
Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

COMP4600 Advanced algorithms:
Algorithms for verification (3 lectures)

Andreas Bauer

NICTA Software Systems Research Group & The Australian National University

http://baueran.multics.org/

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 1 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Caveat

Although model checking is my research area...

...this is the first time, I’m giving a comprehensive lecture on
model checking.

We will look at MC foremost from a technical/algorithmic
point of view, not so much from a formal/logical one.

However, there will be a wee bit of logic introduced/used that
everyone should be able to follow who knows standard
propositional logic.

Let’s see how we go...

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 2 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

What do we mean by verification?

System is modelled as finite state-transition system.

Properties are written down in propositional temporal logic.

Verification = exhaustive state-space search of system model.

Diagnostic counterexample, if any.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 3 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

What do we mean by verification?

System is modelled as finite state-transition system.

Properties are written down in propositional temporal logic.

Verification = exhaustive state-space search of system model.

Diagnostic counterexample, if any.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 3 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Model checking

Does system model M satisfy temporal logic property ϕ
(written M |= ϕ)?

Normally, checking of functional correctness (not
error-freeness in the intuitive sense).

System (model) only as good/reliable as its designers
anticipated.

Model checking cannot detect implementation errors (e.g.,
compiler bugs) ⇒ Systems testing.

Let’s be more formal!

What is M, what is ϕ, what is “satisfy”?

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 4 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Model checking

Does system model M satisfy temporal logic property ϕ
(written M |= ϕ)?

Normally, checking of functional correctness (not
error-freeness in the intuitive sense).

System (model) only as good/reliable as its designers
anticipated.

Model checking cannot detect implementation errors (e.g.,
compiler bugs) ⇒ Systems testing.

Let’s be more formal!

What is M, what is ϕ, what is “satisfy”?

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 4 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

By the way. . .

MC “won” Turing award in 2007 (Clarke, Emmerson, Sifakis):

Most widely used industrial design verification technique.

Focus shifted from verification of simple designs (e.g.,
communication protocol specifications) to entire software
systems (e.g., business information system).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 5 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

By the way. . .

A lot (but not all) of the material in these lectures is based upon

(MIT Press, 2003) (Henrik Reif Andersen ’97)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 6 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Kripke structures

M = (S ,R, L) over set of propositions, AP, where

S is set of states,

R ⊆ S × S a transition relation,

L : S → 2AP a labelling function.

Modelling the behaviour of a microwave oven

AP = {Start,Close,Heat,Error}
S = {S1, . . . ,S7}
R = {(S1,S3), (S1,S2), (S3, S1), . . .}
L(S1) = ∅, L(S2) = {Start,Error}, . . .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 7 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Kripke structures

M = (S ,R, L) over set of propositions, AP, where

S is set of states,

R ⊆ S × S a transition relation,

L : S → 2AP a labelling function.

Modelling the behaviour of a microwave oven

AP = {Start,Close,Heat,Error}
S = {S1, . . . ,S7}
R = {(S1, S3), (S1,S2), (S3, S1), . . .}
L(S1) = ∅, L(S2) = {Start,Error}, . . .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 7 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Kripke structures

1

Start,Error2 Close3 Close,Heat 4

Start,Close,Error5 Start,Close6 Start,Close,Heat 7

“start oven” “open door”

“reset”
“start oven”

“warm up”

“start cooking”

“cook”

Possible behaviour of microwave oven

Trace/word: {Close}, {Start, Close}, {Start, Close,Heat}, {Close,Heat}, {Close,Heat}, . . .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 8 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Kripke structures

1

Start,Error2 Close3 Close,Heat 4

Start,Close,Error5 Start,Close6 Start,Close,Heat 7

“start oven” “open door”

“reset”
“start oven”

“warm up”

“start cooking”

“cook”

Possible behaviour of microwave oven

Trace/word: {Close}, {Start, Close}, {Start, Close,Heat}, {Close,Heat}, {Close,Heat}, . . .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 8 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Kripke structures

Behaviour of microwave = all possible traces/words of M.

Trace/word = linear Kripke structure.

Traces typically infinite due to loops (i.e., reactive system
never switched off).

Definition

Let Σ = 2AP be a finite alphabet. Let Σω denote set of all infinite
traces over Σ. Behaviour of M can be given as

{w ∈ Σω | for all i ∈ N0 there are m, n ∈ N s.t. (Sm, Sm) ∈ R
and w(i) = L(Sm) and w(i + 1) = L(Sn)}

(We could also demand that L(S0) = w(0), had we an S0.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 9 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Kripke structures—where they come from

If we model a system directly in terms of a Kripke structure,
we are, sort of, performing the model checking by hand
already.

Model generation: Convert abstract system model (e.g.,
source code) into Kripke structure automatically.

Example program: P = m : cobegin P0||P1 coend m′

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 10 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Kripke structures—where they come from

The corresponding Kripke structure

cf. Clarke, Grumberg, Peled (2003): “Model Checking”, MIT Press.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 11 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Linear-time temporal logic

Pnueli, 1977; Turing award 1996.

LTL = propositional logic + two temporal operators (X, U).

Used as formal specification language for temporal order of
events.

Propositional logic (recap)

ϕ = a ∧ ¬b ∨ c has model {α(a) = 1, α(b) = 0, α(c) = 1}
We can write this as singleton “Kripke structure” M = {a, c}.
Thus, M |= ϕ (“M satisfies/is a model for ϕ.”)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 12 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Linear-time temporal logic

LTL syntax

Every propositional logic formula is also an LTL formula.

If ϕ is an LTL formula, then so are Xϕ and ϕUϕ′.

BNF: ϕ ::= p ∈ AP | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ.

LTL semantics: w series of assignments/worlds, i position in w

w, i |= p iff p ∈ w(i)
w, i |= ¬ϕ iff w, i |= ϕ is not true
w, i |= ϕ ∧ ψ iff w, i |= ϕ and w, i |= ψ
w, i |= Xϕ iff w, i + 1 |= ϕ
w, i |= ϕUψ iff there is k ≥ i s.t. w, k |= ψ, and for all i ≤ j < k we have w, j |= ϕ

More generally, note how models of ϕ ∈ LTL are elements from Σω (Σ = 2AP is our alphabet).
Let L(ϕ) = {w ∈ Σω | w, 0 |= ϕ} be the language of ϕ.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 13 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Linear-time temporal logic

LTL syntax

Every propositional logic formula is also an LTL formula.

If ϕ is an LTL formula, then so are Xϕ and ϕUϕ′.

BNF: ϕ ::= p ∈ AP | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ.

LTL semantics: w series of assignments/worlds, i position in w

w, i |= p iff p ∈ w(i)
w, i |= ¬ϕ iff w, i |= ϕ is not true
w, i |= ϕ ∧ ψ iff w, i |= ϕ and w, i |= ψ
w, i |= Xϕ iff w, i + 1 |= ϕ
w, i |= ϕUψ iff there is k ≥ i s.t. w, k |= ψ, and for all i ≤ j < k we have w, j |= ϕ

More generally, note how models of ϕ ∈ LTL are elements from Σω (Σ = 2AP is our alphabet).
Let L(ϕ) = {w ∈ Σω | w, 0 |= ϕ} be the language of ϕ.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 13 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Linear-time temporal logic

Some more useful LTL operators and shortcuts (syntactic “sugar”):

true = p ∨ ¬p

false = ¬true

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ = ¬ϕ ∨ ψ
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Fϕ = trueUϕ (“eventually ϕ”)

Gϕ = ¬F¬ϕ (“always ϕ”)

ϕRψ = ¬(¬ϕU¬ψ) (“release ψ when ϕ becomes true”)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 14 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Linear-time temporal logic

Some LTL specifications:

Invariants:

G¬(crit1 ∧ crit2) (mutual exclusion)

G(preset1 ∨ . . . ∨ presetn) (deadlock freedom)

Response, recurrence:

G(try1 → Fcrit1) (eventual access to critical section)

GF¬crit1 (no starvation in critical section)

Strong fairness:

GF(try1 ∧ ¬crit2)→ GFcrit1 (strong fairness)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 15 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking

Is the following decision problem:

Input: Kripke structure M, LTL formula ϕ.

Question: Does L(M) ⊆ L(ϕ) hold (sometimes written as
M |= ϕ)?

Example: Microwave oven

L(M) ⊆ L(G(Heat → Close))

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 16 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking

Is the following decision problem:

Input: Kripke structure M, LTL formula ϕ.

Question: Does L(M) ⊆ L(ϕ) hold (sometimes written as
M |= ϕ)?

Example: Microwave oven

L(M) ⊆ L(G(Heat → Close))

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 16 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking

Key ideas:

L(M) ⊆ L(ϕ)⇔ L(M) ∩ L(¬ϕ) = ∅
If L(M) ∩ L(¬ϕ) 6= ∅, we have a counterexample.

How do we test if L(M) ∩ L(¬ϕ) = ∅?

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 17 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking

Key ideas:

L(M) ⊆ L(ϕ)⇔ L(M) ∩ L(¬ϕ) = ∅
If L(M) ∩ L(¬ϕ) 6= ∅, we have a counterexample.

How do we test if L(M) ∩ L(¬ϕ) = ∅?

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 17 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking

Theorem

For every ϕ ∈ LTL, there exists an ω-automaton, A, s.t.,
L(A) = L(ϕ).

Corollary

We can solve the LTL model checking problem by testing if
L(M ×A¬ϕ) = ∅.

Note that, M ×A¬ϕ is normally too big to be explicitly computed
(but we disregard that fact for now).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 18 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking

Theorem

For every ϕ ∈ LTL, there exists an ω-automaton, A, s.t.,
L(A) = L(ϕ).

Corollary

We can solve the LTL model checking problem by testing if
L(M ×A¬ϕ) = ∅.

Note that, M ×A¬ϕ is normally too big to be explicitly computed
(but we disregard that fact for now).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 18 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking

Theorem

For every ϕ ∈ LTL, there exists an ω-automaton, A, s.t.,
L(A) = L(ϕ).

Corollary

We can solve the LTL model checking problem by testing if
L(M ×A¬ϕ) = ∅.

Note that, M ×A¬ϕ is normally too big to be explicitly computed
(but we disregard that fact for now).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 18 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Definition

An ω-automaton is a five-tuple A = (Σ,Q,Q0, δ,F) where

Σ is the input alphabet,

Q a finite set of states,

Q0 ⊆ Q a distinguished set of initial states,

δ : Q → 2Q a transition relation, and

F an acceptance condition.

A run ρ of A over a word w ∈ Σω is a mapping N0 → Q s.t.

ρ(0) ∈ Q0, and

ρ(i + 1) ∈ δ(ρ(i),w(i)) for all i ∈ N0.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 19 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Generalised Büchi automaton (GBA): F = {F1, . . . ,Fn}
Fi ⊆ Q is an accepting set.

ρ is accepting iff Inf (ρ) ∩ Fi 6= ∅ for 1 ≤ i ≤ n.

Definition

A word w is accepted by an ω-automaton A iff A has an accepting
run over w .

Büchi automaton (BA sometimes NBA): F = F .

F ⊆ Q is a set of accepting states.

ρ is accepting iff Inf (ρ) ∩ F 6= ∅.
Streett automaton: F = {(E1,F1), . . . , (En,Fn)}

Ei ,Fi ⊆ Q.

ρ is accepting iff Inf (ρ) ∩ Fi 6= ∅ → Inf (ρ) ∩ Ei 6= ∅ for
1 ≤ i ≤ n.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 20 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Generalised Büchi automaton (GBA): F = {F1, . . . ,Fn}
Fi ⊆ Q is an accepting set.

ρ is accepting iff Inf (ρ) ∩ Fi 6= ∅ for 1 ≤ i ≤ n.

Definition

A word w is accepted by an ω-automaton A iff A has an accepting
run over w .

Büchi automaton (BA sometimes NBA): F = F .

F ⊆ Q is a set of accepting states.

ρ is accepting iff Inf (ρ) ∩ F 6= ∅.
Streett automaton: F = {(E1,F1), . . . , (En,Fn)}

Ei ,Fi ⊆ Q.

ρ is accepting iff Inf (ρ) ∩ Fi 6= ∅ → Inf (ρ) ∩ Ei 6= ∅ for
1 ≤ i ≤ n.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 20 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Generalised Büchi automaton (GBA): F = {F1, . . . ,Fn}
Fi ⊆ Q is an accepting set.

ρ is accepting iff Inf (ρ) ∩ Fi 6= ∅ for 1 ≤ i ≤ n.

Definition

A word w is accepted by an ω-automaton A iff A has an accepting
run over w .

Büchi automaton (BA sometimes NBA): F = F .

F ⊆ Q is a set of accepting states.

ρ is accepting iff Inf (ρ) ∩ F 6= ∅.
Streett automaton: F = {(E1,F1), . . . , (En,Fn)}

Ei ,Fi ⊆ Q.

ρ is accepting iff Inf (ρ) ∩ Fi 6= ∅ → Inf (ρ) ∩ Ei 6= ∅ for
1 ≤ i ≤ n.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 20 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Recall: An automaton is deterministic iff for all q ∈ Q, and
σ ∈ Σ, δ(q, σ) is a singleton; that is, if δ is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

L = L((a + b)∗aω) NBA- but not DBA-definable.

Theorem

NBAs can encode every LTL property, but not vice versa.

Proof.

“p occurs at least on even positions”

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 21 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Recall: An automaton is deterministic iff for all q ∈ Q, and
σ ∈ Σ, δ(q, σ) is a singleton; that is, if δ is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

L = L((a + b)∗aω) NBA- but not DBA-definable.

Theorem

NBAs can encode every LTL property, but not vice versa.

Proof.

“p occurs at least on even positions”

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 21 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Recall: An automaton is deterministic iff for all q ∈ Q, and
σ ∈ Σ, δ(q, σ) is a singleton; that is, if δ is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

L = L((a + b)∗aω) NBA- but not DBA-definable.

Theorem

NBAs can encode every LTL property, but not vice versa.

Proof.

“p occurs at least on even positions”

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 21 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Recall: An automaton is deterministic iff for all q ∈ Q, and
σ ∈ Σ, δ(q, σ) is a singleton; that is, if δ is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

L = L((a + b)∗aω) NBA- but not DBA-definable.

Theorem

NBAs can encode every LTL property, but not vice versa.

Proof.

“p occurs at least on even positions”

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 21 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL model checking—ω-automata

Recall: An automaton is deterministic iff for all q ∈ Q, and
σ ∈ Σ, δ(q, σ) is a singleton; that is, if δ is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

L = L((a + b)∗aω) NBA- but not DBA-definable.

Theorem

NBAs can encode every LTL property, but not vice versa.

Proof.

“p occurs at least on even positions”

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 21 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—prerequisites

Definition

The syntactic closure of ϕ, cl(ϕ), consists of all subformulas of ψ
of ϕ and their negation ¬ψ.

Example: ϕ = aU(¬a ∧ b)

cl(ϕ) = {a, b,¬a,¬b,¬a ∧ b,¬(¬a ∧ b), ϕ,¬ϕ}

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 22 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—prerequisites

Definition

The syntactic closure of ϕ, cl(ϕ), consists of all subformulas of ψ
of ϕ and their negation ¬ψ.

Example: ϕ = aU(¬a ∧ b)

cl(ϕ) = {a, b,¬a,¬b,¬a ∧ b,¬(¬a ∧ b), ϕ,¬ϕ}

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 22 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—prerequisites

Definition

The syntactic closure of ϕ, cl(ϕ), consists of all subformulas of ψ
of ϕ and their negation ¬ψ.

Example: ϕ = aU(¬a ∧ b)

cl(ϕ) = {a, b,¬a,¬b,¬a ∧ b,¬(¬a ∧ b), ϕ,¬ϕ}

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 22 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation

GBA for ϕ ∈ LTL:

Q: elements of cl(ϕ), promised to be true.

Q0: states containing ϕ.

δ: repr. as graph G = (V ,E), where

V all complete subsets of cl(ϕ)
(i.e., c ∈ V iff for all ψ ∈ cl(ϕ) either ψ ∈ c or ¬ψ ∈ c , and
for all ϕ′ = ψ ∧ ψ′ ∈ cl(ϕ) we have that ϕ′ ∈ c iff ψ ∈ c and
ψ′ ∈ c .)
(c , d) ∈ E iff

for any ϕ′ = ψUψ′ ∈ cl(ϕ), ϕ′ ∈ c iff either ψ′ ∈ c, or ψ ∈ c
and ϕ′ ∈ d ;
for any ϕ′ = Xψ ∈ cl(ϕ), ϕ′ ∈ c iff ψ ∈ d .

F = {{q ∈ Q | ψUψ′ 6∈ q or ψ′ ∈ q} | ψUψ′ ∈ cl(ϕ)}

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 23 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—complexity considerations

How big is |Q| (resp. Aϕ) at most?

|cl(ϕ)| = O(|ϕ|).

There are at most 2O(|ϕ|) many possible subsets of cl(ϕ).

That’s why we do LTL model checking as L(M ×A¬ϕ) = ∅ rather
than L(M) ∩ L(Aϕ) = ∅:

Complementation of formula O(1) vs.

complementation of automaton ≈ O(2|Q|).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 24 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—complexity considerations

How big is |Q| (resp. Aϕ) at most?

|cl(ϕ)| = O(|ϕ|).

There are at most 2O(|ϕ|) many possible subsets of cl(ϕ).

That’s why we do LTL model checking as L(M ×A¬ϕ) = ∅ rather
than L(M) ∩ L(Aϕ) = ∅:

Complementation of formula O(1) vs.

complementation of automaton ≈ O(2|Q|).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 24 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—complexity considerations

How big is |Q| (resp. Aϕ) at most?

|cl(ϕ)| = O(|ϕ|).

There are at most 2O(|ϕ|) many possible subsets of cl(ϕ).

That’s why we do LTL model checking as L(M ×A¬ϕ) = ∅ rather
than L(M) ∩ L(Aϕ) = ∅:

Complementation of formula O(1) vs.

complementation of automaton ≈ O(2|Q|).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 24 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—complexity considerations

How big is |Q| (resp. Aϕ) at most?

|cl(ϕ)| = O(|ϕ|).

There are at most 2O(|ϕ|) many possible subsets of cl(ϕ).

That’s why we do LTL model checking as L(M ×A¬ϕ) = ∅ rather
than L(M) ∩ L(Aϕ) = ∅:

Complementation of formula O(1) vs.

complementation of automaton ≈ O(2|Q|).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 24 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—optimisations

GBA acceptance more difficult to test than NBA acceptance:

Turn all states into tuples (q, i), where i is counter.

Initially, i = 0; counter counts modulo |F|.
i = i + 1 if the ith set Fi of F is reached (i.e., if q not
accepting counter doesn’t do anything).

Now, we only need to check one accepting set, F0 × {0}.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 25 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—optimisations

More formally:

From GBA A = (Σ,Q,Q0, δ,F = F1, . . . ,Fn), we construct NBA
B = (Σ,Q ′,Q ′0, δ

′,F ′):

Q ′ = Q × {1, . . . , n}
δ′ ⊆ Q ′ × Q ′, where ((q, i), (s, j)) ∈ δ′ iff (q, s) ∈ δ AND
q 6∈ Fi and i = j , or q ∈ Fi and j = (i + 1) mod n.

Q ′0 = {(q, 0) | q ∈ Q0}
F ′ = {(q, 0) | q ∈ F0}

Edge-labelled vs. state-labelled NBA:

Both used; arguably, edge-labelled more common.

Easy translation between the two models.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 26 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—optimisations

More formally:
From GBA A = (Σ,Q,Q0, δ,F = F1, . . . ,Fn), we construct NBA
B = (Σ,Q ′,Q ′0, δ

′,F ′):

Q ′ = Q × {1, . . . , n}
δ′ ⊆ Q ′ × Q ′, where ((q, i), (s, j)) ∈ δ′ iff (q, s) ∈ δ AND
q 6∈ Fi and i = j , or q ∈ Fi and j = (i + 1) mod n.

Q ′0 = {(q, 0) | q ∈ Q0}
F ′ = {(q, 0) | q ∈ F0}

Edge-labelled vs. state-labelled NBA:

Both used; arguably, edge-labelled more common.

Easy translation between the two models.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 26 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation—optimisations

More formally:
From GBA A = (Σ,Q,Q0, δ,F = F1, . . . ,Fn), we construct NBA
B = (Σ,Q ′,Q ′0, δ

′,F ′):

Q ′ = Q × {1, . . . , n}
δ′ ⊆ Q ′ × Q ′, where ((q, i), (s, j)) ∈ δ′ iff (q, s) ∈ δ AND
q 6∈ Fi and i = j , or q ∈ Fi and j = (i + 1) mod n.

Q ′0 = {(q, 0) | q ∈ Q0}
F ′ = {(q, 0) | q ∈ F0}

Edge-labelled vs. state-labelled NBA:

Both used; arguably, edge-labelled more common.

Easy translation between the two models.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 26 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

LTL-to-automata translation

Some example NBAs: (w/o redundant states)

Xa:

true start

a

true

aUb:

astart

a ∧ bstart

b start

true

GFa:

true

start

a

The temporal formulae inside of states are just used for constructing
automata. Later we can merely remember the Boolean formulae that are
satisfied in order to enter a state as above. (You should convince yourself
that this is an equivalent representation wrt. the accepted languages!)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 27 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅?

in P (i.e., linear-time algorithm)

L(A) = / 6= Σω? is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅? in P (i.e., linear-time algorithm)

L(A) = / 6= Σω? is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅? in P (i.e., linear-time algorithm)

L(A) = / 6= Σω?

is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅? in P (i.e., linear-time algorithm)

L(A) = / 6= Σω? is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅? in P (i.e., linear-time algorithm)

L(A) = / 6= Σω? is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅? in P (i.e., linear-time algorithm)

L(A) = / 6= Σω? is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅? in P (i.e., linear-time algorithm)

L(A) = / 6= Σω? is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Important properties of NBAs

Let A be an NBA over Σ.

L(A) = / 6= ∅? in P (i.e., linear-time algorithm)

L(A) = / 6= Σω? is PSpace-complete

L(A) ∩ L(B) NBA representable (closure under intersection)

L(A) NBA representable (closure under complement)

NBAs are not closed under determinisation, i.e., there exists
an NBA, A, for which there is no DBA, B, s.t. L(A) = L(B).

Closure under complement and intersection are the prerequisites
for what is known as automata-theoretic model checking.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 28 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Automata theoretic model checking

Given M = (S , s0,R, L) and Aϕ = (Σ,Q,Q0, δ,F), we define the
“product automaton” M ×Aϕ = (Σ,Q ′,Q ′0, δ

′,F ′) by

Q ′ = {(s, q) ∈ S × Q | L(s) satisfies q} (recall: q contains a
Boolean formula!)

Q ′0 = {(s0, q) ∈ Q ′ | q ∈ Q0}
δ′ = {((s, q), (s ′, q′)) ∈ Q ′ × Q ′ | (s, s ′) ∈ R and (q, q′) ∈ δ}
F ′ = {(s, q) ∈ Q ′ | q ∈ F}

What is the accepted language of this automaton?

Lemma

L(M ×Aϕ) = L(M) ∩ L(Aϕ)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 29 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Automata theoretic model checking

Given M = (S , s0,R, L) and Aϕ = (Σ,Q,Q0, δ,F), we define the
“product automaton” M ×Aϕ = (Σ,Q ′,Q ′0, δ

′,F ′) by

Q ′ = {(s, q) ∈ S × Q | L(s) satisfies q} (recall: q contains a
Boolean formula!)

Q ′0 = {(s0, q) ∈ Q ′ | q ∈ Q0}
δ′ = {((s, q), (s ′, q′)) ∈ Q ′ × Q ′ | (s, s ′) ∈ R and (q, q′) ∈ δ}
F ′ = {(s, q) ∈ Q ′ | q ∈ F}

What is the accepted language of this automaton?

Lemma

L(M ×Aϕ) = L(M) ∩ L(Aϕ)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 29 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Automata theoretic model checking

Given M = (S , s0,R, L) and Aϕ = (Σ,Q,Q0, δ,F), we define the
“product automaton” M ×Aϕ = (Σ,Q ′,Q ′0, δ

′,F ′) by

Q ′ = {(s, q) ∈ S × Q | L(s) satisfies q} (recall: q contains a
Boolean formula!)

Q ′0 = {(s0, q) ∈ Q ′ | q ∈ Q0}
δ′ = {((s, q), (s ′, q′)) ∈ Q ′ × Q ′ | (s, s ′) ∈ R and (q, q′) ∈ δ}
F ′ = {(s, q) ∈ Q ′ | q ∈ F}

What is the accepted language of this automaton?

Lemma

L(M ×Aϕ) = L(M) ∩ L(Aϕ)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 29 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Automata theoretic model checking

Recall: we need to test if L(M ×Aϕ) = ∅. (How do we do it?)

Theorem

L(M ×Aϕ) = ∅ ⇔ there is no reachable cycle containing a state
from F .

Polynomial-time algorithm (e.g., Tarjan’s SCC finding alg.) does
the job (cf. Knuth Vol. 3)

Corollary

LTL model checking is in PTime, if M and Aϕ are given.

. . . which is never the case in practice. :-(

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 30 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Automata theoretic model checking

Recall: we need to test if L(M ×Aϕ) = ∅. (How do we do it?)

Theorem

L(M ×Aϕ) = ∅ ⇔ there is no reachable cycle containing a state
from F .

Polynomial-time algorithm (e.g., Tarjan’s SCC finding alg.) does
the job (cf. Knuth Vol. 3)

Corollary

LTL model checking is in PTime, if M and Aϕ are given.

. . . which is never the case in practice. :-(

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 30 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Automata theoretic model checking

Recall: we need to test if L(M ×Aϕ) = ∅. (How do we do it?)

Theorem

L(M ×Aϕ) = ∅ ⇔ there is no reachable cycle containing a state
from F .

Polynomial-time algorithm (e.g., Tarjan’s SCC finding alg.) does
the job (cf. Knuth Vol. 3)

Corollary

LTL model checking is in PTime, if M and Aϕ are given.

. . . which is never the case in practice. :-(

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 30 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Automata theoretic model checking

Recall: we need to test if L(M ×Aϕ) = ∅. (How do we do it?)

Theorem

L(M ×Aϕ) = ∅ ⇔ there is no reachable cycle containing a state
from F .

Polynomial-time algorithm (e.g., Tarjan’s SCC finding alg.) does
the job (cf. Knuth Vol. 3)

Corollary

LTL model checking is in PTime, if M and Aϕ are given.

. . . which is never the case in practice. :-(

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 30 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Detour (I): Tarjan’s algorithm for SCC identification

Idea: Does a forward DFS to visit all nodes once to assign
increasing index, and upon returning from the recursive calls,
assigns low-indices that point to the node with the smallest index
reachable from each respective node.
When low-index of a node = index of that node, we have a root of
an SCC.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 31 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Detour (I): Tarjan’s algorithm for SCC identification

Some observations:

strongconnect(x) is called
once for every node.

The for-each-loop at most
considers each edge twice
(to find neighbours of all
nodes)

(But not all nodes have
necessarily an outgoing
edge.)

That is, runtime of
O(|V |+ |E |).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 32 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Detour (II): On-The-Fly Bad-Cycle-Detection

Idea:

Often M not given, so one needs to construct M from an
abstract model (e.g., code, call it M).

Instead of doing it all at once, one can construct M on-the-fly
(cf. Vardi et al, CAV’90).

Observe, it is easy to obtain initial states (i.e., initial in M and
Aϕ)

Algorithm proceeds by expanding more states in an “as
needed” manner, and looks if a cycle can be found which
hosts an accepting state from Aϕ.

In practice, there’s a fair chance it will find an accepting cycle
before having expanded all nodes of M.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 33 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Detour (II): On-The-Fly Bad-Cycle-Detection

(Slide shamelessly stolen from Kousha Etessami.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 34 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Complexity of LTL model checking

Recall: Input to the LTL model checking problem is a KS, M, and
ϕ. The question to be answered is, does L(M) ∩ L(¬ϕ) 6= ∅ hold?

Theorem

The LTL model checking problem can be answered

in time O(2O(|ϕ|) · |M|) (cf. size of NBA), or

in PSpace (but potentially ExpTime; cf. on-the-fly alg.).

The latter explains why model checking works in practice: the
NBA can be fixed for most formulae, and the subsequent
state-space exploration optimised.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 35 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Complexity of LTL model checking

Recall: Input to the LTL model checking problem is a KS, M, and
ϕ. The question to be answered is, does L(M) ∩ L(¬ϕ) 6= ∅ hold?

Theorem

The LTL model checking problem can be answered

in time O(2O(|ϕ|) · |M|) (cf. size of NBA), or

in PSpace (but potentially ExpTime; cf. on-the-fly alg.).

The latter explains why model checking works in practice: the
NBA can be fixed for most formulae, and the subsequent
state-space exploration optimised.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 35 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Complexity of LTL model checking

Theorem

LTL model checking is PSpace-complete.

Proof.

Hardness: Reduction from LTL satisfiability, which is also
PSpace-complete: L(ϕ) = ∅ ⇔ L(ϕ) ∩ Σω = ∅ ⇔ Σω |= ¬ϕ.
Membership: Nondeterministic algorithm: Expand NBA
on-the-fly (similar to expansion of M earlier) and guess

a path through M, and

a state, l , in the NBA which lies on an accepting loop.

Each expansion step of the NBA can be done in PTime, and to
check whether l is visited again is constant. If guessed path goes
through l twice, we know that we have a counterexample.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 36 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Computation Tree Logic (CTL)

CTL syntax

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∧ ϕ | AXϕ | EXϕ | A(ϕUϕ) | E(ϕUϕ)

Note, there’s no arbitrary nesting of path quantifiers (cf.
CTL∗).

For example, you can’t say XAFϕ in CTL.

But EFEGϕ is OK.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 37 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Computation Tree Logic (CTL)

CTL syntax

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∧ ϕ | AXϕ | EXϕ | A(ϕUϕ) | E(ϕUϕ)

Note, there’s no arbitrary nesting of path quantifiers (cf.
CTL∗).

For example, you can’t say XAFϕ in CTL.

But EFEGϕ is OK.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 37 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL—syntactic sugar and equalities

AXϕ = ¬EX(¬ϕ)

EFϕ = E(trueUϕ)

AGϕ = ¬EF(¬ϕ)

AFϕ = ¬EG(¬ϕ)

A(ϕUψ) = ¬E(¬ψU(¬ϕ ∧ ¬ψ)) ∧ ¬EG¬ψ
A(ϕRψ) = ¬E(¬ϕU¬ψ)

E(ϕRψ) = ¬A(¬ϕU¬ψ)

Corollary

Any CTL formula can be expressed in terms of ¬, ∨, EX, EU and
EG alone.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 38 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL—syntactic sugar and equalities

AXϕ = ¬EX(¬ϕ)

EFϕ = E(trueUϕ)

AGϕ = ¬EF(¬ϕ)

AFϕ = ¬EG(¬ϕ)

A(ϕUψ) = ¬E(¬ψU(¬ϕ ∧ ¬ψ)) ∧ ¬EG¬ψ
A(ϕRψ) = ¬E(¬ϕU¬ψ)

E(ϕRψ) = ¬A(¬ϕU¬ψ)

Corollary

Any CTL formula can be expressed in terms of ¬, ∨, EX, EU and
EG alone.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 38 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL—semantics

CTL semantics: Let M = (S ,R, L) be defined as usual; s ∈ S .

M, s |= p iff p ∈ L(s)
M, s |= ¬ϕ iff M, s |= ϕ is not true
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= AXϕ iff for all s → s1,M, s1 |= ϕ
M, s |= EXϕ iff there is a s → s1, s.t. M, s1 |= ϕ
M, s |= A(ϕUψ) iff for all s1 → s2 → . . . , where s1 = s,

there is a sk , s.t. M, sk |= ψ, and
M, sj |= ϕ for all sj ,where 0 ≤ j < k

M, s |= E(ϕUψ) iff there is a . . .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 39 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL—examples

Some CTL specifications:

EF(Start ∧ ¬Ready): It is possible to reach a state in which
Start but not Ready holds.

AG(Req → AFAck): Every req. is eventually answered.

AG(AFDeviceEnabled): The device is enabled infinitely often
on all paths.

AG(EFRestart): From any state it is possible to reach a state
in which Restart holds.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 40 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

“Labelling algorithm”—what it does:

Input: A CTL formula, ϕ, and a Kripke structure,
M = (S , s0,R, L) over a set AP.

Output: A set of formulae, label(s0), that are true in s0 (i.e.,
M, s0 |= ϕ iff ϕ ∈ label(s)).

Initially, label(s0) = L(s0); algorithm goes through states, at
stage i , CTL subformulae with i − 1 nested temporal
operators are processed.

When a formula is processed it is added to the labelling of
those states where it is true.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 41 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

“Labelling algorithm”—what it does:

Input: A CTL formula, ϕ, and a Kripke structure,
M = (S , s0,R, L) over a set AP.

Output: A set of formulae, label(s0), that are true in s0 (i.e.,
M, s0 |= ϕ iff ϕ ∈ label(s)).

Initially, label(s0) = L(s0); algorithm goes through states, at
stage i , CTL subformulae with i − 1 nested temporal
operators are processed.

When a formula is processed it is added to the labelling of
those states where it is true.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 41 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

By strucutral induction1 (that is, algorithm starts with innermost
formulae and works its way “outwards”):

Φ = ¬ϕ: label all states with Φ that are not labelled by ϕ.

Φ = ϕ ∨ ψ: label all states with Φ that are labelled by either
ϕ or ψ.

Φ = EXϕ: label all states with Φ that have a successor
labelled by ϕ.

Φ = E(ϕUψ): find all states labelled by ψ; then work
backwards until you hit a state labelled by ϕ; all intermediate
states on these paths should be labelled by Φ.

1Only few cases due to earlier corollary!
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 42 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

Runs in O(|S |+ |R|).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 43 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

Φ = EGϕ slightly more complicated; needs notion of SCC:
First create M ′ = (S ′, s ′0,R

′, L′), where

S ′ = {s ∈ S ′ | M, s |= ϕ} (i.e., remove all nodes from M,
where ϕ does not hold)
R ′ = R|S′×S′

L′ = L|S′

Lemma

M, s |= EGϕ iff the following two conditions are satisfied:

1 s ∈ S ′

2 There is a path in M ′, starting in s, to some node t in some
SCC of graph (S ′,R ′).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 44 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

Φ = EGϕ slightly more complicated; needs notion of SCC:
First create M ′ = (S ′, s ′0,R

′, L′), where

S ′ = {s ∈ S ′ | M, s |= ϕ} (i.e., remove all nodes from M,
where ϕ does not hold)
R ′ = R|S′×S′

L′ = L|S′

Lemma

M, s |= EGϕ iff the following two conditions are satisfied:

1 s ∈ S ′

2 There is a path in M ′, starting in s, to some node t in some
SCC of graph (S ′,R ′).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 44 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

Proof.

(⇒) As for 1.: Clearly, s ∈ S ′.
Now we need to show 2. Let w ′ = uw be a path in M such that ϕ is true
in each state. u is the prefix and w the infinite suffix. For w to repeat, it
must lie inside a SCC. And since ϕ is true along the path, we have for u
and w that they’re both contained in S ′ by the construction of M ′.

(⇐) Every path that in M ′ is also a path in M. And if there is a path
that loops infinitely through some SCC, and on which ϕ holds, then it is
a model for EGϕ. Since the initial state of that path, s ∈ S ′ is clearly
also in S , the lemma follows.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 45 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

Runs in O(|S ′|+ |R ′|).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 46 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—labelling algorithm

Since we have at most |ϕ| subformulae, CTL model checking
against a Kripke structure takes time O(|ϕ| · (|S |+ |R|)).

Theorem

To decide the CTL model checking problem one only needs an
algorithm that runs in PTime.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 47 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

Same Kripke structure we used earlier:

1

Start, Error2 Close3 Close,Heat 4

Start, Close, Error5 Start, Close6 Start, Close,Heat 7

“start oven” “open door”

“reset”
“start oven”

“warm up”

“start cooking”

“cook”

, 1 |= AG(Start → AFHeat)?

Observe:

AG(Start → AFHeat) equiv. to ¬EF(Start ∧ EG¬Heat)

We use EFϕ as shorthand for E(trueUϕ).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 48 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

Same Kripke structure we used earlier:

1

Start, Error2 Close3 Close,Heat 4

Start, Close, Error5 Start, Close6 Start, Close,Heat 7

“start oven” “open door”

“reset”
“start oven”

“warm up”

“start cooking”

“cook”

, 1 |= AG(Start → AFHeat)?

Observe:

AG(Start → AFHeat) equiv. to ¬EF(Start ∧ EG¬Heat)

We use EFϕ as shorthand for E(trueUϕ).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 48 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

How the algorithm proceeds:

Let S(ψ) be the set of states in which ψ holds.

Initially, S(Start) = {2, 5, 6, 7}, S(¬Heat) = {1, 2, 3, 5, 6}.
For S(EG¬Heat) we first find SCCs wrt. ¬Heat.

I.e.,
S ′ = {1, 2, 3, 5, 6}, and SCC in S ′ is {1, 2, 3, 5} = S(EG¬Heat)2

S(Start ∧ EG¬Heat) = {2, 5}.
To compute S(EF(Start ∧ EG¬Heat), set T = S(EG¬Heat) and
find all states from which states from T can be reached, i.e.,
S(EF(Start ∧ EG¬Heat) = S .

Finally, S(¬EF(Start ∧ EG¬Heat) = S(EF(Start ∧ EG¬Heat) = ∅.
Property does not hold. :-(

2not 6, because you can reach 7 from 6, where Heat is true
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 49 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

How the algorithm proceeds:

Let S(ψ) be the set of states in which ψ holds.

Initially, S(Start) = {2, 5, 6, 7}, S(¬Heat) = {1, 2, 3, 5, 6}.
For S(EG¬Heat) we first find SCCs wrt. ¬Heat. I.e.,
S ′ = {1, 2, 3, 5, 6}, and SCC in S ′ is {1, 2, 3, 5} = S(EG¬Heat)2

S(Start ∧ EG¬Heat) = {2, 5}.
To compute S(EF(Start ∧ EG¬Heat), set T = S(EG¬Heat) and
find all states from which states from T can be reached, i.e.,
S(EF(Start ∧ EG¬Heat) = S .

Finally, S(¬EF(Start ∧ EG¬Heat) = S(EF(Start ∧ EG¬Heat) = ∅.
Property does not hold. :-(

2not 6, because you can reach 7 from 6, where Heat is true
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 49 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

How the algorithm proceeds:

Let S(ψ) be the set of states in which ψ holds.

Initially, S(Start) = {2, 5, 6, 7}, S(¬Heat) = {1, 2, 3, 5, 6}.
For S(EG¬Heat) we first find SCCs wrt. ¬Heat. I.e.,
S ′ = {1, 2, 3, 5, 6}, and SCC in S ′ is {1, 2, 3, 5} = S(EG¬Heat)2

S(Start ∧ EG¬Heat)

= {2, 5}.
To compute S(EF(Start ∧ EG¬Heat), set T = S(EG¬Heat) and
find all states from which states from T can be reached, i.e.,
S(EF(Start ∧ EG¬Heat) = S .

Finally, S(¬EF(Start ∧ EG¬Heat) = S(EF(Start ∧ EG¬Heat) = ∅.
Property does not hold. :-(

2not 6, because you can reach 7 from 6, where Heat is true
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 49 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

How the algorithm proceeds:

Let S(ψ) be the set of states in which ψ holds.

Initially, S(Start) = {2, 5, 6, 7}, S(¬Heat) = {1, 2, 3, 5, 6}.
For S(EG¬Heat) we first find SCCs wrt. ¬Heat. I.e.,
S ′ = {1, 2, 3, 5, 6}, and SCC in S ′ is {1, 2, 3, 5} = S(EG¬Heat)2

S(Start ∧ EG¬Heat) = {2, 5}.
To compute S(EF(Start ∧ EG¬Heat), set T = S(EG¬Heat) and
find all states from which states from T can be reached,

i.e.,
S(EF(Start ∧ EG¬Heat) = S .

Finally, S(¬EF(Start ∧ EG¬Heat) = S(EF(Start ∧ EG¬Heat) = ∅.
Property does not hold. :-(

2not 6, because you can reach 7 from 6, where Heat is true
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 49 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

How the algorithm proceeds:

Let S(ψ) be the set of states in which ψ holds.

Initially, S(Start) = {2, 5, 6, 7}, S(¬Heat) = {1, 2, 3, 5, 6}.
For S(EG¬Heat) we first find SCCs wrt. ¬Heat. I.e.,
S ′ = {1, 2, 3, 5, 6}, and SCC in S ′ is {1, 2, 3, 5} = S(EG¬Heat)2

S(Start ∧ EG¬Heat) = {2, 5}.
To compute S(EF(Start ∧ EG¬Heat), set T = S(EG¬Heat) and
find all states from which states from T can be reached, i.e.,
S(EF(Start ∧ EG¬Heat) = S .

Finally, S(¬EF(Start ∧ EG¬Heat) = S(EF(Start ∧ EG¬Heat) = ∅.
Property does not hold. :-(

2not 6, because you can reach 7 from 6, where Heat is true
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 49 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

How the algorithm proceeds:

Let S(ψ) be the set of states in which ψ holds.

Initially, S(Start) = {2, 5, 6, 7}, S(¬Heat) = {1, 2, 3, 5, 6}.
For S(EG¬Heat) we first find SCCs wrt. ¬Heat. I.e.,
S ′ = {1, 2, 3, 5, 6}, and SCC in S ′ is {1, 2, 3, 5} = S(EG¬Heat)2

S(Start ∧ EG¬Heat) = {2, 5}.
To compute S(EF(Start ∧ EG¬Heat), set T = S(EG¬Heat) and
find all states from which states from T can be reached, i.e.,
S(EF(Start ∧ EG¬Heat) = S .

Finally, S(¬EF(Start ∧ EG¬Heat) = S(EF(Start ∧ EG¬Heat) = ∅.

Property does not hold. :-(

2not 6, because you can reach 7 from 6, where Heat is true
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 49 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

CTL model checking—example

How the algorithm proceeds:

Let S(ψ) be the set of states in which ψ holds.

Initially, S(Start) = {2, 5, 6, 7}, S(¬Heat) = {1, 2, 3, 5, 6}.
For S(EG¬Heat) we first find SCCs wrt. ¬Heat. I.e.,
S ′ = {1, 2, 3, 5, 6}, and SCC in S ′ is {1, 2, 3, 5} = S(EG¬Heat)2

S(Start ∧ EG¬Heat) = {2, 5}.
To compute S(EF(Start ∧ EG¬Heat), set T = S(EG¬Heat) and
find all states from which states from T can be reached, i.e.,
S(EF(Start ∧ EG¬Heat) = S .

Finally, S(¬EF(Start ∧ EG¬Heat) = S(EF(Start ∧ EG¬Heat) = ∅.
Property does not hold. :-(

2not 6, because you can reach 7 from 6, where Heat is true
Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 49 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Popular data structure for compactly and uniquely
representing Boolean functions.

Efficient algorithms known to manipulate BDDs according to
the operations in Boolean logic.

Applications: there are many! In our context: to compactly
represent Kripke structures.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 50 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Let x → y0, y1 be the if-then-else operator defined by

x → y0, y1 = (x ∧ y0) ∨ (¬x ∧ y1)

All other Boolean operations can be expressed in terms of this
operator:

¬x =

(x → 0, 1)

x ⇔ y = x → (y → 1, 0), (y → 0, 1)

etc.

Definition

The ITE-normal form (INF) is a Boolean expression built entirely
from the ITE-operator. (You may have heard of other normal
forms.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 51 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Let x → y0, y1 be the if-then-else operator defined by

x → y0, y1 = (x ∧ y0) ∨ (¬x ∧ y1)

All other Boolean operations can be expressed in terms of this
operator:

¬x = (x → 0, 1)

x ⇔ y =

x → (y → 1, 0), (y → 0, 1)

etc.

Definition

The ITE-normal form (INF) is a Boolean expression built entirely
from the ITE-operator. (You may have heard of other normal
forms.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 51 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Let x → y0, y1 be the if-then-else operator defined by

x → y0, y1 = (x ∧ y0) ∨ (¬x ∧ y1)

All other Boolean operations can be expressed in terms of this
operator:

¬x = (x → 0, 1)

x ⇔ y = x → (y → 1, 0), (y → 0, 1)

etc.

Definition

The ITE-normal form (INF) is a Boolean expression built entirely
from the ITE-operator. (You may have heard of other normal
forms.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 51 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Let x → y0, y1 be the if-then-else operator defined by

x → y0, y1 = (x ∧ y0) ∨ (¬x ∧ y1)

All other Boolean operations can be expressed in terms of this
operator:

¬x = (x → 0, 1)

x ⇔ y = x → (y → 1, 0), (y → 0, 1)

etc.

Definition

The ITE-normal form (INF) is a Boolean expression built entirely
from the ITE-operator. (You may have heard of other normal
forms.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 51 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain INF?

Definition

Shannon expansion: Given Boolean expression t,

t = x → t[1/x], t[0/x] (“Shannon expansion of t wrt. x”).

If t contains no variables, it is equivalent to 0 or 1, i.e., in INF.

Otherwise, perform Shannon expansion of t wrt. any of its
variables x .

Since t[0/x] and t[1/x] contain one variable less than t, one
can recursively find INFs for both of these new terms; call
them t0 and t1.

INF for t is thus x → t1, t0.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 52 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain INF?

Theorem

Any Boolean expression is equivalent to an expression in INF.

Proof.

See inductive INF construction.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 53 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain INF?

Example: t = (x1 ⇔ y1) ∧ (x2 ⇔ y2)

Perform SE on variables ordered by x1, y1, x2, y2, then

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t11, 0
t00 = x2 → t001, t000

t11 = x2 → t111, t110

t000 = y2 → 0, 1
t001 = y2 → 1, 0
t110 = y2 → 0, 1
t111 = y2 → 1, 0

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 54 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

Example: t = (x1 ⇔ y1) ∧ (x2 ⇔ y2)

Corresponding binary decision tree:

(Source: Henrik Reif Andersen’s lecture notes.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 55 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

Consider again:

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t11, 0
t00 = x2 → t001, t000

t11 = x2 → t111, t110

t000 = y2 → 0, 1
t001 = y2 → 1, 0
t110 = y2 → 0, 1
t111 = y2 → 1, 0

Note:

Instead of t110 we could use
t000.

Substitute t110 for t000 on
RHS of t11.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 56 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t11, 0
t00 = x2 → t001, t000

t11 = x2 → t111, t000

t000 = y2 → 0, 1
t001 = y2 → 1, 0
t111 = y2 → 1, 0

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 57 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t11, 0
t00 = x2 → t001, t000

t11 = x2 → t001/111, t000

t000 = y2 → 0, 1
t001 = y2 → 1, 0
t111 = y2 → 1, 0

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 58 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t00/11, 0
t00 = x2 → t001, t000

t11 = x2 → t001, t000

t000 = y2 → 0, 1
t001 = y2 → 1, 0

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 59 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t00, 0
t00 = x2 → t001, t000

t000 = y2 → 0, 1
t001 = y2 → 1, 0

Let us now view each
subexpression as a node of a
graph, where 0 and 1 are the
only “terminal” nodes:

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 60 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t00, 0
t00 = x2 → t001, t000

t000 = y2 → 0, 1
t001 = y2 → 1, 0

Let us now view each
subexpression as a node of a
graph, where 0 and 1 are the
only “terminal” nodes:

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 60 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—how to obtain BDD?

t = x1 → t1, t0

t0 = y1 → 0, t00

t1 = y1 → t00, 0
t00 = x2 → t001, t000

t000 = y2 → 0, 1
t001 = y2 → 1, 0

Let us now view each
subexpression as a node of a
graph, where 0 and 1 are the
only “terminal” nodes:

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 60 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Definition

A BDD is a rooted, directed acyclic graph (DAG) with

one or two terminal nodes of out-degree zero labeled 0 or 1
and,

a set of variable nodes u of out-degree two. The two outgoing
edges are given by two functions low(u) and high(u). (In
pictures, these are shown as dotted and solid lines,
respectively). A variable var(u) is associated with each
variable node.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 61 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Definition

A BDD is ordered (OBDD) if on all paths through the graph the
variables respect a given linear order x1 < x2 < . . . < xn. An
OBDD is reduced if

(uniqueness) no two distinct nodes u and v have the same
variable name and low- and high-successor, i.e.,

var(u) = var(v), low(u) = low(v), high(u) = high(v)⇒ u = v

(no redundancy) no variable node u has identical low- and
high-successor, i.e., low(u) 6= high(u).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 62 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Various OBDDs. Which ones are reduced, which ones are not?
What Boolean functions are expressed in those?

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 63 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

ROBDDs are canonical.

Let f : Bn → B. Nodes u of ROBDD for f inductively define
Boolean expressions tu:

t0 = 0

t1 = 1

tu = var(u)→ thigh(u), t low(u)

Let x1 < . . . < xn be var. ordering, then f u maps (b1, . . . , bn) ∈ Bn

to the truth value of tu[b1/x1, . . . , bn/xn].

Theorem

For any function f : Bn → B there is exactly one ROBDD u with
variable ordering x1 < x2 < . . . < xn s.t. f u = f (x1, . . . , xn).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 64 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

ROBDDs are canonical.
Let f : Bn → B. Nodes u of ROBDD for f inductively define
Boolean expressions tu:

t0 = 0

t1 = 1

tu = var(u)→ thigh(u), t low(u)

Let x1 < . . . < xn be var. ordering, then f u maps (b1, . . . , bn) ∈ Bn

to the truth value of tu[b1/x1, . . . , bn/xn].

Theorem

For any function f : Bn → B there is exactly one ROBDD u with
variable ordering x1 < x2 < . . . < xn s.t. f u = f (x1, . . . , xn).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 64 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

ROBDDs are canonical.
Let f : Bn → B. Nodes u of ROBDD for f inductively define
Boolean expressions tu:

t0 = 0

t1 = 1

tu = var(u)→ thigh(u), t low(u)

Let x1 < . . . < xn be var. ordering, then f u maps (b1, . . . , bn) ∈ Bn

to the truth value of tu[b1/x1, . . . , bn/xn].

Theorem

For any function f : Bn → B there is exactly one ROBDD u with
variable ordering x1 < x2 < . . . < xn s.t. f u = f (x1, . . . , xn).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 64 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

Proof.

By induction (cf. Andersen lecture notes p. 13f.).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 65 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

What to do with ROBDDs? Let f , g : Bn → B

How do you check validity of f if given as ROBDD?

(compare
to non-terminal node; O(1) vs coNP for formulae)

How do you check equivalence of f and g if given as
ROBDDs? (compare nodes; O(n) vs coNP for formulae)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 66 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

What to do with ROBDDs? Let f , g : Bn → B

How do you check validity of f if given as ROBDD? (compare
to non-terminal node; O(1) vs coNP for formulae)

How do you check equivalence of f and g if given as
ROBDDs? (compare nodes; O(n) vs coNP for formulae)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 66 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

What to do with ROBDDs? Let f , g : Bn → B

How do you check validity of f if given as ROBDD? (compare
to non-terminal node; O(1) vs coNP for formulae)

How do you check equivalence of f and g if given as
ROBDDs?

(compare nodes; O(n) vs coNP for formulae)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 66 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams

What to do with ROBDDs? Let f , g : Bn → B

How do you check validity of f if given as ROBDD? (compare
to non-terminal node; O(1) vs coNP for formulae)

How do you check equivalence of f and g if given as
ROBDDs? (compare nodes; O(n) vs coNP for formulae)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 66 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—variable orderings

Consider ROBDD for (x1 ⇔ y1) ∧ (x2 ⇔ y2)

. . . but different var. ordering of x1 < x2 < y1 < y2:

vs

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 67 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Binary decision diagrams—variable orderings

Consider ROBDD for (x1 ⇔ y1) ∧ (x2 ⇔ y2)

. . . but different var. ordering of x1 < x2 < y1 < y2:

vs

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 67 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

We saw how to construct OBDD, but how to construct ROBBD?

“Construct OBDD and reduce it until you can’t anymore.”

Reduce OBDD on-the-fly (i.e., during construction).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 68 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

We saw how to construct OBDD, but how to construct ROBBD?

“Construct OBDD and reduce it until you can’t anymore.”

Reduce OBDD on-the-fly (i.e., during construction).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 68 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

We saw how to construct OBDD, but how to construct ROBBD?

“Construct OBDD and reduce it until you can’t anymore.”

Reduce OBDD on-the-fly (i.e., during construction).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 68 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Let T : u 7→ (i , l , h) be a table which maps every node to an
index, a low- and high-index.
Let H : (i , l , h) 7→ u be the inverse of T to look up nodes
(i.e., T (u) = (i , l , h) iff H(i , l , h) = u)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 69 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Let T : u 7→ (i , l , h) be a table which maps every node to an
index, a low- and high-index.
Let H : (i , l , h) 7→ u be the inverse of T to look up nodes
(i.e., T (u) = (i , l , h) iff H(i , l , h) = u)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 69 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Lookup a node i in H and return it, or create new one and return
handle to it:

(MK [T ,H] means that MK uses data structures T and H.)

What is the running time of MK ?

Can be implemented in O(1) using hash tables.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 70 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Lookup a node i in H and return it, or create new one and return
handle to it:

(MK [T ,H] means that MK uses data structures T and H.)

What is the running time of MK ?

Can be implemented in O(1) using hash tables.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 70 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Lookup a node i in H and return it, or create new one and return
handle to it:

(MK [T ,H] means that MK uses data structures T and H.)

What is the running time of MK ?

Can be implemented in O(1) using hash tables.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 70 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).
Output: ROBBD of t.

What is the running time of BUILD?

It’s bad: O(2n).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 71 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).
Output: ROBBD of t.

What is the running time of BUILD?

It’s bad: O(2n).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 71 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).
Output: ROBBD of t.

What is the running time of BUILD?

It’s bad: O(2n).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 71 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).
Output: ROBBD of t.

What is the running time of BUILD?

It’s bad: O(2n).

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 71 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Intuitive explanation for bad running time:
BUILD callgraph on (x1 ⇔ x2) ∨ x3:

Can we do better?

One can optimise using divide & conquer, etc. But worst-case no.
of calls unavoidable as validity is O(1), yet in coNP for formulae.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 72 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—construction

Intuitive explanation for bad running time:
BUILD callgraph on (x1 ⇔ x2) ∨ x3:

Can we do better?

One can optimise using divide & conquer, etc. But worst-case no.
of calls unavoidable as validity is O(1), yet in coNP for formulae.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 72 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—Boolean operations

Uses Shannon expansion:

t = x → t[1/x], t[0/x]

(x → t1, t2) op (x → t′1, t
′
2) = x → t1 op t′1, t2 op t′2

(x → t1, t2) op t3 = x → t1 op t3, t2 op t3

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 73 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—SatCount

Task: Count satisfying assignments for ROBBD u

Idea: Given some node, u . . .

determine #sat(low(u)) and #sat(high(u)) first;

let there be n ≥ 0 nodes in between u and low(u) (resp.
high(u)); these n nodes can be assigned truth values
arbitrality, but add 2n more assignments in total, respectively.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 74 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—SatCount

Task: Count satisfying assignments for ROBBD u

Idea: Given some node, u . . .

determine #sat(low(u)) and #sat(high(u)) first;

let there be n ≥ 0 nodes in between u and low(u) (resp.
high(u)); these n nodes can be assigned truth values
arbitrality, but add 2n more assignments in total, respectively.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 74 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—AnySat & AllSat

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 75 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

ROBDDs—algorithm running times

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 76 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—why?/what?

Typically, one doesn’t directly model system in terms of
Kripke structure.

Translation of system model M → M (cf. on-the-fly alg.)

However, M can be huge! (State explosion.)

Represent states/transition system of M symbolically using
ROBDDs (i.e., one ROBDD encodes multiple
states/transitions of M).

Expand state space inductively in a stepwise manner using
ROBDD operations.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 77 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—why?/what?

Typically, one doesn’t directly model system in terms of
Kripke structure.

Translation of system model M → M (cf. on-the-fly alg.)

However, M can be huge! (State explosion.)

Represent states/transition system of M symbolically using
ROBDDs (i.e., one ROBDD encodes multiple
states/transitions of M).

Expand state space inductively in a stepwise manner using
ROBDD operations.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 77 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—why?/what?

Typically, one doesn’t directly model system in terms of
Kripke structure.

Translation of system model M → M (cf. on-the-fly alg.)

However, M can be huge! (State explosion.)

Represent states/transition system of M symbolically using
ROBDDs (i.e., one ROBDD encodes multiple
states/transitions of M).

Expand state space inductively in a stepwise manner using
ROBDD operations.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 77 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—why?/what?

Typically, one doesn’t directly model system in terms of
Kripke structure.

Translation of system model M → M (cf. on-the-fly alg.)

However, M can be huge! (State explosion.)

Represent states/transition system of M symbolically using
ROBDDs (i.e., one ROBDD encodes multiple
states/transitions of M).

Expand state space inductively in a stepwise manner using
ROBDD operations.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 77 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—why?/what?

Typically, one doesn’t directly model system in terms of
Kripke structure.

Translation of system model M → M (cf. on-the-fly alg.)

However, M can be huge! (State explosion.)

Represent states/transition system of M symbolically using
ROBDDs (i.e., one ROBDD encodes multiple
states/transitions of M).

Expand state space inductively in a stepwise manner using
ROBDD operations.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 77 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—basic idea

For example:

Transition s1 → s2 is a ∧ b ∧ a′ ∧ ¬b′

Whole TS:
(a ∧ b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ b′)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 78 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—basic idea

For example:

Transition s1 → s2 is a ∧ b ∧ a′ ∧ ¬b′

Whole TS:
(a ∧ b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ b′)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 78 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—basic idea

For example:

Transition s1 → s2 is a ∧ b ∧ a′ ∧ ¬b′

Whole TS:
(a ∧ b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ a′ ∧ b′)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 78 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—example

Milner’s scheduler:

ti = 1 iff task i is running

hi = 1 iff task i has token

ci = 1 iff task i − 1 has
released token (and i not
picked it up yet)

Scheduler job: start at task 1,
and schedule all tasks such that
all are executed. Tasks can
terminate in any order.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 79 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—example

Each task can be described as an individual state-transition
system over variables ti , hi , ci , respectively.

First, formalise behaviour:

if ci = 1 ∧ ti = 0 then ti , ci , hi := 1, 0, 1
if hi = 1 then c(i mod N)+1, hi := 1, 0

S subset of unprimed vars. Useful to state something about vars
that changed:

unchangedS =
∧
x∈S

x = x ′

(Or, assignedS ′ = unchanged~x\S ′ , i.e., all vars not in S ′ are
unchanged.)

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 80 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—example

We can now define Pi , the transitions of task i over the vars ~x , ~x ′

as:

Pi = (ci ∧ ¬ti ∧ t ′i ∧ ¬c ′i ∧ h′i ∧ assigned{ci ,ti ,hi})
∨(hi ∧ c ′(i mod N)+1 ∧ ¬h′i ∧ assigned{(ci mod N)+1,hi})

Termination of task:

Ei = ti ∧ ¬t ′i ∧ assigned{ti}

All possible transitions:

T = P1 ∨ . . . ∨ Pn ∨ E1 ∨ . . . ∨ En

Initial state (only c1 has token):

I = ¬~t ∧ ¬~h ∧ c1 ∧ ¬c2 ∧ . . . ∧ ¬cN

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 81 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—example

We can now start asking questions like

Is it the case that all reachable states only ever have one
token?

Is task ti always scheduled after ti−1?

Deadlock: can we reach a state where no more transitions can
be taken?

. . .

Need to compute predicate over the unprimed vars, R,
characterising exactly the set of states reachable from I .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 82 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—example

We can now start asking questions like

Is it the case that all reachable states only ever have one
token?

Is task ti always scheduled after ti−1?

Deadlock: can we reach a state where no more transitions can
be taken?

. . .

Need to compute predicate over the unprimed vars, R,
characterising exactly the set of states reachable from I .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 82 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—how to compute R

Some observations:

R needs to satisfiy I or within finite number of transitions can
be reached from I .

Suggests iterative process: R0, R1, . . .

Let R0 = 0 and compute Rk+1 as disjunction of I and the set
of states reachable from Rk .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 83 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—how to compute R

Some observations:

R needs to satisfiy I or within finite number of transitions can
be reached from I .

Suggests iterative process: R0, R1, . . .

Let R0 = 0 and compute Rk+1 as disjunction of I and the set
of states reachable from Rk .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 83 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—how to compute R

Some observations:

R needs to satisfiy I or within finite number of transitions can
be reached from I .

Suggests iterative process: R0, R1, . . .

Let R0 = 0 and compute Rk+1 as disjunction of I and the set
of states reachable from Rk .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 83 / 83

Introduction LTL model checking CTL model checking Binary decision diagrams Symbolic model checking

Symbolic model checking—how to compute R

Some observations:

R needs to satisfiy I or within finite number of transitions can
be reached from I .

Suggests iterative process: R0, R1, . . .

Let R0 = 0 and compute Rk+1 as disjunction of I and the set
of states reachable from Rk .

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification 83 / 83

	Introduction
	LTL model checking
	CTL model checking
	Binary decision diagrams
	Symbolic model checking

