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Why and how to study complexity?
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Some definitions

What we mean by “logic” (for now):

Let T be a logical system (i.e., a formal language + axioms +
inference rules), and f be an expression in the formal language
of T . E.g., propositional logic, first-order logic, etc.
We can interpret f in T wrt. an enforcement relation, |=, as
follows. Given a logical structure M (whose properties depend
on T ), either M |= f or M 6|= f holds. E.g., M can be a
truth-value assignment for f ’s variables.
If M |= f holds, then M is also called a model for f .

Note that

f gives rise to a language, i.e., all logical structures Mi such
that Mi |= f . (Sometimes infinitely many.)
We can say that if M |= f , then M ∈ L(f ). L(f ) is a set,
called the language of f .
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Connections between logic and complexity

Urging questions regarding any T from a “user’s point of view”
(besides others such as “is T suitable to express my problems?”):

The validity problem

Does there exist an effective method that decides whether any
given f is a valid statement in T (i.e., whether or not all logical
structures are models for f , then written as |= f ).

Ex.: Propositional logic

Let T be propositional logic, and f be any propositional logic
formula. To see whether |= f holds, we can use a simple
truth-table. Hence, propositional logic is decidable (as the
truth-table method always works; it is effective but perhaps not
efficient).
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Connections between logic and complexity

The satisfiability problem

Given a logic T and some expression f , how inherently difficult
is it, to determine whether or not there exists a model for f ?

If, for any f from T , it is always decidable by an effective
method whether or not there exists a model, then we call T a
decidable logic.

Ex.: Propositional logic

We already know that propositional logic is decidable (truth-table
test). But how efficient is the truth-table method for checking
satisfiability of a given formula?
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Connections between logic and complexity

The model checking problem

How inherently difficult is it for a given T , f and M, to determine
whether M |= f holds?

Ex.: Propositional logic

Let f ≡ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3), and
M := {x1 7→ true, x2 7→ true, x3 7→ true}. Does M |= f hold? (Is f
a valid formula?)
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When is a procedure efficient?

To answer this, we first need to agree what exactly we mean by
some of the used terms, and then define a suitable metric wrt.
them.

Definition (A problem consists of a. . . )

General description of all its parameters;

Statement of what the answer/solution is required to satisfy.

A particular problem instance is then obtained by instantiating all
parameters.

Ex.: Satisfiability problem of PL

Parameter: a propositional logic formula f

Does there exist an assignment M, s.t. M |= f ?

Instance: f ≡ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)
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Algorithms

Definition (Algorithm)

An algorithm is a step-by-step procedure for solving problems.

An algorithm solves problem Π if applied to any instance I of
Π it always produces a solution.

Note that an algorithm for solving the satisfiability problem of PL
(PL-SAT) doesn’t necessarily have to compute a model, merely
answer YES or NO.
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Solving decision problems

In complexity theory, we are mostly concerned with solving decision
problems (although there are complexity classes for other problems,
such as counting problems):

What other decision problems are there?
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Towards a precise metric for efficiency

What is a metric to express efficiency of an algorithm?

By efficiency of an algorithm, we normally mean the time it
spends on solving a problem.

Time can be measured w. r. t. the size of a problem instance
(i.e., the amount of input data needed to describe an instance)

But how to express the size of the input data?
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Encoding a problem instance

Encoding scheme

We think of every problem providing a particular encoding scheme,
which maps problem instances to strings describing them.

Input length

Input length of I for Π is the number of symbols in the description
of I , obtained from the encoding scheme for Π.
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Encoding PL-SAT

Ex.: PL-SAT

We could define an alphabet A := {x , 0, . . . , 9,∨,∧,¬, (, ), [, ]},
and encode the instance (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) as

(¬x [1] ∨ x [2] ∨ x [3]) ∧ (¬x [1] ∨ x [2] ∨ ¬x [3]),

a string of 36 symbols from our alphabet.
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Time complexity

Definition (Time complexity)

Expresses the time requirements for an algorithm by giving for each
possible input length, the largest amount of time needed by an
algorithm to solve an instance of that size.

Naturally, not well-defined until details regarding

encoding scheme, and

computational model

are known. However, as we shall see, the particular choices for
both do not reflect on the distinctions made between different
complexity classes.
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Time complexity

Assumption

From now on, we assume for every problem a “reasonable encoding
scheme”.

Ex.: Different encodings for PL-SAT

Encoding scheme String Length

Via alphabet A (¬x [1] ∨ x [2] ∨ x [3]) ∧ (¬x [1] ∨ x [2] ∨ ¬x [3]) 36
SAT tools −1 2 3\n −1 2 −3 14

Not more than a polynomial difference!
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What is a reasonable problem encoding?

Formal definition difficult, but...

Definition (Reasonable encoding)

We call an encoding reasonable if

the encoding of instance I is concise and not padded with
unnecessary information or symbols, and

numbers occurring in I are represented in binary (or decimal,
octal, hexadecimal, etc.)

Intuitively: a problem’s difficulty should not depend on its
encoding!
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Polynomial time algorithms

Let f and g be functions from N to N.

Definition (Polynomial function)

We write f (n) = O(g(n)) if there are numbers c and n0 s.t. for all
n ≥ n0

f (n) ≤ c · g(n).

A polynomial time algorithm is one whose complexity is in
O(p(n)), where p is a polynomial function and n the input length
(e.g., n2, n5, n16, n4711).

An algorithm whose time complexity cannot be described as such
is an exponential time algorithm.
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Some example complexity functions

Execution time of some algorithm in microseconds:

Garey & Johnson (1979), §1.3
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Make the computers go faster!

Size (N1,N2, . . .) of largest problem instance solvable in 1h:

Garey & Johnson (1979), §1.3
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Tractable problems

Problems which can be solved by a polynomial time algorithm
are called tractable problems.

If no polynomial time algorithm exists, a problem is called
intractable.

Many interesting problems are (believed to be) intractable
(e.g., model checking, decidability of formal logics, etc.).
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Are we doomed?

Complexity is a worst-case measure. 2n means that there exist
instances for which a running time of 2n is unavoidable. Often
algorithms perform much better in practice.

Heuristics. For many intractable problems, there exist
algorithms employing very efficient heuristics (e.g., for
PL-SAT or just SAT).

Tractability is not all. If you find an algorithm which has a
time complexity function of 1099n2, would you call it efficient?

Size matters. E.g., a 2n algorithm is faster than n5 for n ≤ 20.
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Computational models

Recall: Time complexity of a problem defined wrt. encoding
scheme and computational model.

All realistic models of computers studied so far, Turing machines
(TM), multi-tape TMs, random access machines (RAM), are
equivalent w. r. t. polynomial time complexity.

That is,

there is a polynomial bound on the amount of work that can
be done in a single time unit;

if a problem is intractable on any of those computational
models, it is intractable on the other ones as well.
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Computational models

Time required by machine A to simulate the execution of an
algorithm of time complexity T (n) on machine B:

Garey & Johnson (1979), §1.4
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Computational models

Definition (Reasonable model of a computer)

A model of a computer is called reasonable if it is equivalent to a
TM wrt. polynomial time complexity.

Example for a non-reasonable computational model: quantum
computer.
For the quantum model, separate definitions and classes of
complexity exist that cannot be naturally expressed in terms of the
classical ones.
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Proving intractability

We now have two notions of defeating tractability:

A problem can be shown to be so difficult that in the worst
case an exponential amount of time is needed to solve it.

The solution is so extensive that it cannot be described as
expression of polynomial size.

Although accurate and correct, are these two notions exclusive,
i.e., are there other (perhaps worse) forms of intractability?
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Undecidability vs. Intractability

The famous Halting Problem

Given an arbitrary TM program, an arbitrary input, does the TM
eventually halt when applied to that input?

Turing showed in 1936 that this problem is undecidable, i.e.,
there exists no algorithm for solving it.

Other undecidable problems include tiling problems, solvability
of polynomial equations in integers, PCP, etc.

Certainly, every undecidable problem is intractable, but not
the other way round
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And finally for today...

Turing machine 6= Turing test:

“On the Internet, nobody knows you’re a dog.”

27/115



NP-completeness
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Deterministic TMs (DTMs)

Garey & Johnson (1979), §2.2

What is Turing-completeness?
Is <your PL of choice> Turing-complete?
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DTM programs

Definition (DTM program)

A program for a DTM specifies the following information:

A finite set Γ of tape symbols, including a subset Σ ⊂ Γ of
input symbols and a distinguished blank b ∈ Γ− Σ.

A finite set Q of states, including q0 ∈ Q and two halt states
qY , qN ∈ Q.

A transition function

δ : Q − {qY , qN} × Γ→ Q × Γ× {−1,+1}.
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How a DTM operates

A DTM’s input is x ∈ Σ∗, placed on squares 1, . . . , |x |.
All other squares contain b.
Let qc denote the current state. Initially, qc = q0.
If qc ∈ {qY , qN} TM halts,
Otherwise, a symbol s ∈ Σ is read from the current tape
square the head is on and a transition is made:
δ(qc , s) = (q′, s ′,∆):

The DTM moves to state q′ (i.e., we update qc = q′),
replaces s with s ′,
and moves left if ∆ = −1,
or right if ∆ = +1.

This completes one step of the DTM, if qc 6∈ {qY , qN}, the
operation continues accordingly.
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Example DTM program

An example DTM program M = (Γ,Q, δ).
Garey & Johnson (1979), §2.2

What does M compute? Try it on x = 10100!
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The language of a DTM

Recall: We already defined for a logical formula ϕ in some logic,
its language, i.e., L(ϕ) is a set containing all of ϕ’s models.

Language of a TM

The (accepted) language of a TM consists of all input strings for
which the TM’s answer is “yes”, i.e., it halts on qY , or:

LM = {x ∈ Σ∗ | M accepts x}

The language of the previous example DTM can thus be given as

{x ∈ {0, 1} | the rightmost two symbols are 0}.

How does the DTM behave for any x 6∈ LM?
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DTMs and time complexity

A formal definition of time complexity is now possible:

For a DTM program M that halts for all inputs x ∈ Σ∗, its time
complexity function TM : N→ N is given by

TM(n) = max

{
m | there is an x ∈ Σ∗ with |x | = n, such that

M’s computation on x takes time m.

}
A program said to run in polynomial time if there exists a
polynomial p s.t. for all n ∈ N, TM(n) ≤ p(n).
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The complexity class P

Finally, we can define our first complexity class P:

Definition (The complexity class P)

P = {L | there is a polytime DTM M for which L = LM}

(After all this work, this doesn’t look spectacular, does it? And
considering that NP vs. P is a Millennium Problem...)
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Polynomial time verifiability

Consider the the problem Π = SAT again:

No known algorithm for solving SAT in polynomial time.

Suppose, someone had for an instance of SAT, I , a solution S .

We can then verify in time polynomial in Length(I ) that the
answer for S is, indeed, “yes”.
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Polynomial time verifiability

Consider a variant of the Travelling Salesman Problem (TSP):

Definition (TSP)

INSTANCE: A finite set C = {c1, . . . , cm} of “cities” (i.e.,
identifiers for cities), a distance d(ci , cj) ∈ N for each pair of cities
ci , cj ∈ C , and some bound B ∈ N.
QUESTION: Is there a tour of all cities in C having a total length
no greater than B, that is, an ordering 〈cπ(1), . . . , cπ(m)〉 of C such
that

(
m−1∑
i=1

d(cπ(i), cπ(i+1))) + d(cπ(m), cπ(1)) ≤ B ?
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Polynomial time verifiability

Some more notation: For some problem Π, we say. . .

I ∈ YΠ iff (= if and only if) there exists some structure S
that, when guessed (= magically provided) for an input I ,
allows us to determine that S is, indeed, a solution for I .

I 6∈ YΠ, otherwise.

Some properties of TSP:

As with SAT, a concrete instance of TSP, I , is not (known to
be)1 solvable in polynomial time in Length(I ).
However, given some (probably guessed) S , it is easily
verifiable in time polynomial in Length(I ), whether the answer
for S is “yes” (and consequently I ∈ YΠ).

1It may happen that occasionally I omit (= forget) the “known to be part”,
and just say “is not solvable”, which is NOT ACCURATE!
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Polynomial time verifiability

Note that

TSP originally asks for a minimal tour, without parameter B
(i.e., an optimisation problem)
We will use the TSP definition scheme as template to define
further decision problems
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An informal definition of the class NP

Informally, a problem Π is in the class NP iff the TM for solving Π
can be devised using a

a guessing stage which guesses a solution S for given I , and

a verification stage which verifies that the answer for S is,
indeed, “yes” (and then, consequently I ∈ YΠ).

I.e., the TM is nondeterministic.
Note that the verification stage has to be deterministic!
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An informal definition of the class NP

We say. . .

A nondeterministic algorithm/TM solves a problem in polynomial
time if there exists a polynomial p, such that for every instance
I ∈ YΠ, there is some guess S that leads the deterministic checking
stage to respond “yes” for I and S within time p(Length(I )).
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How is nondeterminism useful?

That is not fully understood, i.e., we do not know whether
P = NP?

The deterministic model for PCs has succeeded. :-) (or do you
know of a vendor that sells nondeterministic PCs?)

Since there isn’t a standard for a nondeterministic computation
device, we will define our own which is somewhat simpler than the
one usually found in the literature (cf. Aho, Hopcroft & Ullman
(1974)) (yet equivalent wrt. polynomial time transferrability!)
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Nondeterministic Turing Machine (NDTM)

Garey & Johnson (1979), §2.4

The guessing head is also called a write-only head.
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NDTM programs

Definition (NDTM program)

A program for an NDTM specifies the following information:

A finite set Γ of tape symbols, including a subset Σ ⊂ Γ of
input symbols and a distinguished blank b ∈ Γ− Σ.

A finite set Q of states, including q0 ∈ Q and two halt states
qY , qN ∈ Q.

A transition function

δ : Q − {qY , qN} × Γ→ Q × Γ× {−1,+1}.

I.e., exactly as a DTM program. However, computation strictly
occurs in two stages.

44/115



NDTM programs

Stage 1: Guessing stage

Input is written on squares 1, . . . , |x | (others blank)

Read-write head is positioned at 1

Write-only head is positioned at −1

WO head writes symbols from Γ to current square and moves
left, or stops. If stop, then guessing stage is finished.

Stage 2: Checking/verification stage

Finite state control is active in state q0

WO head inactive

Accepting computation: Finite state control reaches qY .

Non-accepting computation: Reaching of qN or no halt at all.
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The language of an NDTM

Language of an NDTM

An NDTM M has an infinite number of computations for a given x
(i.e., input string encoding I ), one for each guessed string from Γ∗.
M accepts x if at least one of them leads to an accepting
computation. The (accepted) language of M is:

LM = {x ∈ Σ∗ | M accepts x}
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NDTMs and time complexity

The time complexity function of a NDTM, M, TM : N→ N is given by

TM(n) = max


m | {1} ∪ there is an x ∈ Σ∗ with |x | = n, such that

M’s computation on x takes time m.

ff

Note that

the time required by M to accept a string x ∈ LM is defined to be the
minimum over all accepting computations of M for x

the time complexity depends only on the number of steps occurring in
accepting computations and that it is defined to be 1 whenever no inputs
of length n are accepted by M.

The NDTM program M is a polynomial time program if there exists a

polynomial p s.t. for all n ∈ N, TM(n) ≤ p(n).

Pretty much all as before.
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The complexity class NP

Definition (The complexity class NP)

NP = {L | there is a polytime NDTM M for which L = LM}

Also as before, except NDTM instead of DTM.
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The relationship between P and NP

P ⊆ NP, i.e., every decision problem solvable in polytime by a
DTM, is solvable by a polytime NDTM.
I.e., if Π ∈ P and A is a deterministic algorithm for Π, we get
a nondet. algorithm for Π by using A as the checking stage,
and ignoring the guess.
Thus, Π ∈ P implies Π ∈ NP.
It is believed that this inclusion is proper, i.e., there is no det.
algorithm which simulates nondeterminism.
In fact, all we know is

Theorem

If Π ∈ NP, then there exists a polynomial p such that Π can be
solved by a deterministic algorithm having time complexity
O(2p(n)).
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Proof

Outline:

Suppose A is nondet. polytime alg. for Π, and q(n) the time
complexity bound of A.

Then, for every input of length n, there is a guess over Γ of
length at most q(n) that leads A to respond “yes”.

Thus, the number of possible guesses to be considered is at
most |Γ|q(n).

We can deterministically discover whether A has an accepting
computation by trying all those guesses out, one by one.

This is clearly a deterministic procedure, but may take time
|Γ|q(n), which is clearly exponential.
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Our tentative view of the world

Hence, we have reason to believe the world looks somewhat like
this:

We’ll refine this view slightly as we move along.
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Polynomial time reductions

Definition (Polynomial time reduction)

A PTR from one language L1 ⊆ Σ∗1 to L2 ⊆ Σ∗2 is a function
f : Σ∗1 → Σ∗2 s.t.

there is a polynomial time DTM program that computes f

for all x ∈ Σ∗1, x ∈ L1 iff f (x) ∈ L2

If there is a PTR from L1 to L2 we write L1 ∝ L2 (“L1 transforms
to L2”)

Lemma

If L1 ∝ L2, then L2 ∈ P implies L1 ∈ P (and, equivalently, L1 6∈ P
implies L2 6∈ P).

We will use this notion also, more generally, wrt. decision
problems, and then use Π1 ∝ Π2, accordingly.
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The Hamiltonian cycle problem

A Hamiltonian cycle is a cycle in an undirected graph which visits
each vertex exactly once and also returns to the starting vertex.

More formally: consider a graph G = (V ,E ). A simple cycle is a
sequence 〈v1, . . . , vk〉 of distinct vertices such that (vi , vi+1) ∈ E
for 1 ≤ i < k and (vk , v1) ∈ E . A Hamilton cycle includes ALL
vertices of V .
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The Hamiltonian cycle problem

Definition (HC)

INSTANCE: A graph G = (V ,E ).
QUESTION: Does G contain a Hamiltonian cycle?
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HC ∝ TSP

Recall: find an f which is (i) polynomial time computable, and (ii)
for all x ∈ Σ1, x ∈ L1 iff f (x) ∈ L2.

Let G = (V ,E ) with |V | = m be HC instance.
We define the according TSP as follows:

For any two cities vi , vj ∈ C we have d(vi , vj) = 1 iff
(vi , vj) ∈ E , and 2 otherwise.
Max. tour length B := m.

(Informally) easy to see that this transformation is computable in
polynomial time wrt. |V |+ |E |: to determine all m(m − 1)/2
distances d(vi , vj) one only has to examine G whether or not
(vi , vj) ∈ E .

Thus property (i) is satisfied.
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HC ∝ TSP

For (ii) we must show that G contains a Hamiltonian cycle iff the
constructed instance of TSP has a tour of length at most B:
(⇒): Suppose 〈v1, . . . , vm〉 is a HC in G . Then, by definition of
f /construction, 〈v1, . . . , vm〉 is also a tour in f (G ), and this tour
has a length of exactly B.
(⇐): Suppose 〈v1, . . . , vm〉 is a tour in f (G ) with length ≤ B. By
definition, two cities vi , vj can be either 1 or 2 apart, and we have
a m-city tour. It follows that the individual distances must be 1.
Moreover, by def. of f (G ), it follows that 〈v1, . . . , vm〉 are all edges
in G , and since f (G ) is a cycle we also have (vm, v1) ∈ G .
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Polynomial transformability

Polynomial time reductions are transitive, i.e., we can “transform”
one problem into another.

Lemma

If L1 ∝ L2 and L2 ∝ L3, then L1 ∝ L3.
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NP-completeness

Definition (NP-completeness)

A language L is defined to be NP-complete if L ∈ NP and for all
other languages L′ ∈ NP, L′ ∝ L.
Or: A decision problem Π is NP-complete if Π ∈ NP, and for all
other decision problem Π′ ∈ NP, Π′ ∝ Π.

Corrolary

If any single problem in NP can be solved in polynomial time, then
all problems in NP can be solved in polynomial time (and we would
have, P = NP).
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Our tentative view of the world

If we assume that P 6= NP, we obtain the following picture:
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What text books usually forget to tell you...
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Showing NP-completeness
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NP-completeness

Lemma

If L1 and L2 belong to NP, L1 is NP-complete, and L1 ∝ L2, then
L2 is NP-complete.

Proof.

Follos from definition of NP-completeness and transitivity of
polynomial time reductions.

This lemma suggests a way to proof NP-completeness of a “new
problem” Π:

Show that Π ∈ NP, and
transform a known NP-complete problem Π′ to Π.
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The Chicken & Egg Problem in Complexity

If we want to show any problem to be NP-complete, we need an
NP-complete problem to begin with!

...this is where Cook’s Theorem comes in.
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Notations and definitions

Let us make some previously used notions precise:

U = {u1, . . . , un} is a set of Boolean variables
A truth assignment is a function t : U → B (if t(u) = >, we
say “u is true under t”)
If u ∈ U, then u and u are literals:

u is true under t iff the variable u is true under t
u is true under t iff the variable u is false under t

A clause (over U) is a set of literals, e.g., {u1, u3, u8}
(disjunction of literals)

The above clause is satisfied by t unless
t(u1) = ⊥, t(u3) = >, t(u8) = ⊥.

A collection C of clauses over U is satisfiable iff there exists a
truth assignment that satisfies all clauses in C .
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The world’s first NP-complete problem: SAT

Definition (SAT)

INSTANCE: A set of U of variables and a collection C of clauses
over U.
QUESTION: Is there a satisfying truth assignment for C?

Example: U = {u1, u2} and C = {{u1, u2}, {u1, u2}}
t(u1) = t(u2) = >.
Note that C = {{u1, u2}, {u1, u2}, {u1}} is not sat.

Cook showed in a paper presented at STOC’71 that SAT is
NP-complete.
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Proof outline

Recall, a problem is NP-complete if (i) it is in NP and (ii) all
problems in NP are polynomial time reducible to it.

Membership in NP straightforward.

Idea of NP-hardness proof:

On the language level, SAT is represented as LSAT = L[SAT , e]
We must show that for all L ∈ NP, it holds that L ∝ LSAT .
There are infinitely many such L!
But every such L can be represented as a polynomial time
NDTM program.
Devise a generic transformation from a polynomial time
NDTM program to LSAT !
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Proof: NP-hardness of SAT

Let M be a polynomial time NDTM program given by
Γ,Σ, b,Q, q0, qY , qN , and δ, recognising the language L = LM .
Let p(n) be a polynomial over integers that bounds the time
complexity function TM(n). That is,

M can only access squares between −p(n) and up to p(n) + 1,
M will not take more than p(n) steps.

The generic transformation fL will be derived in terms of
Γ,Σ, b,Q, q0, qY , qN , δ, and p:

fL has the property that . . .

for all x ∈ Σ∗ with x ∈ L, we have that fL(x) has a satisfying truth
assignment.
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Proof: NP-hardness of SAT

fL labels Q as follows Q = q0, q1 = Y , q2 = N, q3, q4, . . . , qr ,
where r = |Q| − 1,
and Γ = s0 = b, s1, . . . , sv with v = |Γ| − 1.
The constructed set U of variables will contain three different
“types” of variables with the following intended meaning:

Note that every computation of M automatically induces a truth
assignment of those vars (but not vice versa). 68/115



Proof: NP-hardness of SAT

Our task (or rather fL’s task): for some input to M, call it x
with length n, to construct (in polynomial time) a set of clauses C
over U, such that C is satisfiable iff x ∈ L.
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Proof: NP-hardness of SAT

The clauses in fL(x) can be categorised into six groups, each
imposing a different restriction on any satisfying truth assignment:
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Proof: NP-hardness of SAT

G1: At each time i , M is exactly in one state.

This means that

for each i = 0, . . . , p(n), we have a clause

{Q[i , 0],Q[i , 1], . . . ,Q[i , r ]}
yielding r · p(n) literals in total, i.e., M is in at least one state
in each i ;
for each i = 0, . . . , p(n) and for each pair j , j ′ of distinct
states, we have a clause

{Q[i , j ],Q[i , j ′]},
i.e, M cannot be in more than one state at a time. Yielding a
total of r · (r − 1) · p(n) literals.
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Proof: NP-hardness of SAT

G2: At each time i , M is scanning exactly one tape square

for each i = 0, . . . , p(n) we have a clause

{H[i ,−p(n)],H[i ,−p(n) + 1], . . . ,H[i , p(n) + 1]}

i.e., at least one symbol is scanned.

for each i = 0, . . . , p(n) and distinct pair j , j ′, where
−p(n) ≤ j ≤ j ′ ≤ p(n) + 1, we have a clause

{H[i , j ],H[i , j ′]}

i.e., at most one symbol is scanned.
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Proof: NP-hardness of SAT

G3: At each time i , each tape quare contains exactly one symbol.

for each i = 0, . . . , p(n) and −p(n) ≤ j ≤ p(n) + 1, we have a
clause

{S [i , j , 0],S [i , j , 1], . . . ,S [i , j , v ]},
where v = |Γ| − 1, i.e., at least one symbol is contained

for each i = 0, . . . , p(n),−p(n) ≤ j ≤ p(n) + 1, and
0 ≤ k ≤ k ′ ≤ v we have a clause

{S [i , j , k],S [i , j , k ′]},

i.e., at most one symbol is contained.
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Proof: NP-hardness of SAT

G4: At time 0, the computation is in the initial configuration of its
checking state for input x .

This one’s comparatively easy! We add the following clauses:

{Q[0, 0]}, {H[0, 1]} (set state and head)

{S [0, 0, 0],S [0, 1, k1], . . . ,S [0, n, kn]}, where x = sk1 . . . skn

(input word)

{S [0, n + 1, 0], . . . ,S [0, p(n) + 1, 0]} (padding)
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Proof: NP-hardness of SAT

G5: By time p(n), M has entered state qY (and thus accepted x)

Simply add {Q[p(n), 1]}.
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Proof: NP-hardness of SAT

G6: For each time i , o ≤ i ≤ p(n), the configuration of M at time
i + 1 follows by a single application of δ from the configuration at
time i .

For each quadruple (i , j , k, l), 0 ≤ i < p(n), −p(n) ≤ j ≤ p(n) + 1,
0 ≤ k ≤ r , and 0 ≤ l ≤ v , we have the following clauses:

{H[i , j ],Q[i , k],S [i , j , l ],H[i + 1, j + ∆]}
{H[i , j ],Q[i , k],S [i , j , l ],Q[i + 1, k ′]}
{H[i , j ],Q[i , k],S [i , j , l ],S [i + 1, j , l ′]},

where if qk ∈ Q − {qY , qN}, then the values of ∆, k ′, and l ′ are
such that δ(qk , sl) = (qk ′ , sl ′ ,∆), and if qk ∈ {qY , qN}, then
∆ = 0, k ′ = k , and l ′ = l .
This step adds 6(p(n))(p(n) + 1)(r + 1)(v + 1) which may seem a
lot but is still polynomial!
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Proof: NP-hardness of SAT

If x ∈ L, then there is an accepting computation of M on x of
length p(n) or less, and this computation, given the interpretation
of the variables, imposes a truth assignment that satisfies all the
clauses in

C = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6.

Conversely, it is easy to see that the construction of C does
correspond to an accepting computation of M on x .
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How to prove NP-completeness

Given what we know already, what is the canonical procedure of
showing a problem Π to be NP-complete?
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How to prove NP-completeness

Show that Π is in NP.

Select a known NP-complete problem Π′.

Construct a transformation f from Π′ to Π.

Prove that f is a polynomial transformation.

Alternatively, use NDTM for the reduction.
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Restricted forms of NP-complete problems

Definition (3SAT)

INSTANCE: A set of U of variables and a collection C of clauses
over U, such that for all ci ∈ C , we have |ci | = 3.
QUESTION: Is there a satisfying truth assignment for C?

Theorem

3SAT is in NP.

Proof.

Easy.
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3SAT is NP-complete

Proof via reduction from SAT:

Let a SAT problem be defined as before via sets
C = {c1, . . . , cm} and U = {u1, . . . , un}.
We construct an instance of 3SAT using sets C ′ and U ′ s.t.
C ′ is SAT over U ′ iff C is SAT over U.
The idea is as follows: for each clause cj ∈ C , we construct a
set C ′j of 3-literal clauses, and a set of variables U ′j only used
in C ′j , i.e.

U ′ := U ∪ (
m⋃

j=1

U ′j )

and

C ′ :=
m⋃

j=1

C ′j
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3SAT is NP-complete

How to construct C ′j and U ′j from cj = {z1, . . . , zk} ∈ C :

k = 1: U ′j := {y1
j , y

2
j } and

C ′j := {{z1, y
1
j , y

2
j }, {z1, y

1
j , y

2
j }, {z1, y

1
j , y

2
j }, {z1, y

1
j , y

2
j }},

i.e., z1 has to be satisfied in order to satisfy C ′j .

k = 2: Excercise! U ′j := {y1
j } and

C ′j := {{z1, z2, y
1
j }, {z1, z2, y

1
j }},

i.e., one of the two zi has to be true in order to sat. C ′j .
k = 3: Excercise! U ′j := ∅ and C ′j := {{cj}}.
k > 3: U ′j := {y i

j | 1 ≤ i ≤ k − 3} and

C ′j := {{z1, z2, y
1
j }} ∪ {{y i

j , zi+2, y
i+1
j | 1 ≤ i ≤

k − 4}} ∪ {{yk−3
j , zk−1, zk}}, i.e., one of the zi has to be true

in order to sat. C ′j .

By the discussion, we have informally shown both directions: C sat
iff C ′ sat! 82/115



3SAT is NP-complete

Recall: Considering our work so far, 3SAT is NP-complete iff the
transformation is polynomial!
Observe that the number of 3-literal clauses is bounded by a
polynomial in nm.

Note that usually restricted variants of NP-complete problems are
not NP-complete problems, cf. 2SAT.
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Want to buy a TM?
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Showing NP-completeness & Space
complexity
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More NP-complete problems

Definition (3D matching (3DM))

INSTANCE: 3 sets X , Y , Z , and a set
M ⊆ X × Y × Z .
QUESTION: Does M contain a
matching, that is, a set M ′ ⊆ M such
that s.t. for each triple (xi , yi , zi ) and
(xi , yi , zi ) from M ′ the following holds:
xi 6= xj , yi 6= yj , and zi 6= zj?

Note, we will consider the restricted
case where |X | = |Y | = |Z |.
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3DM is NP-complete

How do we show membership in NP? Excercise

For NP-hardness, let C = {c1, . . . , cm} and U = {u1, . . . , un}
be an instance of SAT.

We construct the sets |W | = |X | = |Y | and a set
M ⊆W × X × Y s.t., M contains a matching iff C is sat.

M will be partitioned into classes of triples, each serving a
different purpose:

truth-setting and fan-out
satisfaction testing
garbage collection
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3DM is NP-complete

Truth-setting and fan-out component:

Each component corresponds to one variable u ∈ U.
Structure depends on number of clauses m.
As in the previous proof, we have elements only used inside a
component, not elsewhere:
For some var ui , we have ai [j ] ∈ X and bi [j ] ∈ Y , where
1 ≤ j ≤ m as “internal” elements.
Elements ui [j ], ui [j ] (1 ≤ j ≤ m) are “external” and will occur
in other triples, too.
The triples of this component can, again, be divided into two
sets:

T>
i := {(ui [j ], ai [j ], bi [j ]) : 1 ≤ j ≤ m)}

T⊥
i := {(ui [j ], ai [j + 1], bi [j ]) : 1 ≤ j ≤ m)} ∪
{(ui [m], ai [1], bi [m])}
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3DM is NP-complete

Garey & Johnson

That is, any
matching M ′ ⊆ M
includes m triples.
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3DM is NP-complete

Satisfaction testing component:

Each component corresponds to one clause cj ∈ C .
Only two “internal” elements s1[j ] ∈ X and s2[j ] ∈ Y .
External elements are from {ui [j ], ui [j ] | 1 ≤ i ≤ n},
depending on which occur in cj .
The set of triples making up this component is as follows:

Cj := {(ui [j ], s1[j ], s2[j ]) | ui ∈ cj}∪{(ui [j ], s1[j ], s2[j ]) | ui ∈ cj}
That is, any matching M ′ ⊆ M has to contain exactly one
triple from Cj .
This is only possible if some ui [j ] (or ui [j ]) for ui ∈ cj

(ui ∈ cj) does not occur in the triples in Ti ∩M ′ (otherwise it
wouldn’t be a matching), which will be the case iff the truth
setting determined by M ′ satisfies clause cj .
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3DM is NP-complete

Garbage collection component:

Basically deals with all the variables ui ∈ U whose value
doesn’t matter for the satisfiability of C (as we have already
set them in the previous components).
“Internal” elements:
g1[k] ∈ X , g2[k] ∈ Y , where 1 ≤ k ≤ m(n − 1).
“External” elements: ui [j ], ui [j ] ∈W .
Triples are of the form:

G := {(ui [j ], g1[k], g2[k]), (ui [j ], g1[k], g2[k])},
where we add all 1 ≤ k ≤ m(n − 1), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
That is, each pair g1[k], g2[k] must be matched with a unique
ui [j ] (or ui [j ]) that does not occur in any triples of M ′ − G .
There are exactly m(n − 1) such uncovered elements.
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3DM is NP-complete

So, we constructed:

W := {ui [j ], ui [j ] | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
(only the garbage collection added to W )
X := A ∪ S1 ∪ G1, where

A := {ai [j ] | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
S1 := {s1[j ] | 1 ≤ j ≤ m}
G1 := {g1[j ] | 1 ≤ j ≤ m(n − 1)}

Y := B ∪ S2 ∪ G2, where
B := {bi [j ] | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
S2 := {s2[j ] | 1 ≤ j ≤ m}
G2 := {g2[j ] | 1 ≤ j ≤ m(n − 1)}

And by our careful choice of which elements to add to M, we
now have: M = (

⋃n
i=1 Ti ) ∪ (

⋃m
j=1 Cj) ∪ G

But does the construction serve its purpose, i.e., does M always
contain a matching M ′?
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3DM is NP-complete

(M contains a matching ⇒ C is sat.):

We have already (informally) convinced ourselves of that.

(C is sat. ⇒ M contains a matching):

Given t : U → B, and C is sat. by t, we extract/construct a
suitable M ′ ⊆ M.
For each clause cj ∈ C , let zj ∈ {ui , ui | 1 ≤ i ≤ n} ∩ cj be a
literal that is set to > by t (one must exist to satisfy cj).
We then set:

M ′ := (
⋃

t(ui )=>

T>i )∪(
⋃

t(ui )=⊥

T⊥i )∪(
m⋃

j=1

{zj [j ], s1[j ], s2[j ])})∪G ′

where G ′ is a subset of G that contains all the g1[k], g2[k]
and the remaining ui [j ] and ui [j ]. We note that such a G ′ can
always be chosen, and thus M ′ is a matching.
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Some tricks to determine complexity

Try to constrain the problem (may not always work, e.g.,
3DM).

Fix a parameter (i.e., move it from the problem input to the
problem description)
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Beyond NP-completeness

Recall our world-view:

If we assume P 6= NP, then NPC ∩ P = ∅.
However, is it the case that, if P 6= NP, that
NPI = NPC ∪ P?
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Beyond NP-completeness

Theorem (Ladner (1975))

Let B be a recursive language (i.e., recognisable by a DTM
program that halts on all inputs) such that B 6∈ P. Then there
exists a polynomial time recognisable language D ∈ P such that
the language A = D ∩ B does not belong to P, A ∝ B, and yet
B 6∝ A.

We apply this as follows:

Let B ∈ NPC , so (if P 6= NP) B 6∈ P.
Then A belongs to NP, because D ∈ P and B ∈ NP.
Ladner now says: B 6∝ A, so A cannot be NP-complete, and
because A 6∈ P, A must be in NPI .
That is, NPI 6= ∅ if P 6= NP.
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Beyond NP-completeness

A more concrete example:

Suppose B is the Hamiltonian Cycle problem.

Ladner now says: there exists a polynomial time recognisable
set of graphs, such that Hamiltonian Cycle, when restricted to
that set is neither an NP-complete nor a problem in P
(assuming P 6= NP).

WOW!
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Beyond NP-completeness

Natural question to ask:

Do there exist real-world/natural problems that are in NPI?

First, note that there is a heap of problems in NP, which
people have failed to prove complete.

All those are candidates.

Some withstood the test of time better than others. . . (i.e.,
people failed to show NP-hardness for these, nor found a
polynomial time algorithm)
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Beyond NP-completeness

Definition (Graph Isomorphism)

INSTANCE: Graphs G = (V ,E ) and G ′ = (V ′,E ′).
QUESTION: Are G and G ′ isomorphic, that is, is there a
one-to-one mapping f : V (G )→ V (G ′) such that (u, v) ∈ E iff
(f (u), f (v)) ∈ E ′?
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Complementary classes

Take a problem Π for which you know the complexity class, and
consider its complement, Πc . Is Πc in the same complexity class as
Π?

Theorem

If there exists one NP-complete problem Π such that Πc ∈ NP,
then NP = co-NP.

Proof.

Via the transitivity of polynomial problem reductions.
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Complementary classes

Based on all evidence so far: co-NP 6= NP.
In fact if that is a theorem (co-NP 6= NP), it would imply that
P 6= NP.
Note, we do not know whether co-NP 6= NP nor whether
P 6= NP. And more so, P 6= NP does NOT imply, vice versa,
that NP 6= co-NP.
Note further that, co-P = P.
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Complexity of enumeration

SAT asks “Does there exist a satisying truth assignment?”
We could also ask “How many such assignments exist?”
What’s the complexity of this question? Guess! Excercise!
We do not want to see them all, but just the number of
assignments!
These are captured by a class #P (Valiant, 1977).
#SAT ∈ #P, in fact #P-complete.
How does #SAT relate to the NP-completeness of SAT?

The counting problem is at least as hard as the underlying
decision problem.
Even if P = NP, it is not clear whether counting the number
of solutions for an NP-complete problem could be done in
polymomial time.
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Space complexity

Note that

So far, we measured the complexity of a problem merely in terms
of the time that was required to find an answer (by a deterministic,
respectively nondeterministic machine).

A natural question to ask:

How much space does an algorithm use?
If a problem is solvable in polynomial time, is it solvable in
polynomial space?
What is the relation between time complexity and space
complexity?

All problems in P, NP (and even #P) are solvable in polynomial
space, i.e., P ⊆ NP ⊆ PSpace.
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Space complexity

Do there exist problems solvable in polynomial space that cannot
be solved in polynomial time? That is, does PSpace = P hold?

Slightly more formal:

PSpace

PSpace is the class of languages that are decidable in polynomial
space by a DTM, that is,

PSpace =
⋃
k

Space(nk).

PSpace-completeness

A language L is PSpace-complete, if L ∈ PSpace and for all
L′ ∈ PSpace, L′ ∝ L.
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The world’s first PSpace-complete problem

Definition (QBF)

INSTANCE: A well-formed Boolean formula

F = (Q1x1) . . . (Qnxn)E ,

where E is a Boolean expression involving variables x1, . . . , xn, and
each Qi is either ∀ or ∃.
QUESTION: Is F true, i.e., F = >?

Example

∀x . ∃y . ∃z . (x ∨ z) ∧ y
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QBF is in PSpace

Proof: The following algorithm will solve an instance I (ψ) (for
brevity, paremeterised by the formula ψ) of QBF using at most
polynomial space in the size of I .

Algorithm A: Let φ be the input to A (initially, φ ≡ ψ):

if φ contains no quantifiers, simply evaluate φ and “accept”, if
true, “reject” otherwise.

if φ ≡ ∃x . φ′, then call A(φ′(⊥/x)), and then A(φ′(>/x)),
and return “yes” if either of the calls is “accept”, “no”
otherwise.

if φ ≡ ∃x . φ′, then call A(φ′(⊥/x)) and then A(φ′(>/x)), and
return “yes” if both of the calls is “accept”, “no” otherwise.
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QBF is in PSpace

Observe:

Depth of tree at most number of variables.

At each level, we store the value of only one var.

So total space is O(m) where m is the number of vars.

Hence, A runs in liner space.
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QBF is PSpace-hard

Proof idea: Similar as with 3SAT:

Show that all L ∈ PSpace are polytime reducible to QBF, i.e., we
construct for all words w ∈ L (accepted by a polyspace DTM M) a
QBF formula φ such that φ = > iff w ∈ L (M accepts w).

To show how to construct φ, we solve a more general problem:

Let c1, c2 be variables representing two configs of M.
Let t ∈ N, then φc1,c2,t = > iff M can get from c1 to c2 in at
most t steps.
How do we construct a polynomial size φc1,c2,t when
t = exp(w)?
That is, the proof constructs a formula φcstart ,caccept ,T , where
cstart is the initial and caccept the final config of M, and T the
max. number of steps (possibly exponentially many) taken by
M to accept w .
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QBF is PSpace-hard

If t = 1, we can easily construct φc1,c2,t : either one of the
configurations changes to the other in one step or it does not.
Since M is deterministic, this presents no problem: Use
Cook’s construction.

t > 1: We construct φc1,c2,t recursively:

φc1,c2,t = ∃m1. φc1,m1,t/2 ∧ φm1,c2,t/2,

where m1 is a configuration in between c1 and c2, for which
we then proceed recursively as well, etc. pp.
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QBF is PSpace-hard

Problem

We end up with a new formula for φc1,c2,t which is roughly of size
t. (And t may be exponential.)

Solution

Use an ∀-quantified variant of the formula:

∃m1. ∀c3, c4. (c3 = c1 ∧ c4 = m1 ∨ c3 = m1 ∧ c4 = c2)→ φc3,c4,t/2

This yields a polynomial size formula, and thus transformation.
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P vs NP is solved!
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PSpace-completeness and logic
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Theorem of Savitch (1970)

Theorem

NSpace(f (n)) ⊆ DSpace(f (n2))

That is, if a NDTM can solve a problem using space f (n), then a
DTM can solve the problem using space f (n2).

Proof.

Via a configuration-reachability, similar as in the QBF proof.

Corollary

PSpace = NPSpace, ExpSpace = NExpSpace, etc.
(but assumedly, P 6= NP)

. . . and also co-PSpace = PSpace (but assumedly, co-NP 6= NP)
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Linear-time temporal logic (LTL)

Let

AP be a non-empty, finite set of propositional symbols,

Σ := 2AP be an alphabet,

LTL (Pnueli, 1977) formulae are given by the following syntax:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ (p ∈ AP),
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Journal of the ACM:

“The JACM frequently receives submissions purporting to solve a
long-standing open problem in complexity theory, such as the
P/NP problem. Such submissions tax the voluntary editorial and
peer-reviewing resources used by the JACM, by requiring the
review process to identify the errors in them. The JACM remains
open to the possibility of eventual resolution of P/NP and related
questions, and continues to welcome submissions on the subject.
However, to mitigate the burden of repeated resubmissions of
incremental corrections of errors identified during editorial review,
the JACM has adopted the following policy:
No author may submit more than one paper on the P/NP or
related long-standing questions in complexity theory in any
24 month period, except by invitation of the Editor-in-Chief.
This applies to resubmissions of previously rejected
manuscripts.”
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