slgo

Bauer - Falcone (N / of Grenoble) Decentralised LTL monitori Work presented originally at FM’

 UNIVERSITE
| JOSEPH FOURIER

SCIENCES. TECHNOLOGIE. SANTE

L I G THE AUSTRALIAN NATIONAL UNIVERSITY

Decentralised LTL monitoring

1

Andreas Bauer Ylies Falcone?

INICTA Canberra Research Lab and Australian National University
2Laboratoire d'Informatique de Grenoble, UJF University of Grenoble |, France

Work presented originally at FM'12

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Bauer -

An introductory example

Most modern cars realise the following abstract requirement:

“Issue warning if one of the passengers is not wearing a seat belt
(when the car has reached a certain speed).”

Falcone (NICTA / ANU / U of Grenoble)

Decentralised LTL monitoring

Work presented originally at FM'12

An introdu example

Most modern cars realise the following abstract requirement:

“Issue warning if one of the passengers is not wearing a seat belt
(when the car has reached a certain speed).” J

Could be formalised using LTL:

¢ := G(speed_low \ ((pressure_sensor_1_high = seat_belt_1_on)
AR

A (pressure_sensor_n_high = seat_belt_n_on)))

and then monitored as usual. ..

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

An introductory example

However, cars are nowadays highly distributed systems (> 130 CPUs):

Legend:
3. Occupant sensing system (only one shown)
7. Seat-belt buckle sensors

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

An introductory example

However, cars are nowadays highly distributed systems (> 130 CPUs):

Legend:
3. Occupant sensing system (only one shown)
7. Seat-belt buckle sensors

You can't easily monitor ¢ without central observation point! J

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Related work (i.e., what others are doing about it)

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Related work (i.e., what others are doing about it)

@ Sen et al.: Decentralized runtime analysis of multithreaded applications
(IPDPS’'06)
e Custom logic, MtTL, for specifying properties of “agents” (similar to LTL).
e Monitoring problem: Matching of partially ordered traces against MtTL
property (i.e., central collection point).
o Restrictions: Safety properties only.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Related work (i.e., what others are doing about it)

@ Sen et al.: Decentralized runtime analysis of multithreaded applications
(IPDPS’'06)
e Custom logic, MtTL, for specifying properties of “agents” (similar to LTL).
e Monitoring problem: Matching of partially ordered traces against MtTL
property (i.e., central collection point).
o Restrictions: Safety properties only.

@ Genon et al.: Monitoring distributed controllers (FM'06)

o LTL model checking of partially ordered traces (i.e., central collection point).
e Main contribution lies in state-space reduction.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Related work (i.e., what others are doing about it)

@ Sen et al.: Decentralized runtime analysis of multithreaded applications
(IPDPS’'06)
e Custom logic, MtTL, for specifying properties of “agents” (similar to LTL).
e Monitoring problem: Matching of partially ordered traces against MtTL
property (i.e., central collection point).
o Restrictions: Safety properties only.
@ Genon et al.: Monitoring distributed controllers (FM'06)

o LTL model checking of partially ordered traces (i.e., central collection point).
e Main contribution lies in state-space reduction.

@ And quite a few more works along those lines. ..

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Related work (i.e., what others are doing about it)

@ Sen et al.: Decentralized runtime analysis of multithreaded applications
(IPDPS’'06)
e Custom logic, MtTL, for specifying properties of “agents” (similar to LTL).
e Monitoring problem: Matching of partially ordered traces against MtTL
property (i.e., central collection point).
o Restrictions: Safety properties only.
@ Genon et al.: Monitoring distributed controllers (FM'06)

o LTL model checking of partially ordered traces (i.e., central collection point).
e Main contribution lies in state-space reduction.

@ And quite a few more works along those lines. ..

Ylies and | wanted to know. ..

@ What happens if you can't collect a trace centrally?

@ Can we monitor a system in a truly distributed manner?

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

The setting (1)

G G G Cs

\

Communication bus

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

The setting (1)

Bauer -

G

G

G Cy

My

M>

Ms | | My

Falcone (NICTA / ANU / U of Grenoble)

Communication bus

Decentralised LTL monitoring

Work presented originally at FM'12

The setting (1)

G G G Cs

M| | My | [Ms] | My

L]

\

Communication bus

o Let ¢ € LTL(AP) be the global system specification to be monitored.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

The setting (1)

G G G Cy

M| | My | [Ms] | My

L]

\

Communication bus

o Let ¢ € LTL(AP) be the global system specification to be monitored.

o Let ¥ = 24P Set of all system events, ¥ = ¥ U...UX,, where 5,NYE; =0
for all i # j.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

The setting (1)

G G G Cy

M| | My | [Ms] | My

L]

\

Communication bus

o Let ¢ € LTL(AP) be the global system specification to be monitored.

o Let ¥ = 24P Set of all system events, ¥ = ¥ U...UX,, where 5,NYE; =0
for all i # j.

o Let 4= (uy,...,u,) be the global trace of length t.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

The setting (1)

G G G Cy

M| | My | [Ms] | My

L]

\

Communication bus

Let ¢ € LTL(AP) be the global system specification to be monitored.

o Let ¥ = 24P Set of all system events, ¥ = ¥ U...UX,, where 5,NYE; =0
for all i # j.
o Let 4= (uy,...,u,) be the global trace of length t.

Monitors, like components, communicate via the bus.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

The setting (1)

G G G Cy

M| | My | [Ms] | My

L]

\

Communication bus

o Let ¢ € LTL(AP) be the global system specification to be monitored.

o Let ¥ = 24P Set of all system events, ¥ = ¥ U...UX,, where 5,NYE; =0
for all i # j.

o Let 4= (uy,...,u,) be the global trace of length t.

@ Monitors, like components, communicate via the bus.

e Each monitor monitors its own specification at any time t, ¢f. The

specification changes depending on the trace and communication.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

The setting (1)

G G G Cy

M| | My | [Ms] | My

L]

\

Communication bus

o Let ¢ € LTL(AP) be the global system specification to be monitored.

o Let ¥ = 24P Set of all system events, ¥ = ¥ U...UX,, where 5,NYE; =0
for all i # j.

o Let 4= (uy,...,u,) be the global trace of length t.
@ Monitors, like components, communicate via the bus.

e Each monitor monitors its own specification at any time t, ¢f. The
specification changes depending on the trace and communication.

o If ¢t =T (resp. bot) at C;, then i € good(y) (resp. bad(y)).

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

setting (I1)

@ Bus is synchronous, i.e., at each time t a component/monitor may send (and
receive) a message.

At t + 1 this message is received by the recipient.

That is, computation takes no time.

Arguably, matches the X-semantics of LTL.
o There are stutter-free variants of LTL. We do not consider this here.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

A note on perfect synchrony

—"Is perfect synchrony realistic?”

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitori Work presented originally at FM'12

A note on perfect synchro

—"Is perfect synchrony realistic?”
—“Not always, but many safety critical systems use it.”

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

A note on perfect synchrony

—"Is perfect synchrony realistic?”
—“Not always, but many safety critical systems use it.”

Automotive domain uses FlexRay data bus, which has (among others) a Flight-control systems mostly synchronous (fly-by-wire):
synchronous transfer mode:

Examples for implementation /verification systems used in this domain:
SIGNAL, Lustre, Astrée verifier, etc.

E: les: Steer-by-wire, brake-by-wire, engine , etc.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented ol

Monitoring by progression (central case)

Let's assume our system looks like this:!

G

My

LCentral monitoring is, but a special case of distributed monitoring.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Monitoring by progression (central case)

Let's assume our system looks like this:!

G

M,

We could easily use progression to monitor a specification ¢ € LTL.

LCentral monitoring is, but a special case of distributed monitoring.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Monitoring by progression (central case)

Let's assume our system looks like this:!

G

M,

We could easily use progression to monitor a specification ¢ € LTL.

Definition (Progression function P : LTL(AP) x 24P — LTL(AP))

Let ¢, 1,02 € LTL(AP), and o € 247 be an event.
P(p e AP,c) = T, if p€ o, L otherwise P(T.0) = T
P(e1V g2,0) = Ple1,0)V P(g2,0) p _
(L,o) = L
P(p1Up2,0) = P(p2,0)V P(p1,0) A p1Up2 P(=p,0) = —P(p,0)
P(th, U) = P(‘P>U) A G(‘P) P(X<p7 0_) = ’
P(Fp,0) = P(p,0) VF(p) ’

LCentral monitoring is, but a special case of distributed monitoring.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring

Monitoring by progression (distributed case)

But we really care for distribution! Let's assume that ¢ = G(p1 A p2 V p3s A pa).

G G G Cs
M| [Ma| [Ms| | My

|]

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Monitoring by progression (distributed case)

But we really care for distribution! Let's assume that ¢ = G(p1 A p2 V p3s A pa).

G G G Cs
M| [Ma| [Ms| | My

|]

o Let's also assume that, initially, ©? = ¢ for i € [1,4], and that ¥; = {p;, 0}.

o At time 0, let uy = p1, ux = po, uz = ug = 0.

Decentralised LTL monitoring Work presented originally at FM'12

Bauer - Falcone (NICTA / ANU / U of Grenoble)

Monitoring by progression (distributed case)

But we really care for distribution! Let's assume that ¢ = G(p1 A p2 V p3s A pa).

G G G Cs
M| [Ma| [Ms| | My

|]

o Let's also assume that, initially, ©? = ¢ for i € [1,4], and that ¥; = {p;, 0}.

o At time 0, let uy = p1, ux = po, uz = ug = 0.

Observe: ¢ is a safety property

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Monitoring by progression (distributed case)

But we really care for distribution! Let's assume that ¢ = G(p1 A p2 V p3s A pa).

G G G Cs
M| [Ma| [Ms| | My

|]

o Let's also assume that, initially, ©? = ¢ for i € [1,4], and that ¥; = {p;, 0}.

o At time 0, let uy = p1, ux = po, uz = ug = 0.

Observe: ¢ is a safety property

o Is ¢ violated by u?

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Monitoring by progression (distributed case)

But we really care for distribution! Let's assume that ¢ = G(p1 A p2 V p3s A pa).

G G G Cs
M| [Ma| [Ms| | My

|]

o Let's also assume that, initially, ©? = ¢ for i € [1,4], and that ¥; = {p;, 0}.

o At time 0, let uy = p1, ux = po, uz = ug = 0.

Observe: ¢ is a safety property

o Is ¢ violated by u?
@ How could any of the monitors know?

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Monitoring by progression (distributed case)

But we really care for distribution! Let's assume that ¢ = G(p1 A p2 V p3s A pa).

G G G Cs
M| [Ma| [Ms| | My

|]

o Let's also assume that, initially, ©? = ¢ for i € [1,4], and that ¥; = {p;, 0}.

o At time 0, let uy = p1, ux = po, uz = ug = 0.

Observe: ¢ is a safety property

o Is ¢ violated by u?
@ How could any of the monitors know?

Monitors need to communicate outstanding obligations. J

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

Pi(G(p1 A p2V p3 A pa),p1) =

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 /25

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

Pi(G(p1 A p2V p3 A pa),p1) =
(P1(p1, p1) A Pi(p2,p1) V Pi(p3, p1) A Pi(pa, p1)) A =

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 /25

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

Pi(G(p1 A p2V p3 A pa),p1) =
(P1(p1, p1) A Pi(p2, p1) Vv P1(P37 p1) A P1(P47 p1)) AN ¢
(P1(p2,p1)\/P1(p3,p1)/\P1())

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 / 25

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

Pi(G(p1 A p2V p3 A pa),p1) =
(P1(p1, p1) A Pi(p2, p1) Vv P1(P37 p1) A P1(P47 p1)) AN ¢
(P1(p2,p1)\/P1(p3,p1)/\P1())

If we continue with standard progression, we get 1.

Although 4 is not a bad prefix!

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 / 25

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

P1(G(p1 A p2V p3 A ps),p1) =
(P1(p1, p1) A Pi(p2,p1) V Pi(p3, p1) A Pi(pa, p1)) A =
(P1(p2, p1) V Pi(p3, p1) A Pi(pa, p1)) A ¢

If we continue with standard progression, we get 1.

Although 4 is not a bad prefix!

Rewrite into the past!

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 / 25

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

P1(G(p1 A p2V p3 A ps),p1) =
(P1(p1, p1) A Pi(p2,p1) V Pi(p3, p1) A Pi(pa, p1)) A =
(P1(p2, p1) V Pi(p3, p1) A Pi(pa, p1)) A ¢

If we continue with standard progression, we get 1.

Although 4 is not a bad prefix!

Rewrite into the past!

(P1(p2, p1) V Pi(p3, p1) A Pi(pa, p1)) A @ =

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 / 25

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

P1(G(p1 A p2V p3 A ps),p1) =
(P1(p1, p1) A Pi(p2,p1) V Pi(p3, p1) A Pi(pa, p1)) A =
(P1(p2, p1) V Pi(p3, p1) A Pi(pa, p1)) A ¢

If we continue with standard progression, we get 1.

Although 4 is not a bad prefix!

Rewrite into the past!

(P1(p2; p1) V Pi(ps, p1) A Pi(pa, p1)) A o =
(Xp2 V Xps A Xpa) A @

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 / 25

Monitoring by progression (distributed case)

Let's take a closer look at Cy/M;:

P1(G(p1 A p2V p3 A ps),p1) =
(P1(p1, p1) A Pi(p2,p1) V Pi(p3, p1) A Pi(pa, p1)) A =
(P1(p2, p1) V Pi(p3, p1) A Pi(pa, p1)) A ¢

If we continue with standard progression, we get 1.

Although 4 is not a bad prefix!

Rewrite into the past!

(P1(p2; p1) V Pi(ps, p1) A Pi(pa, p1)) A o =
(Xp2 V Xps A Xpa) A @

(Do the same for the other monitors.)

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 10 /

Our first change to the progression function

T if p € o,
P(p,0,AP;) = L if p¢ oApe AP,
Xp otherwise,

v

In other words

@ We need to distinguish why o does not satisfy the proposition.

@ Therefore, we add a third argument to progression function (i.e., the local
alphabet)

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 11 /25

Our second change to the progression function

Definition (Progression of past formula)

T if ¢ = p for some p € AP; N [1;(a(—m)),
P(X"p,0,AP;) = 1 if ¢ = p for some p € AP; \ M;(o(—m)),

< m+1 .
X" @ otherwise,

where I is a projection function onto the local alphabet, and o(—m) the system
event which occurred at time t — m.

@ Each monitor is now assumed to have a bounded buffer of past events!

@ Since we do not allow X for the specification of a global system monitoring
property, our definitions will ensure that the local monitoring goals, ¢!, will
never be of the form iXXp, which is equivalent to a future obligation,
despite the initial X.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 12 /25

Inter-monitor communication

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monit Work presented originally at FM'12 13 /25

Inter-monitor communication

What is a monitor to do with a formula X¢?]

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL moni 2 Work presented originally at FM'12 13 /25

Inter-monitor communication

What is a monitor to do with a formula X¢? |

Monitors send “urgent” obligations to respective co-monitors via communication
bus.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 13 /25

Inter-monitor communication

What is a monitor to do with a formula X¢? J

Monitors send “urgent” obligations to respective co-monitors via communication
bus.

Definition (Urgency of formula)

Let ¢ be an LTL formula, and T : LTL — N2° be an inductively defined function
assigning a level of urgency to an LTL formula as follows.

T(p) = match o with o1 Vo | p1 Az — max(T(p1), T(p2))
| X' — 1+ 7T(¢)
| - — 0.

A formula ¢ is said to be more urgent than formula %, if and only if
T(¢) > T(¥) holds. A formula ¢ where T(¢) = 0 holds is said to be not urgent.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 13 /25

Communication policy

Consider M; again: (Xpy V Xp3 A Xps) A
@ Who should M; send the formula to?

@ Could send it to all My, M3 and M,.2

@ But then the communication overhead for monitoring competes with the
communication of the application under scrutiny. :-(

Monitor communication policy

@ Send most urgent obligation first.

@ If no such obligation exists, send to one monitor according to a linear order,
e.g., My <...< M,. (Order is arbitrary but fixed.)

@ That is, M; sends the formula to M.

2In fact, the first version of this work did just that.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 14 /25

Handling sent obligations

Definition

If M;, at time t, sends an obligation to another monitor, then M;'s new obligation
is defined as ! ! = #.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 15 /25

Handling sent obligations

Definition

If M;, at time t, sends an obligation to another monitor, then M;'s new obligation
is defined as ! ! = #.

That is, it has nothing more to do, the other monitor now needs to check the
formula. M; may just have to progress #:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 15 /25

Handling sent obligations

Definition

If M;, at time t, sends an obligation to another monitor, then M;'s new obligation
is defined as ! ! = #.

That is, it has nothing more to do, the other monitor now needs to check the
formula. M; may just have to progress #:

Definition (Our third change to progression)
P(#,O', API) = #

15 /25

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Handling sent obligations

What happens when a monitor already has its own obligation?

Definition

Let cpﬁ'l be M;’s obligation to be checked at time t + 1.

It receives from M;, cpf“.

Hence, M sets it = oft! A it

(#Ap=10) |

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 16 / 25

Putting it all together

Algorithm L (Local monitor). Let ¢ be a global system specification, and

M ={My,...,M,} be the set of component monitors. The algorithm Local
Monitor, executed on each M;, returns T (resp. L), if o =p ¢} (resp. o [£p ¢f)
holds, where o € ¥; is the projection of an event to the observable set of actions
of the respective monitor, and ¢! the monitor's current local obligation.

L1.

L2.
L3.

L4.
L5.
L6.

L7.

[Next goal.] Let t € N=0 denote the current time step and ¢! be the
monitor’s current local obligation. If t = 0, then set ¢! := .

[Receive event.] Read next o.

[Receive messages.] Let {;}c[1,n,ji be the set of received obligations at
time t from other monitors. Set ¢j := o] A Ny o jsi ©)-

[Progress.] Determine P(¢!, o, AP;) and store the result in ™.

I
[Evaluate and return.] If ™! = T return T, if ™! = 1 return L.

i
[Communicate.] Let W C sus(¢'™) be the set of most urgent obligations
of ¢i*1. Send ¢! to respective monitor M;.
[Replace goal.] If in step L6 a message was sent at all, set cpf“ = #.

Then go back to step L1.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 17 /25

A quick word on semantics. . .

We now know the behaviour/semantics of an individual monitor:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

A quick word on semantics. . .

We now know the behaviour/semantics of an individual monitor:

In a single component-system, decentralised progression is equivalent to “standard
progression.”

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 18 /25

A quick word on semantics. . .

We now know the behaviour/semantics of an individual monitor:

In a single component-system, decentralised progression is equivalent to “standard
progression.”

Follows straight from the definitions. O

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 18 /25

A quick word on semantics. . .

We now know the behaviour/semantics of an individual monitor:

In a single component-system, decentralised progression is equivalent to “standard
progression.”

Follows straight from the definitions.

Definition

Let C ={GC,..., C,} be the set of system components, ¢ € LTL be a global
goal, and M = {Mj, ..., M,} be the set of component monitors. Further, let
d=u1(0)U...Uup(0) - ur(1)U...Uup(1)---ug(t)U...Uu,(t) be the global
behavioural trace, at time t € N20. If for some component C;, with i < n,
containing a local obligation ¢!, M; reports P(¢}, uj(t), AP;) = T (resp. L), then
UkEp@=T (resp. L). Otherwise, U }=p ¢ = 7.

A\

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 18 /25

Example—the algorithm at work

Decentralised prog. of ¢ = F(a A b A ¢) in a 3-component system.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = F(a A b A ¢) in a 3-component system.

t: | 0 1123
o: | {a, b}

Ma:

Mg:

Mc:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = F(a A b A ¢) in a 3-component system.

t: |0 1123

a: | {a, b}

My | a = Ple.o APA)
—XbAXcVy

Mg:

Mc:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = F(a A b A ¢) in a 3-component syste
t: | 0 1123

o: | {a, b}

Ma: ¥4 = P(p,0,APA)
=XbAXc Ve

Mg: | ¥b = Ple.cAPS)
=XaAXcVp

Mc:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = A b A c) in a 3-component syste
t: | 0 1|23

o: | {a, b}

My | ©h =Ple.o.APY)
=XbAXcVp

M: oL = P(p,0,APg)
=XaAXcVp

M| ¢t =Ple.oAPC)
=9

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring

Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = A b A c) in a 3-component syste
t: |0 1 2|3
o | {a,b} {a.b.c}
me | 5 =Pleo.APy)
=XbAXcVp
M: oL = P(p,0,APg)
=XaAXcVp
M| ¢t =Ple.oAPC)
=9

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring

Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = A b A c) in a 3-component syste
t: | 0 1 2|3
o: | {a.b} {a.b,c}
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs)
=XbAXcVyp =¥2cv(¥b/\icvw)
Ms: ¢k = P(p,0,APg)
=XaAXcVp
M| ¢t =Ple.oAPC)
=9

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring

Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = A b A c) in a 3-component syste
t |0 1 203
o | {a, b} {a, b, c}
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs)
=XbAXcVyp =¥2cv(¥b/\icvw)
M: <p15 = P(p,0,APg) wé =P(4p}4/\#,mAPB)
=XaAXcVp :fzc\/(fa/\fc\/ap)
Mc: ¢ = P(p,0,APc)
=p

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring

Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = A b A c) in a 3-component syste
|0 1 2(3
o | {a, b} {a, b, c}
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs)
=XbAXcVyp =¥2cv(¥b/\icvw)
M: <p15 = P(p,0,APg) wé B P(Ap}a A #,0,APg)
=XaAXcVp :fzc\/(fa/\fc\/ap)
Me: ¥t =P(p,0,APc) | & =P(p,0,APq)
= =XaAXbV g

Bauer - Falcone (NICTA / ANU / U of Grenoble)

Decentralised LTL monitoring

Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = A b A c) in a 3-component syste
|0 1 2(3
o | {a, b} {a, b, c} 0
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs)
=XbAXcVyp =¥2cv(¥b/\icvw)
M: <p15 = P(p,0,APg) wé B P(Ap}a A #,0,APg)
=XaAXcVp :fzc\/(fa/\fc\/ap)
Me: ¥t =P(p,0,APc) | & =P(p,0,APq)
= =XaAXbV g

Bauer - Falcone (NICTA / ANU / U of Grenoble)

Decentralised LTL monitoring

Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ = b A c) in a 3-component system.
t |0 1 2 3
o | {a, b} fa, b, c} 0
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs) ¢ = P(¢e A #.0,AP,)
=XbAXcVyp =¥2cv(¥b/\icvw) =¥2b\/(ib/\¥cVLp)
M: oL = P(p,0,APg) 0% = P(p4 A #,0,APg)
=XaAXcVp :fzc\/(fa/\fc\/ap)
M| $€ =P(poAPO) | ¢t = P(p.0,APC)
= =XaAXbV g

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ =

b A c) in a 3-component system.

£ |0 1 2
a: | {a, b} {a,b,c} 0
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs) va = P(pz N#,0,APa)
=XbAXcVyp =¥2cv(¥b/\icvw) =¥2b\/(ib/\¥cVLp)
Ms: 0 =P(p,0,APB) | @k = P(o4A#,0,APB) oy = P(#,0,APg)
=XaAXcVp :fzc\/(fa/\fc\/ap) =#
Me: ¥t =P(p,0,APc) | & =P(p,0,APq)
= =XaAXbV g

Bauer - Falcone (NICTA / ANU / U of Grenoble)

Decentralised LTL monitoring

Work presented originally at FM'12

19 /25

Example—the algorithm at work

Decentralised prog. of ¢ A b A c) in a 3-component system.
t]0 1 2 3
o: | {a,b} {a. b c} 0
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs) ¢ = P(¢e A #.0,AP,)
=XbAXcVep =X’cV (XbAXcV o) =X’bV (XbAXc V)
Mg | B = P(p0APB) | ¢f = P(oh A #,0,AP) ¢h = P(#.0,APp)
=XaAXcVyp =X’cv (XaAXcVy) =#
M| $€ =P(poAPO) | ¢t = P(p.0,APC) 9t = P(¢a Aok A0, APC)
=y =XaAXbV g :iza/\YZb\/y:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL moni 2 Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢ A b A c) in a 3-component system.
t |0 1 2 3
a: | {a, b} {a,b,c}] 0
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs) va = P(pz N#,0,APa)
=XbAXcVyp =¥2cv(¥b/\icvw) =¥2b\/(ib/\¥cVLp)
M: oL = P(p,0,APg) 0% = P(p4 A #,0,APg) 0} = P(#,0,APg)
=XaAXcVp :fzc\/(fa/\fc\/ap) =#
Me: ¥t =P(p,0,APc) | & =P(p,0,APq) 0t = P(04 Aok A#,0,APc)
=y =XaAXbV g :iza/\YZb\/y:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL moni 2 Work presented originally at FM'12

Example—the algorithm at work

Decentralised prog. of ¢ A b A c) in a 3-component system.
|0 1 2 3
a: | {a, b} {a,b,c}] 0
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs) Pa = P(¢z N#.0,APA) ©h = P(pt N#,0,APa)
=XbAXcVyp =¥2cv(¥b/\icvw) =¥2b\/(ib/\¥cVLp) =f3bv(ib/\fc\/ga)
Ms: 0 =P(p,0,APB) | @k = P(o4A#,0,APB) oy = P(#,0,APg)
=XaAXcVp :fzc\/(fa/\fc\/ap) =#
Me: ¥t =P(p,0,APc) | & =P(p,0,APq) vt = P(ph ApE A#,0,APG)
=y =XaAXbV g :iza/\YZb\/y:

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL moni 2 Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢

A b A c) in a 3-component system.

t: | 0 1
o: | {a b} {a. b c}
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs) Ph = P9t N#,0,APA) Ph = P(pt N#.0,AP)
=XbAXcVyp =¥2cv(¥b/\icvw) =¥2b\/(ib/\¥cVLp) =f3bv(ib/\fc\/ga)
Mg | B = P(p0APB) | ¢f = P(oh A #,0,AP) ¢h = P(#.0,APp) ¢b = P(paA#,0,APs)
=XaAXcVp :fzc\/(fa/\fc\/ap) =# =
M | 6 =PlpoAPe) | ¢t = P(p,0,APC) o2 = P(QA AL A#,0,APC)
=p :ia/\ibv(,o :iza/\YZb\/y:

Bauer - Falcone (NICTA / ANU / U of Grenoble)

Decentralised LTL moni

Work presented originally at FM'12

19 /25

Example—the algorithm at work

Decentralised prog. of ¢ A b A c) in a 3-component system.
|0 1 2 3
a: | {a, b} {a,b,c}] 0
Ma: | $h =Ple,osAPA) | 0% = P(op A#,0,APs) va = P(pz N#,0,APa) ©h = P(pt N#,0,APa)
=XbAXcVyp =¥2cv(¥b/\icvw) =¥2b\/(ib/\¥cVLp) =f3bv(ib/\fc\/ga)
Mg | B = P(p0APB) | ¢f = P(oh A #,0,AP) 95 = P(#,0,APg) ¢b = P(paN#,0,APg)
=XaAXcVp :fzc\/(fa/\fc\/ap) =# =T
Me: ¥t =P(p,0,APc) | & =P(p,0,APq) vt =P(PAAPEA#,0,APc) | @t = P(#,0,APc)
=y =XaAXbV g :iza/\YZb\/y: =#

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL moni 2 Work presented originally at FM'12 19 /25

Example—the algorithm at work

Decentralised prog. of ¢

A b A c) in a 3-component syste

0

1

2 3
o: | {a, b} {a,b,c} 0 0

My | P4 =P APA) | @k = Plgh A#.0,APy) ¥ = P(eE A #,0,AP4) #h = Plot A #.0,APs)
=XbAXcVp =XcV (XbAXcVyp) =X"bV (XbAXcVyp) =X bV (XbAXcV)

Me: | ¥b =P(0:2APs) | ¢h =P(ohA# 0, APs) ¢k = P(#,0,AP5) ¢l = P(vaA#,0,APp)
=XaAXcVp =XcV(XanXcVeyp) =# =T

M | ¥t =PlpoAPO) | ¢t = Plp,0,APC) vt =PleANgsA#o,APC) | 6t = P(#0,APC)
=@ =XaAXbV ey =XaAnXbVy =#

Thus, {a, b}{a, b, c}00 Ep .

Bauer - Falcone (NICTA / ANU / U of Grenoble)

Decentralised LTL monitoring

Work presented originally at FM'12

19 /25

Example—the algorithm at work

t |0 1 2 3
o: | {a, b} {a,b,c} 0 0
Ma: oh = f(%t:-APA) o = fgw}; /\7#~‘7'<,;APA) o = fgv% /\j#,mfPA) o4 = fgeai Ajhﬂ,fPA)
=XbAXcVy =X cV(XbAXcV) =X bV (XbAXcV) =X bV (XbAXcVp)
M. | $B = P(p0APs) | ¢} :fgwi A #,0,APp) 9§ = P(#,0,APg) ¢ = P(paA#,0,APg)
=XaAXcVp =XcV(XanXcVeyp) =# =T
M | 9t =P(poAPO) | ¢t = Plp,0,APC) ¥t =PleAngaA#0,APC) | 6f = P(#0,APC)
=¢ =XaAXbV ey =XaAnXbVy =#

Thus, {a, b}{a, b, c}00 Ep .

(Well, in fact, we'd have to show that our definition of semantics implies this
result. But we have: it is a ca. 10 page proof in the paper.)

Bauer - Falcone (NICTA / ANU / U of Grenoble)

Decentralised LTL monitoring

Work presented originally at FM'12

19 /25

How much does a monitor need to remember?

Let, for any p € AP, imp be a local obligation obtained by Algorithm L executed
on some monitor M; € M. At any time t € N2°, m < min(|M|, t + 1).

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

How much does a monitor need to remember?

Let, for any p € AP, imp be a local obligation obtained by Algorithm L executed
on some monitor M; € M. At any time t € N2°, m < min(|M|, t + 1).

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

How much does a monitor need to remember?

Theorem

Let, for any p € AP, imp be a local obligation obtained by Algorithm L executed
on some monitor M; € M. At any time t € N2°, m < min(|M|, t + 1).

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

However

| A

Unless, we rule this out, there could be an infinite delay not due to
communication:

o trueU(Gb V F-b)

@ As long as we don't see —b, the monitor doesn't know it's a tautology!

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 20 / 25

How much does a monitor need to remember?

Theorem

Let, for any p € AP, imp be a local obligation obtained by Algorithm L executed
on some monitor M; € M. At any time t € N2°, m < min(|M|, t + 1).

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

However

| A

Unless, we rule this out, there could be an infinite delay not due to
communication:

o trueU(Gb V F-b)

@ As long as we don't see —b, the monitor doesn’t know it's a tautology!

Corollary

Given a ‘“clean input”: communication delay = memory requirements = verdict
delay. (Otherwise, we can't say much at all.)

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 20 / 25

Implementation of the approach

We have implemented our approach (DecentMon) and compared it empirically
against a centralised approach (right picture):

G G G Gy G G G (@ M

M| [Ma| [Ms| | My

|]

VS.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 21 /25

Evaluation—random formulae

@ Three monitors, A, B, C, each see actions a, b, ¢, respectively.

@ DecentMon generates 1000 random LTL formulae, and monitors random
traces:

centralised decentralised diff. ratio
[trace| | #msg. | |trace| | #msg. | |trace| | #msg.
1.369 | 4.107 1.634 | 0.982 | 1.1935 | 0.2391
2.095 6.285 2.461 1.647 | 1.1747 0.262
3.518 | 10.554 4.011 2.749 | 1.1401 | 0.2604
5.889 | 17.667 6.4 4.61 | 1.0867 | 0.2609
9.375 | 28.125 | 9.935 | 7.879 | 1.0597 | 0.2801
11.808 | 35.424 | 12.366 | 9.912 | 1.0472 | 0.2798

O\U‘I-b(»l\)l—lﬁ

@ First column: all formulae of size |n|.
@ |trace| column: length of trace until verdict was reached.

@ #msg. column: how many messages were exchanged.

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 22 /25

Evaluation—a note on heuristics

A quick word on formula length: Normally, |G(a A b) V Fc| = 7. J

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Evaluation—a note on heuristics

A quick word on formula length: Normally, |G(a A b) V Fc| = 7. J
But not representative for effort to monitor in distributed manner! E.g.,
(aA...Az)is of size 25, yet can be monitored almost instantly. J

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Evaluation—a note on heuristics

A quick word on formula length: Normally, |G(a A b) V Fc| = 7.]
But not representative for effort to monitor in distributed manner! E.g.,
(aA...Az)is of size 25, yet can be monitored almost instantly. J

Here: formula size = number of temp. operators
|G(a A b)VFc|=2

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12 23 /25

Evaluation—a note on heuristics

A quick word on formula length: Normally, |G(a A b) V Fc| = 7.]
But not representative for effort to monitor in distributed manner! E.g.,
(aA...Az)is of size 25, yet can be monitored almost instantly. J

Here: formula size = number of temp. operators
|G(a A b)VFc|=2

Formula length = heuristic for communication effort J

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Evaluation—spec patterns

@ Specification Patterns (Dwyer et al.) describe frequently occurring
requirements in software specification (absence, existence, etc.)

@ We generated 1000 LTL formulae, corresponding to each such requirement.

centralised decentralised diff. ratio
pattern |trace| #msg. | [trace| | #msg. | [trace| | #msg.
absence 156.17 468.51 | 156.72 | 37.94 | 1.0035 | 0.0809
existence 189.90 569.72 | 190.42 44.41 | 1.0027 | 0.0779
bounded existence | 171.72 515.16 | 172.30 | 68.72 | 1.0033 | 0.1334
universal 97.03 291.09 | 97.66 11.05 | 1.0065 | 0.0379
precedence 224.11 672.33 | 224.72 | 53.703 | 1.0027 | 0.0798
response 636.28 | 1,908.86 | 636.54 | 360.33 | 1.0004 | 0.1887
precedence chain | 200.23 600.69 | 200.76 62.08 | 1.0026 | 0.1033
response chain 581.20 | 1,743.60 | 581.54 | 377.64 | 1.0005 | 0.2165
constrained chain | 409.12 | 1,227.35 | 409.62 | 222.84 | 1.0012 | 0.1815

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM'12

Thank you!

That's Canberra:

View onto Lake Burley Griffin from Mount Ainslie (in winter).

Bauer - Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitori

Work presented originally at FM'12 25

