linker generated stubs will

500 + store return pointers into rp’ in some cases which might clobber a

501 + live value already in rp’.

502 +

503 + In a sibcall the current function and the target function share stack

504 + space. Thus if the path to the current function and the path to the

505 + target function save a value in rp’, they save the value into the

506 + same stack slot, which has undesirable consequences.

507 +

508 + Because of the deferred binding nature of shared libraries any function

509 + with external scope could be in a different load module and thus require

510 + rp’ to be saved when calling that function. So sibcall optimizations

511 + can only be safe for static function.

512 +

513 + Note that GCC never needs return value relocations, so we don’t have to

514 + worry about static calls with return value relocations (which require

515 + saving rp’).

516 +

517 + It is safe to perform a sibcall optimization when the target function

518 + will never return. */

519 +static bool

520 +pa_function_ok_for_sibcall (decl, exp)

521 + tree decl;

522 + tree exp ATTRIBUTE_UNUSED;

523 +{

524 +#ifdef TARGET_HAS_STUBS_AND_ELF_SECTIONS

525 + /* Sibcalls, stubs, and elf sections don’t play well. */

526 + return false;

527 +#endif

528 + return (decl

529 + && ! TARGET_PORTABLE_RUNTIME

530 + && ! TARGET_64BIT

108 SOURCE CODE C.1

531 + && ! TREE_PUBLIC (decl));

532 }

533

534 /* Returns 1 if the 6 operands specified in OPERANDS are suitable for

535 Index: config/pa/pa.h

536 ===

537 RCS file: /cvsroot/gcc/gcc/gcc/config/pa/pa.h,v

538 retrieving revision 1.166.2.4

539 diff -u -p -r1.166.2.4 pa.h

540 --- config/pa/pa.h 17 Sep 2002 22:59:03 -0000 1.166.2.4

541 +++ config/pa/pa.h 1 Oct 2002 00:29:07 -0000

542 @@ -1831,35 +1831,6 @@ do {

543 \

544 /* The number of Pmode words for the setjmp buffer. */

545 #define JMP_BUF_SIZE 50

546

547 -/* Only direct calls to static functions are allowed to be sibling (tail)

548 - call optimized.

549 -

550 - This restriction is necessary because some linker generated stubs will

551 - store return pointers into rp’ in some cases which might clobber a

552 - live value already in rp’.

553 -

554 - In a sibcall the current function and the target function share stack

555 - space. Thus if the path to the current function and the path to the

556 - target function save a value in rp’, they save the value into the

557 - same stack slot, which has undesirable consequences.

558 -

559 - Because of the deferred binding nature of shared libraries any function

560 - with external scope could be in a different load module and thus require

561 - rp’ to be saved when calling that function. So sibcall optimizations

562 - can only be safe for static function.

563 -

564 - Note that GCC never needs return value relocations, so we don’t have to

565 - worry about static calls with return value relocations (which require

566 - saving rp’).

567 -

568 - It is safe to perform a sibcall optimization when the target function

569 - will never return. */

570 -#define FUNCTION_OK_FOR_SIBCALL(DECL) \

571 - (DECL \

572 - && ! TARGET_PORTABLE_RUNTIME \

573 - && ! TARGET_64BIT \

574 - && ! TREE_PUBLIC (DECL))

575 -

576 #define PREDICATE_CODES

577 \

578 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \

579 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \

580 Index: config/rs6000/rs6000-protos.h

581 ===

582 RCS file: /cvsroot/gcc/gcc/gcc/config/rs6000/rs6000-protos.h,v

583 retrieving revision 1.43.4.1

584 diff -u -p -r1.43.4.1 rs6000-protos.h

585 --- config/rs6000/rs6000-protos.h 17 Sep 2002 22:59:05 -0000 1.43.4.1

586 +++ config/rs6000/rs6000-protos.h 1 Oct 2002 00:29:09 -0000

587 @@ -151,7 +151,6 @@ extern void setup_incoming_varargs PARAM

C.1 INDIRECT SIBLING CALLS 109

588 int *, int));

589 extern struct rtx_def *rs6000_va_arg PARAMS ((tree, tree));

590 extern void output_mi_thunk PARAMS ((FILE *, tree, int, tree));

591 -extern int function_ok_for_sibcall PARAMS ((tree));

592 #ifdef ARGS_SIZE_RTX

593 /* expr.h defines ARGS_SIZE_RTX and ‘enum direction’ */

594 extern enum direction function_arg_padding PARAMS ((enum machine_mode, tree));

595 Index: config/rs6000/rs6000.c

596 ===

597 RCS file: /cvsroot/gcc/gcc/gcc/config/rs6000/rs6000.c,v

598 retrieving revision 1.366.2.5

599 diff -u -p -r1.366.2.5 rs6000.c

600 --- config/rs6000/rs6000.c 20 Sep 2002 01:29:19 -0000 1.366.2.5

601 +++ config/rs6000/rs6000.c 1 Oct 2002 00:29:54 -0000

602 @@ -165,6 +165,7 @@ struct builtin_description

603 const enum rs6000_builtins code;

604 };

605

606 +static bool rs6000_function_ok_for_sibcall PARAMS ((tree, tree));

607 static void rs6000_add_gc_roots PARAMS ((void));

608 static int num_insns_constant_wide PARAMS ((HOST_WIDE_INT));

609 static void validate_condition_mode

610 @@ -376,6 +377,9 @@ static const char alt_reg_names[][8] =

611 /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */

612 #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))

613

614 +#undef TARGET_FUNCTION_OK_FOR_SIBCALL

615 +#define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall

616 +

617 struct gcc_target targetm = TARGET_INITIALIZER;

618 ^L

619 /* Override command line options. Mostly we process the processor

620 @@ -9403,33 +9407,34 @@ rs6000_return_addr (count, frame)

621 vector parameters are required to have a prototype, so the argument

622 type info must be available here. (The tail recursion case can work

623 with vector parameters, but there’s no way to distinguish here.) */

624 -int

625 -function_ok_for_sibcall (fndecl)

626 - tree fndecl;

627 +static bool

628 +rs6000_function_ok_for_sibcall (decl, exp)

629 + tree decl;

630 + tree exp ATTRIBUTE_UNUSED;

631 {

632 tree type;

633 - if (fndecl)

634 + if (decl)

635 {

636 if (TARGET_ALTIVEC_VRSAVE)

637 {

638 - for (type = TYPE_ARG_TYPES (TREE_TYPE (fndecl));

639 + for (type = TYPE_ARG_TYPES (TREE_TYPE (decl));

640 type; type = TREE_CHAIN (type))

641 {

642 if (TREE_CODE (TREE_VALUE (type)) == VECTOR_TYPE)

643 - return 0;

644 + return false;

110 SOURCE CODE C.1

645 }

646 }

647 if (DEFAULT_ABI == ABI_DARWIN

648 - || (*targetm.binds_local_p) (fndecl))

649 + || (*targetm.binds_local_p) (decl))

650 {

651 - tree attr_list = TYPE_ATTRIBUTES (TREE_TYPE (fndecl));

652 + tree attr_list = TYPE_ATTRIBUTES (TREE_TYPE (decl));

653

654 if (!lookup_attribute ("longcall", attr_list)

655 || lookup_attribute ("shortcall", attr_list))

656 - return 1;

657 + return true;

658 }

659 }

660 - return 0;

661 + return false;

662 }

663

664 /* function rewritten to handle sibcalls */

665 Index: config/rs6000/rs6000.h

666 ===

667 RCS file: /cvsroot/gcc/gcc/gcc/config/rs6000/rs6000.h,v

668 retrieving revision 1.224.4.6

669 diff -u -p -r1.224.4.6 rs6000.h

670 --- config/rs6000/rs6000.h 23 Sep 2002 04:38:47 -0000 1.224.4.6

671 +++ config/rs6000/rs6000.h 1 Oct 2002 00:30:07 -0000

672 @@ -1804,10 +1804,6 @@ typedef struct rs6000_args

673 argument is passed depends on whether or not it is a named argument. */

674 #define STRICT_ARGUMENT_NAMING 1

675

676 -/* We do not allow indirect calls to be optimized into sibling calls, nor

677 - do we allow calls with vector parameters. */

678 -#define FUNCTION_OK_FOR_SIBCALL(DECL) function_ok_for_sibcall ((DECL))

679 -

680 /* Output assembler code to FILE to increment profiler label # LABELNO

681 for profiling a function entry. */

682

683 Index: config/sh/sh.c

684 ===

685 RCS file: /cvsroot/gcc/gcc/gcc/config/sh/sh.c,v

686 retrieving revision 1.169.4.4

687 diff -u -p -r1.169.4.4 sh.c

688 --- config/sh/sh.c 20 Sep 2002 01:29:21 -0000 1.169.4.4

689 +++ config/sh/sh.c 1 Oct 2002 00:30:32 -0000

690 @@ -199,6 +199,7 @@ static void sh_insert_attributes PARAMS

691 static int sh_adjust_cost PARAMS ((rtx, rtx, rtx, int));

692 static int sh_use_dfa_interface PARAMS ((void));

693 static int sh_issue_rate PARAMS ((void));

694 +static bool sh_function_ok_for_sibcall PARAMS ((tree, tree));

695

696 static bool sh_cannot_modify_jumps_p PARAMS ((void));

697 static bool sh_ms_bitfield_layout_p PARAMS ((tree));

698 @@ -259,6 +260,9 @@ static void flow_dependent_p_1 PARAMS ((

699 #undef TARGET_EXPAND_BUILTIN

700 #define TARGET_EXPAND_BUILTIN sh_expand_builtin

701

C.1 INDIRECT SIBLING CALLS 111

702 +#undef TARGET_FUNCTION_OK_FOR_SIBCALL

703 +#define TARGET_FUNCTION_OK_FOR_SIBCALL sh_function_ok_for_sibcall

704 +

705 struct gcc_target targetm = TARGET_INITIALIZER;

706 ^L

707 /* Print the operand address in x to the stream. */

708 @@ -7383,6 +7387,19 @@ sh_initialize_trampoline (tramp, fnaddr,

709 }

710 }

711

712 +/* FIXME: This is overly conservative. A SHcompact function that

713 + receives arguments ‘‘by reference’’ will have them stored in its

714 + own stack frame, so it must not pass pointers or references to

715 + these arguments to other functions by means of sibling calls. */

716 +static bool

717 +sh_function_ok_for_sibcall (decl, exp)

718 + tree decl;

719 + tree exp ATTRIBUTE_UNUSED;

720 +{

721 + return (decl

722 + && (! TARGET_SHCOMPACT

723 + || current_function_args_info.stack_regs == 0));

724 +}

725 ^L

726 /* Machine specific built-in functions. */

727

728 Index: config/sh/sh.h

729 ===

730 RCS file: /cvsroot/gcc/gcc/gcc/config/sh/sh.h,v

731 retrieving revision 1.166.4.6

732 diff -u -p -r1.166.4.6 sh.h

733 --- config/sh/sh.h 23 Sep 2002 04:38:48 -0000 1.166.4.6

734 +++ config/sh/sh.h 1 Oct 2002 00:30:46 -0000

735 @@ -1706,13 +1706,6 @@ struct sh_args {

736 (CUM).outgoing = 0; \

737 } while (0)

738

739 -/* FIXME: This is overly conservative. A SHcompact function that

740 - receives arguments ‘‘by reference’’ will have them stored in its

741 - own stack frame, so it must not pass pointers or references to

742 - these arguments to other functions by means of sibling calls. */

743 -#define FUNCTION_OK_FOR_SIBCALL(DECL) \

744 - (! TARGET_SHCOMPACT || current_function_args_info.stack_regs == 0)

745 -

746 /* Update the data in CUM to advance over an argument

747 of mode MODE and data type TYPE.

748 (TYPE is null for libcalls where that information may not be

749 Index: config/sparc/sparc.c

750 ===

751 RCS file: /cvsroot/gcc/gcc/gcc/config/sparc/sparc.c,v

752 retrieving revision 1.226.4.4

753 diff -u -p -r1.226.4.4 sparc.c

754 --- config/sparc/sparc.c 20 Sep 2002 01:29:21 -0000 1.226.4.4

755 +++ config/sparc/sparc.c 1 Oct 2002 00:31:13 -0000

756 @@ -176,6 +176,8 @@ static void emit_soft_tfmode_cvt PARAMS

757 static void emit_hard_tfmode_operation PARAMS ((enum rtx_code, rtx *));

758

112 SOURCE CODE C.1

759 static void sparc_encode_section_info PARAMS ((tree, int));

760 +

761 +static bool sparc_function_ok_for_sibcall PARAMS ((tree, tree));

762 ^L

763 /* Option handling. */

764

765 @@ -239,6 +241,9 @@ enum processor_type sparc_cpu;

766 #undef TARGET_ENCODE_SECTION_INFO

767 #define TARGET_ENCODE_SECTION_INFO sparc_encode_section_info

768

769 +#undef TARGET_FUNCTION_OK_FOR_SIBCALL

770 +#define TARGET_FUNCTION_OK_FOR_SIBCALL sparc_function_ok_for_sibcall

771 +

772 struct gcc_target targetm = TARGET_INITIALIZER;

773 ^L

774 /* Validate and override various options, and do some machine dependent

775 @@ -8021,6 +8026,32 @@ sparc_elf_asm_named_section (name, flags

776 fputc (’\n’, asm_out_file);

777 }

778 #endif /* OBJECT_FORMAT_ELF */

779 +

780 +/* We do not allow sibling calls if -mflat, nor

781 + we do not allow indirect calls to be optimized into sibling calls.

782 +

783 + Also, on sparc 32-bit we cannot emit a sibling call when the

784 + current function returns a structure. This is because the "unimp

785 + after call" convention would cause the callee to return to the

786 + wrong place. The generic code already disallows cases where the

787 + function being called returns a structure.

788 +

789 + It may seem strange how this last case could occur. Usually there

790 + is code after the call which jumps to epilogue code which dumps the

791 + return value into the struct return area. That ought to invalidate

792 + the sibling call right? Well, in the c++ case we can end up passing

793 + the pointer to the struct return area to a constructor (which returns

794 + void) and then nothing else happens. Such a sibling call would look

795 + valid without the added check here. */

796 +static bool

797 +sparc_function_ok_for_sibcall (decl, exp)

798 + tree decl;

799 + tree exp ATTRIBUTE_UNUSED;

800 +{

801 + return (decl

802 + && ! TARGET_FLAT

803 + && (TARGET_ARCH64 || ! current_function_returns_struct));

804 +}

805

806 /* ??? Similar to the standard section selection, but force reloc-y-ness

807 if SUNOS4_SHARED_LIBRARIES. Unclear why this helps (as opposed to

808 Index: config/sparc/sparc.h

809 ===

810 RCS file: /cvsroot/gcc/gcc/gcc/config/sparc/sparc.h,v

811 retrieving revision 1.207.4.6

812 diff -u -p -r1.207.4.6 sparc.h

813 --- config/sparc/sparc.h 23 Sep 2002 04:38:48 -0000 1.207.4.6

814 +++ config/sparc/sparc.h 1 Oct 2002 00:31:25 -0000

815 @@ -1934,27 +1934,6 @@ do {

C.1 INDIRECT SIBLING CALLS 113

816 \

817

818 #define STRICT_ARGUMENT_NAMING TARGET_V9

819

820 -/* We do not allow sibling calls if -mflat, nor

821 - we do not allow indirect calls to be optimized into sibling calls.

822 -

823 - Also, on sparc 32-bit we cannot emit a sibling call when the

824 - current function returns a structure. This is because the "unimp

825 - after call" convention would cause the callee to return to the

826 - wrong place. The generic code already disallows cases where the

827 - function being called returns a structure.

828 -

829 - It may seem strange how this last case could occur. Usually there

830 - is code after the call which jumps to epilogue code which dumps the

831 - return value into the struct return area. That ought to invalidate

832 - the sibling call right? Well, in the c++ case we can end up passing

833 - the pointer to the struct return area to a constructor (which returns

834 - void) and then nothing else happens. Such a sibling call would look

835 - valid without the added check here. */

836 -#define FUNCTION_OK_FOR_SIBCALL(DECL) \

837 - (DECL \

838 - && ! TARGET_FLAT \

839 - && (TARGET_ARCH64 || ! current_function_returns_struct))

840 -

841 /* Generate RTL to flush the register windows so as to make arbitrary frames

842 available. */

843 #define SETUP_FRAME_ADDRESSES() \

844 Index: config/xtensa/xtensa.h

845 ===

846 RCS file: /cvsroot/gcc/gcc/gcc/config/xtensa/xtensa.h,v

847 retrieving revision 1.20.4.1

848 diff -u -p -r1.20.4.1 xtensa.h

849 --- config/xtensa/xtensa.h 16 Sep 2002 17:38:28 -0000 1.20.4.1

850 +++ config/xtensa/xtensa.h 1 Oct 2002 00:31:41 -0000

851 @@ -1287,11 +1287,6 @@ typedef struct xtensa_args {

852 indexing purposes) so give the MEM rtx a words’s mode. */

853 #define FUNCTION_MODE SImode

854

855 -/* A C expression that evaluates to true if it is ok to perform a

856 - sibling call to DECL. */

857 -/* TODO: fix this up to allow at least some sibcalls */

858 -#define FUNCTION_OK_FOR_SIBCALL(DECL) 0

859 -

860 /* Xtensa constant costs. */

861 #define CONST_COSTS(X, CODE, OUTER_CODE) \

862 case CONST_INT: \

Patch 2: Documentation Updates

01 2002-10-03 Andreas Bauer <baueran@in.tum.de>

02

03 doc/tm.texi (FUNCTION_OK_FOR_SIBCALL): Remove.

04 (TARGET_FUNCTION_OK_FOR_SIBCALL): New.

05

06 Index: tm.texi

07 ===

114 SOURCE CODE C.1

08 RCS file: /cvsroot/gcc/gcc/gcc/doc/tm.texi,v

09 retrieving revision 1.159.2.7

10 diff -u -p -r1.159.2.7 tm.texi

11 --- tm.texi 1 Oct 2002 17:32:35 -0000 1.159.2.7

12 +++ tm.texi 3 Oct 2002 06:46:26 -0000

13 @@ -4228,18 +4228,18 @@ the function prologue. Normally, the pr

14 @subsection Permitting tail calls

15 @cindex tail calls

16

17 -@table @code

18 -@findex FUNCTION_OK_FOR_SIBCALL

19 -@item FUNCTION_OK_FOR_SIBCALL (@var{decl})

20 -A C expression that evaluates to true if it is ok to perform a sibling

21 -call to @var{decl} from the current function.

22 +@deftypefn {Target Hook} bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree @var{decl},

23 tree @var{exp})

24 +True if it is ok to do sibling call optimization for the specified

25 +call expression @var{exp}. @var{decl} will be the called function,

26 +or NULL if this is an indirect call.

27

28 It is not uncommon for limitations of calling conventions to prevent

29 tail calls to functions outside the current unit of translation, or

30 -during PIC compilation. Use this macro to enforce these restrictions,

31 +during PIC compilation. The hook is used to enforce these restrictions,

32 as the @code{sibcall} md pattern can not fail, or fall over to a

33 -‘‘normal’’ call.

34 -@end table

35 +‘‘normal’’ call. The criteria for successful sibling call optimization

36 +may vary greatly between different architectures.

37 +@end deftypefn

38

39 @node Varargs

40 @section Implementing the Varargs Macros

Patch 3: Bug Fixes

01 2002-10-07 Andreas Bauer <baueran@in.tum.de>

02

03 * calls.c (expand_call): Fix function-is-volatile

04 check.

05

06 Index: calls.c

07 ===

08 RCS file: /cvsroot/gcc/gcc/gcc/calls.c,v

09 retrieving revision 1.231.4.7

10 diff -u -p -r1.231.4.7 calls.c

11 --- calls.c 1 Oct 2002 20:22:34 -0000 1.231.4.7

12 +++ calls.c 7 Oct 2002 03:49:59 -0000

13 @@ -2444,7 +2444,7 @@ expand_call (exp, target, ignore)

14 || !(*targetm.function_ok_for_sibcall) (fndecl, exp)

15 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP))

16 /* Functions that do not return may not be sibcall optimized. */

17 - || TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (exp, 0)))

18 + || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))

19 /* If this function requires more stack slots than the current

20 function, we cannot change it into a sibling call. */

21 || args_size.constant > current_function_args_size

C.1 INDIRECT SIBLING CALLS 115

Patch 4: Modifying the Call Patterns

01 2002-10-08 Andreas Bauer <baueran@in.tum.de>

02

03 * config/i386/i386.c (ix86_function_ok_for_sibcall): Allow

04 indirect calls to be sibcall optimized.

05 * config/i386/i386.md (sibcall_1): New.

06 (call_1): Add no-sibcalls condition.

07 (sibcall_value_1): New.

08 (call_value_1): Add no-sibcalls condition.

09

10 Index: i386.c

11 ===

12 RCS file: /cvsroot/gcc/gcc/gcc/config/i386/i386.c,v

13 retrieving revision 1.447.2.6

14 diff -u -p -r1.447.2.6 i386.c

15 --- i386.c 5 Oct 2002 21:27:49 -0000 1.447.2.6

16 +++ i386.c 8 Oct 2002 01:39:04 -0000

17 @@ -1305,13 +1305,28 @@ const struct attribute_spec ix86_attribu

18 static bool

19 ix86_function_ok_for_sibcall (decl, exp)

20 tree decl;

21 - tree exp ATTRIBUTE_UNUSED;

22 + tree exp;

23 {

24 - return ((decl)

25 - && (! flag_pic || ! TREE_PUBLIC (decl))

26 - && (! TARGET_FLOAT_RETURNS_IN_80387

27 - || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (decl))))

28 - || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE

29 (cfun->decl))))));

30 + /* If we are generating position-independent code, we cannot sibcall

31 + optimize any indirect call, or a direct call to a global function,

32 + as the PLT requires %ebx be live. */

33 + if (flag_pic && (!decl || !TREE_PUBLIC (decl)))

34 + return 0;

35 +

36 + /* If we are returning floats on the 80387 register stack, we cannot

37 + make a sibcall from a function that doesn’t return a float to a

38 + function that does; the necessary stack adjustment will not be

39 + executed. */

40 + if (TARGET_FLOAT_RETURNS_IN_80387

41 + && FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (exp)))

42 + && !FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl)))))

43 + return 0;

44 +

45 + /* Otherwise okay.

46 + That also includes certain types of indirect calls, since DECL

47 + is not necessarily defined here and the i386 machine description

48 + supports the according call patterns. */

49 + return 1;

50 }

51

52 /* Handle a "cdecl" or "stdcall" attribute;

53 Index: i386.md

54 ===

55 RCS file: /cvsroot/gcc/gcc/gcc/config/i386/i386.md,v

56 retrieving revision 1.380.4.5

116 SOURCE CODE C.1

57 diff -u -p -r1.380.4.5 i386.md

58 --- i386.md 1 Oct 2002 17:32:07 -0000 1.380.4.5

59 +++ i386.md 8 Oct 2002 01:39:07 -0000

60 @@ -13427,19 +13427,22 @@

61 (define_insn "*call_1"

62 [(call (mem:QI (match_operand:SI 0 "call_insn_operand" "rsm"))

63 (match_operand 1 "" ""))]

64 - "!TARGET_64BIT"

65 + "!SIBLING_CALL_P (insn) && !TARGET_64BIT"

66 {

67 if (constant_call_address_operand (operands[0], QImode))

68 - {

69 - if (SIBLING_CALL_P (insn))

70 - return "jmp\t%P0";

71 - else

72 - return "call\t%P0";

73 - }

74 - if (SIBLING_CALL_P (insn))

75 - return "jmp\t%A0";

76 - else

77 - return "call\t%A0";

78 + return "call\t%P0";

79 + return "call\t%A0";

80 +}

81 + [(set_attr "type" "call")])

82 +

83 +(define_insn "*sibcall_1"

84 + [(call (mem:QI (match_operand:SI 0 "call_insn_operand" "s,c,d,a"))

85 + (match_operand 1 "" ""))]

86 + "SIBLING_CALL_P (insn) && !TARGET_64BIT"

87 +{

88 + if (constant_call_address_operand (operands[0], QImode))

89 + return "jmp\t%P0";

90 + return "jmp\t%A0";

91 }

92 [(set_attr "type" "call")])

93

94 @@ -17716,19 +17719,23 @@

95 [(set (match_operand 0 "" "")

96 (call (mem:QI (match_operand:SI 1 "call_insn_operand" "rsm"))

97 (match_operand:SI 2 "" "")))]

98 - "!TARGET_64BIT"

99 + "!SIBLING_CALL_P (insn) && !TARGET_64BIT"

100 {

101 if (constant_call_address_operand (operands[1], QImode))

102 - {

103 - if (SIBLING_CALL_P (insn))

104 - return "jmp\t%P1";

105 - else

106 - return "call\t%P1";

107 - }

108 - if (SIBLING_CALL_P (insn))

109 - return "jmp\t%*%1";

110 - else

111 - return "call\t%*%1";

112 + return "call\t%P1";

113 + return "call\t%*%1";

C.1 INDIRECT SIBLING CALLS 117

114 +}

115 + [(set_attr "type" "callv")])

116 +

117 +(define_insn "*sibcall_value_1"

118 + [(set (match_operand 0 "" "")

119 + (call (mem:QI (match_operand:SI 1 "call_insn_operand" "s,c,d,a"))

120 + (match_operand:SI 2 "" "")))]

121 + "SIBLING_CALL_P (insn) && !TARGET_64BIT"

122 +{

123 + if (constant_call_address_operand (operands[1], QImode))

124 + return "jmp\t%P1";

125 + return "jmp\t%*%1";

126 }

127 [(set_attr "type" "callv")])

Patch 5: Fix Typo in Documentation

01 2002-10-28 Andreas Bauer <baueran@in.tum.de>

02

03 doc/c-tree.texi (Tree overview): Fix typos.

04

05 Index: c-tree.texi

06 ===

07 RCS file: /cvsroot/gcc/gcc/gcc/doc/c-tree.texi,v

08 retrieving revision 1.33.4.2

09 diff -u -w -r1.33.4.2 c-tree.texi

10 --- c-tree.texi 21 Oct 2002 17:52:58 -0000 1.33.4.2

11 +++ c-tree.texi 28 Oct 2002 00:52:41 -0000

12 @@ -84,8 +84,8 @@

13 font}, except when talking about the actual C type @code{tree}.

14

15 You can tell what kind of node a particular tree is by using the

16 -@code{TREE_CODE} macro. Many, many macros take a trees as input and

17 -return trees as output. However, most macros require a certain kinds of

18 +@code{TREE_CODE} macro. Many, many macros take trees as input and

19 +return trees as output. However, most macros require a certain kind of

20 tree node as input. In other words, there is a type-system for trees,

21 but it is not reflected in the C type-system.

Patch 6: Enhance GCC Test Suite

01 2002-11-04 Andreas Bauer <baueran@in.tum.de>

02

03 * gcc.dg/sibcall-6: New test for indirect sibcalls.

04

05 --- /dev/null Sun Jul 14 11:06:13 2002

06 +++ sibcall-6.c Tue Nov 5 11:03:03 2002

07 @@ -0,0 +1,42 @@

08 +/* A simple check to see whether indirect calls are

09 + being sibcall optimized on targets that do support

10 + this notion, i.e. have the according call patterns

11 + in place.

12 +

13 + Copyright (C) 2002 Free Software Foundation Inc.

14 + Contributed by Andreas Bauer <baueran@in.tum.de> */

15 +

16 +/* { dg-do run { target i?86-*-* x86_64-*-*} } */

118 SOURCE CODE C.3

17 +/* { dg-options "-O2 -foptimize-sibling-calls" } */

18 +

19 +int foo (int);

20 +int bar (int);

21 +

22 +int (*ptr) (int);

23 +int *f_addr;

24 +

25 +int

26 +main ()

27 +{

28 + ptr = bar;

29 + foo (7);

30 + exit (0);

31 +}

32 +

33 +int

34 +bar (b)

35 + int b;

36 +{

37 + if (f_addr == (int*) __builtin_return_address (0))

38 + return b;

39 + else

40 + abort ();

41 +}

42 +

43 +int

44 +foo (f)

45 + int f;

46 +{

47 + f_addr = (int*) __builtin_return_address (0);

48 + return (*ptr)(f);

49 +}

C.2 SUPER SIBCALLS

The patch for Super Sibcalls exceeds 2000 lines of code, which is the reason why
it is not fully printed in this document. Instead, the changes are available from
the attached CD-ROM, or can be obtained by sending an e-mail to the author
and, alternatively, by visiting his homepage at http://www.andreasbauer.
org/.

Due to the fact that, the patch is not part of mainline GCC, it has been made
against the stable version 3.2 of GCC. This way, others can do some testing
without having to download a specific CVS version of the compiler suite. In its
current state, however, the patch is not fully functional and, therefore, should
not be applied without accompanying modifications.

C.3 AN APPLICATION: NEWTON SQUARE ROOT

“Newton Square Root” is a perfect example for a very useful and also tail
recursive algorithm [Knuth 1998b, § 4.3.1, 4.3.3]. However, the following im-
plementation is rather artificial in a sense that the tail recursive calls have

C.3 AN APPLICATION: NEWTON SQUARE ROOT 119

been transformed into mutually recursive calls, because some versions of GCC
would be able to transform “ordinary” recursion into goto’s, if a sufficiently
high level of optimisation is enabled. According to § 3.2, the goto optimisation
is not handled by the sibcall mechanism and would, therefore, not be suited
to demonstrate the impact of tail calls (or the lack thereof) on common C
programs.

Due to the fact that the functions are mostly free from local variable declara-
tions, the mutual recursion has been turned into indirect calls, because indirect
sibling calls have not been possible with any GCC version prior to 3.4 (which
contains this thesis’ extensions). Direct sibling calls, on the other hand, were
previously featured in GCC, if the stringent criteria described in § 3.3 hold.

So if this code is compiled on GCC 3.4 (or newer), it will not abort in a similar
fashion as it is described in § 1.2, because the calls in the tail position can be
transformed into jump commands which do not reserve space for additional
stack frames.

01 /* Newton’s Square Root algorithm, *

02 * Implemented in C by Andreas Bauer. */

03

04 #include <stdio.h>

05 #include <stdlib.h>

06 #include <math.h>

07

08 #define ACCURACY 0.0000001

09

10 float newton (int);

11 float find_root (float, float);

12 float find_root2 (float, float);

13 int close_enough (float, float);

14

15 int calls;

16 float (*find_root_ptr) (float, float);

17 float (*find_root_ptr2) (float, float);

18

19 int main (void)

20 {

21 int input = 0;

22 find_root_ptr = find_root;

23 find_root_ptr2 = find_root2;

24 calls = 1;

25

26 printf ("Enter a number: ");

27 scanf ("%d", &input);

28 printf ("The square root of %d is approx. %f.\n", input, newton (input));

29 printf ("Function calls required: %d\n", calls);

30

31 return 0;

32 }

33

34 float newton (int input)

35 {

36 calls++;

37 return find_root ((float) input, 1);

38 }

120 SOURCE CODE C.3

39

40 float find_root (float input, float guess)

41 {

42 if (close_enough (input / guess, guess))

43 return guess;

44 else

45 {

46 calls++;

47

48 /* Indirect tail call. */

49 return (*find_root_ptr2) (input, (guess + input / guess) / 2);

50 }

51 }

52

53 float find_root2 (float input, float guess)

54 {

55 if (close_enough (input / guess, guess))

56 return guess;

57 else

58 {

59 calls++;

60

61 /* Indirect tail call. */

62 return (*find_root_ptr) (input, (guess + input / guess) / 2);

63 }

64 }

65

66 int close_enough (float a, float b)

67 {

68 return (fabs (a - b) < ACCURACY);

69 }

APPENDIX D

HARDWARE
AND SOFTWARE USED

The main work for this thesis was undertaken using the UNIX-like oper-
ating system GNU/Linux version 2.4.7 on an Intel-related hardware platform
whose components correspond to the following properties: AMD Duron pro-
cessor, 1 GHz (2,000 bogomips), and 228 MBytes RAM. (The correct GCC
target/host description for the deployed system is i686-pc-linux-gnu.) This
resembles a fairly standard system which many people use at home, or in their
office. Descriptions of the deployed graphic card, hard disks, the screen, and
other peripherals are irrelevant for this work.1

The GCC source code was modified using the Emacs display editor (see Ap-
pendix B), version 21.2.1; errors were (sometimes) detected with the GNU De-
bugger (see Appendix B), and patches, make files and similar objects created
by using the standard UNIX text tools and filters as they are explained, for
example, in The UNIX Programming Environment [Kernighan and Pike 1984].

Testing GCC code changes for foreign platforms (ARM, PowerPC, etc.) was
undertaken solely on the above system by using many different cross compilers
which can be installed in parallel without affecting each other (see § 2.3).

1However, it should be pointed out that this work could not have been finished without
a “sufficiently fast” Internet connection, because a GCC CVS branch is approximately 165
MBytes in size and changes to it have to be downloaded daily.

121

BIBLIOGRAPHY

Aho, A., Sethi, R. and Ullman, J. (1986). Compilers — Principles, Tech-
niques, and Tools. Addison Wesley Higher Education.

American National Standard for Information Systems (1989). Pro-
gramming Language — C, ANSI X3.159-1989. American National Standard
for Information Systems (ANSI), New York.

ARM (2000). The ARM-THUMB Procedure Call Standard. SWS ESPC 0002
B-01, ARM Limited (Development Systems Business Unit, Engineering Soft-
ware Group).

Baker, H. G. (1995). CONS Should Not CONS Its Arguments, Part II:
Cheney on the M.T.A. In ACM Sigplan Notices 30 (9). Association for
Computing Machinery (ACM), New York.

Bartlett, J. F. (1989). SCHEME->C: a Portable Scheme-to-C Compiler.
WRL Technical Report 89/1, DEC Western Research Laboratory, Palo Alto,
California.

Brey, R. B. (1995). The Intel 32-Bit Microprocessors/80386, 80486, and
Pentium. Prentice Hall New Jersey, Columbus, Ohio.

Chassell, R. J. and Stallman, R. M. (1999). Texinfo: The GNU Doc-
umentation Format. 4th ed. Free Software Foundation, Inc./GNU Press,
Cambridge, Massachusetts.

Clinger, W. D. (1998). Proper tail recursion and space efficiency. Proceedings
of the 2002 ACM International Conference on Functional Programming.

Conway, T., Henderson, F. and Somogyi, Z. (1995). Code generation
for Mercury. In Proceedings of the 1995 International Symposium on Logic
Programming. Portland, Oregon.

Cubranic, D. (1999). Open-Source Software Development. In Proceedings
of the ICSE-99 Workshop on Software Engineering over the Internet. Los
Angeles, California.

Free Software Foundation (1991). GNU General Public License. http:
//www.fsf.org/licenses/gpl.html, Free Software Foundation, Inc., Cam-
bridge, Massachusetts.

122

BIBLIOGRAPHY 123

Gudeman, D., De Bosschere, K. and Debray, S. K. (1992). An Efficient
and Portable Sequential Implementation of Janus. In Proceedings of the Joint
International Conference and Symposium on Logic Programming (Apt, ed.).
The MIT Press, Washington.

Gunnarsson, H., Lundqvist, T. and Ernbert, B. (1995). Porting the
GNU C Compiler to the Thor Microprocessor. Master Thesis Project, Saab
Ericsson Space AB.

Henderson, F., Conway, T. and Somogyi, Z. (1995). Compiling logic pro-
grams to C using GNU C as a portable assembler. In Proceedings of the ILPS
’95 Postconference Workshop on Sequential Implementation Technologies for
Logic Programming Languages. Portland, Oregon.

Hubicka, J., Jaeger, A. and Mitchell, M. (2002). System V Application
Binary Interface/x86-64 Architecture Processor Supplement (Draft Version
0.21). http://www.x86-64.org/.

IEEE Computer Society (1991). IEEE Standard for the Scheme Program-
ming Language. IEEE standard 1178-1990 ed. The Institute of Electrical and
Electronics Engineers, Inc., New York.

Intel Corporation (2001). Intel Itanium Software Conventions and Run-
time Architecture Guide. Intel document SC–2791, Rev. No. 2.4E ed. Intel
Corporation, Santa Clara, California.

ISO/IEC JTC1/SC22/WG14 (1999). Rationale for International Standard
Programming Languages. Draft C99 Rationale, WG14 (C Standards Com-
mittee), Santa Cruz, California.

Kernighan, B. and Pike, R. (1984). The UNIX Programming Environment.
Prentice Hall, New Jersey.

Kernighan, B. and Ritchie, D. (1988). The C Programming Language. 2nd
ed. Prentice Hall, New Jersey.

Knuth, D. E. (1998a). The Art of Computer Programming, Volume 1/Fun-
damental Algorithms. 3rd ed. Addison Wesley, Boston.

Knuth, D. E. (1998b). The Art of Computer Programming, Volume 2/Seminu-
merical Algorithms. 3rd ed. Addison Wesley, Boston.

Knuth, D. E. (1999). MMIXware: A RISC Computer for the Third Millen-
nium. Springer-Verlag, Heidelberg.

Nenzén, P. and Råg̊ard, A. (2000). Tail Call Elimination in GCC. Bachelor’s
Project, Karlstad University, Sweden.

Nilsson, H.-P. (2001). GCC for MMIX: The ABI. http://bitrange.com/
mmix/mmixfest-2001/mmixabi.html.

124 BIBLIOGRAPHY

Peyton Jones, S., Hall, C., Hammond, K., Partain, W. and Wadler,
P. (1992). The Glasgow Haskell compiler: a technical overview. Proceedings
of the UK Joint Framework for Information Technology (JFIT) Technical
Conference, Keele, 1993.

Peyton Jones, S., Ramsey, N. and Reig, F. (1999). C--: a Portable Assem-
bly Language that Supports Garbage Collection. In International Conference
on Principles and Practice of Declarative Programming.

Pizka, M. (1997). Design and Implementation of the GNU INSEL Compiler
gic. Technical Report TUM–I 9713, Munich University of Technology, Mu-
nich, Germany.

Pizka, M. (2002). The Portable Assembly Language C--: A Critical Review
and a GCC Based Prototype. Internal Notes, Microsoft Research, Cambridge,
UK.

Probst, M. (2001). Proper Tail Recursion in C. Master’s thesis, Institut für
Computersprachen der Technischen Universität Wien.

Salus, P. H. (1994). A Quarter Century of UNIX. Addison Wesley, Boston.

Serrano, M. and Weis, P. (1995). Bigloo: a portable and optimizing compiler
for strict functional languages. In Proceedings of the 2nd Symposium on Static
Analysis. Glasgow, Scotland.

Stallman, R. M. (2002). GNU Compiler Collection Internals. http://gcc.
gnu.org/onlinedocs/gccint/, Free Software Foundation, Inc., Cambridge,
Massachusetts.

The Santa Cruz Operation (1996). System V Application Binary Inter-
face/Intel386 Architecture Processor Supplement. 4th ed. The Santa Cruz
Operation, Inc. (SCO).

Vaughan, G. V., Elliston, B., Tromey, T. and Taylor, I. L. (2000).
GNU Autoconf, Automake and Libtool. New Riders Publishing.

Wheeler, D. A. (2001). More Than a Gigabuck: Estimating GNU/Linux’s
Size. http://www.dwheeler.com/sloc/.

Winskel, G. (1993). The Formal Semantics of Programming Languages. MIT
Press, Cambridge, Massachusetts.

Wolf III, J. H. (1999). Programming Methods for the Pentium III Processor’s
Streaming SIMD Extensions Using the VTune Performance Enhancement
Environment. Intel Technology Journal.

