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An introductory example

Most modern cars realise the following abstract requirement:

“Issue warning if one of the passengers is not wearing a seat belt
(when the car has reached a certain speed).”

Could be formalised using LTL:

ϕ := G
(
speed low ∨ ((pressure sensor 1 high⇒ seat belt 1 on)

∧ . . .
∧ (pressure sensor n high⇒ seat belt n on))

)
and then monitored as usual. . .

Bauer · Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM’12 2 / 25



An introductory example

Most modern cars realise the following abstract requirement:

“Issue warning if one of the passengers is not wearing a seat belt
(when the car has reached a certain speed).”

Could be formalised using LTL:

ϕ := G
(
speed low ∨ ((pressure sensor 1 high⇒ seat belt 1 on)

∧ . . .
∧ (pressure sensor n high⇒ seat belt n on))

)
and then monitored as usual. . .

Bauer · Falcone (NICTA / ANU / U of Grenoble) Decentralised LTL monitoring Work presented originally at FM’12 2 / 25



An introductory example

However, cars are nowadays highly distributed systems (≥ 130 CPUs):

Legend:

3. Occupant sensing system (only one shown)

7. Seat-belt buckle sensors

You can’t easily monitor ϕ without central observation point!
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Related work (i.e., what others are doing about it)

Sen et al.: Decentralized runtime analysis of multithreaded applications
(IPDPS’06)

Custom logic, MtTL, for specifying properties of “agents” (similar to LTL).
Monitoring problem: Matching of partially ordered traces against MtTL
property (i.e., central collection point).
Restrictions: Safety properties only.

Genon et al.: Monitoring distributed controllers (FM’06)

LTL model checking of partially ordered traces (i.e., central collection point).
Main contribution lies in state-space reduction.

And quite a few more works along those lines. . .

Ylies and I wanted to know. . .
What happens if you can’t collect a trace centrally?

Can we monitor a system in a truly distributed manner?
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The setting (I)

C1 C2 C3 C4

Communication bus

Let ϕ ∈ LTL(AP) be the global system specification to be monitored.

Let Σ = 2AP . Set of all system events, Σ = Σ1 ∪ . . .∪Σ4, where Σj ∩Σi = ∅
for all i 6= j .

Let ~u = (u1, . . . , un) be the global trace of length t.

Monitors, like components, communicate via the bus.

Each monitor monitors its own specification at any time t, ϕt
i . The

specification changes depending on the trace and communication.

If ϕt
i = > (resp. bot) at Ci , then ~u ∈ good(ϕ) (resp. bad(ϕ)).
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The setting (II)

Bus is synchronous, i.e., at each time t a component/monitor may send (and
receive) a message.

At t + 1 this message is received by the recipient.

That is, computation takes no time.

Arguably, matches the X-semantics of LTL.

There are stutter-free variants of LTL. We do not consider this here.
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A note on perfect synchrony

–“Is perfect synchrony realistic?”

–“Not always, but many safety critical systems use it.”

Automotive domain uses FlexRay data bus, which has (among others) a
synchronous transfer mode:

Examples: Steer-by-wire, brake-by-wire, engine management, etc.

Flight-control systems mostly synchronous (fly-by-wire):

Examples for implementation/verification systems used in this domain:
SIGNAL, Lustre, Astrée verifier, etc.
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Monitoring by progression (central case)

Let’s assume our system looks like this:1

C1

M1

We could easily use progression to monitor a specification ϕ ∈ LTL.

Definition (Progression function P : LTL(AP)× 2AP → LTL(AP))

Let ϕ,ϕ1, ϕ2 ∈ LTL(AP), and σ ∈ 2AP be an event.

P(p ∈ AP, σ) = >, if p ∈ σ,⊥ otherwise
P(ϕ1 ∨ ϕ2, σ) = P(ϕ1, σ) ∨ P(ϕ2, σ)
P(ϕ1Uϕ2, σ) = P(ϕ2, σ) ∨ P(ϕ1, σ) ∧ ϕ1Uϕ2

P(Gϕ, σ) = P(ϕ, σ) ∧ G(ϕ)
P(Fϕ, σ) = P(ϕ, σ) ∨ F(ϕ)

P(>, σ) = >
P(⊥, σ) = ⊥
P(¬ϕ, σ) = ¬P(ϕ, σ)
P(Xϕ, σ) = ϕ

1Central monitoring is, but a special case of distributed monitoring.
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Monitoring by progression (distributed case)

But we really care for distribution! Let’s assume that ϕ = G(p1 ∧ p2 ∨ p3 ∧ p4).

C1

M1

C2

M2

C3

M3

C4

M4

Let’s also assume that, initially, ϕ0
i = ϕ for i ∈ [1, 4], and that Σi = {pi , ∅}.

At time 0, let u1 = p1, u2 = p2, u3 = u4 = ∅.

Observe: ϕ is a safety property

Is ϕ violated by ~u?

How could any of the monitors know?

Monitors need to communicate outstanding obligations.
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Monitoring by progression (distributed case)

Let’s take a closer look at C1/M1:

P1(G(p1 ∧ p2 ∨ p3 ∧ p4), p1) =

(P1(p1, p1) ∧ P1(p2, p1) ∨ P1(p3, p1) ∧ P1(p4, p1)) ∧ ϕ =
(P1(p2, p1) ∨ P1(p3, p1) ∧ P1(p4, p1)) ∧ ϕ

If we continue with standard progression, we get ⊥.

Although ~u is not a bad prefix!

Rewrite into the past!

(P1(p2, p1) ∨ P1(p3, p1) ∧ P1(p4, p1)) ∧ ϕ =
(Xp2 ∨ Xp3 ∧ Xp4) ∧ ϕ

(Do the same for the other monitors.)
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(P1(p2, p1) ∨ P1(p3, p1) ∧ P1(p4, p1)) ∧ ϕ =
(Xp2 ∨ Xp3 ∧ Xp4) ∧ ϕ

(Do the same for the other monitors.)
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Our first change to the progression function

Definition

P(p, σ,APi) =


> if p ∈ σ,
⊥ if p /∈ σ ∧ p ∈ APi,

Xp otherwise,

In other words
We need to distinguish why σ does not satisfy the proposition.

Therefore, we add a third argument to progression function (i.e., the local
alphabet)
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Our second change to the progression function

Definition (Progression of past formula)

P(X
m
ϕ, σ,APi) =


> if ϕ = p for some p ∈ APi ∩ Πi (σ(−m)),
⊥ if ϕ = p for some p ∈ APi \ Πi (σ(−m)),

X
m+1

ϕ otherwise,

where Π is a projection function onto the local alphabet, and σ(−m) the system
event which occurred at time t −m.

Note
Each monitor is now assumed to have a bounded buffer of past events!

Since we do not allow X for the specification of a global system monitoring
property, our definitions will ensure that the local monitoring goals, ϕt

i , will
never be of the form XXXp, which is equivalent to a future obligation,
despite the initial X.
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Inter-monitor communication

What is a monitor to do with a formula Xϕ?

Idea
Monitors send “urgent” obligations to respective co-monitors via communication
bus.

Definition (Urgency of formula)

Let ϕ be an LTL formula, and Υ : LTL→ N≥0 be an inductively defined function
assigning a level of urgency to an LTL formula as follows.

Υ(ϕ) = match ϕ with ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 → max(Υ(ϕ1),Υ(ϕ2))
| Xϕ′ → 1 + Υ(ϕ′)
| → 0.

A formula ϕ is said to be more urgent than formula ψ, if and only if
Υ(ϕ) > Υ(ψ) holds. A formula ϕ where Υ(ϕ) = 0 holds is said to be not urgent.
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Communication policy

Consider M1 again: (Xp2 ∨ Xp3 ∧ Xp4) ∧ ϕ

Who should M1 send the formula to?

Could send it to all M2, M3 and M4.2

But then the communication overhead for monitoring competes with the
communication of the application under scrutiny. :-(

Monitor communication policy

Send most urgent obligation first.

If no such obligation exists, send to one monitor according to a linear order,
e.g., M1 < . . . < M4. (Order is arbitrary but fixed.)

That is, M1 sends the formula to M2.

2In fact, the first version of this work did just that.
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Handling sent obligations

Definition
If Mi , at time t, sends an obligation to another monitor, then Mi ’s new obligation
is defined as ϕt+1

i = #.

That is, it has nothing more to do, the other monitor now needs to check the
formula. Mi may just have to progress #:

Definition (Our third change to progression)

P(#, σ,APi) = #
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Handling sent obligations

What happens when a monitor already has its own obligation?

Definition

Let ϕt+1
j be Mj ’s obligation to be checked at time t + 1.

It receives from Mi , ϕ
t+1
i .

Hence, Mj sets ϕt+1
j = ϕt+1

j ∧ ϕt+1
i .

(# ∧ ϕ = ϕ.)
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Putting it all together

Algorithm L (Local monitor). Let ϕ be a global system specification, and
M = {M1, . . . ,Mn} be the set of component monitors. The algorithm Local
Monitor, executed on each Mi , returns > (resp. ⊥), if σ |=D ϕt

i (resp. σ 6|=D ϕt
i )

holds, where σ ∈ Σi is the projection of an event to the observable set of actions
of the respective monitor, and ϕt

i the monitor’s current local obligation.
L1. [Next goal.] Let t ∈ N≥0 denote the current time step and ϕt

i be the
monitor’s current local obligation. If t = 0, then set ϕt

i := ϕ.

L2. [Receive event.] Read next σ.

L3. [Receive messages.] Let {ϕj}j∈[1,n],j 6=i be the set of received obligations at
time t from other monitors. Set ϕt

i := ϕt
i ∧
∧

j∈[1,n],j 6=i ϕj .

L4. [Progress.] Determine P(ϕt
i , σ,APi) and store the result in ϕt+1

i .

L5. [Evaluate and return.] If ϕt+1
i = > return >, if ϕt+1

i = ⊥ return ⊥.

L6. [Communicate.] Let Ψ ⊆ sus(ϕt+1
i ) be the set of most urgent obligations

of ϕt+1
i . Send ϕt+1

i to respective monitor Mj .

L7. [Replace goal.] If in step L6 a message was sent at all, set ϕt+1
i := #.

Then go back to step L1.
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A quick word on semantics. . .

We now know the behaviour/semantics of an individual monitor:

Theorem
In a single component-system, decentralised progression is equivalent to “standard
progression.”

Proof.
Follows straight from the definitions.

Definition

Let C = {C1, . . . ,Cn} be the set of system components, ϕ ∈ LTL be a global
goal, and M = {M1, . . . ,Mn} be the set of component monitors. Further, let
~u = u1(0) ∪ . . . ∪ un(0) · u1(1) ∪ . . . ∪ un(1) · · · u1(t) ∪ . . . ∪ un(t) be the global
behavioural trace, at time t ∈ N≥0. If for some component Ci , with i ≤ n,
containing a local obligation ϕt

i , Mi reports P(ϕt
i , ui (t),APi) = > (resp. ⊥), then

~u |=D ϕ = > (resp. ⊥). Otherwise, ~u |=D ϕ = ?.
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Example—the algorithm at work

Decentralised prog. of ϕ = F(a ∧ b ∧ c) in a 3-component system.

t: 0 1 2 3

σ:

MA:

MB :

MC :
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Thus, {a, b}{a, b, c}∅∅ |=D ϕ.
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Thus, {a, b}{a, b, c}∅∅ |=D ϕ.

(Well, in fact, we’d have to show that our definition of semantics implies this
result. But we have: it is a ca. 10 page proof in the paper.)
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How much does a monitor need to remember?

Theorem

Let, for any p ∈ AP, X
m

p be a local obligation obtained by Algorithm L executed
on some monitor Mi ∈M. At any time t ∈ N≥0, m ≤ min(|M|, t + 1).

This, at the same time, reflects the communication delay by which a decentralised
monitor may come to a verdict!

However
Unless, we rule this out, there could be an infinite delay not due to
communication:

trueU(Gb ∨ F¬b)

As long as we don’t see ¬b, the monitor doesn’t know it’s a tautology!

Corollary

Given a “clean input”: communication delay = memory requirements = verdict
delay. (Otherwise, we can’t say much at all.)
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Implementation of the approach

We have implemented our approach (DecentMon) and compared it empirically
against a centralised approach (right picture):

C1

M1

C2

M2

C3

M3

C4

M4

VS.

C1 C2 C3 C4 M
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Evaluation—random formulae

Three monitors, A,B,C , each see actions a, b, c , respectively.

DecentMon generates 1000 random LTL formulae, and monitors random
traces:

centralised decentralised diff. ratio
|ϕ| |trace| #msg. |trace| #msg. |trace| #msg.
1 1.369 4.107 1.634 0.982 1.1935 0.2391
2 2.095 6.285 2.461 1.647 1.1747 0.262
3 3.518 10.554 4.011 2.749 1.1401 0.2604
4 5.889 17.667 6.4 4.61 1.0867 0.2609
5 9.375 28.125 9.935 7.879 1.0597 0.2801
6 11.808 35.424 12.366 9.912 1.0472 0.2798

First column: all formulae of size |n|.
|trace| column: length of trace until verdict was reached.

#msg . column: how many messages were exchanged.
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Evaluation—a note on heuristics

A quick word on formula length: Normally, |G(a ∧ b) ∨ Fc | = 7.

But not representative for effort to monitor in distributed manner! E.g.,
(a ∧ . . . ∧ z) is of size 25, yet can be monitored almost instantly.

Here: formula size = number of temp. operators

|G(a ∧ b) ∨ Fc | = 2

Formula length = heuristic for communication effort
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Evaluation—spec patterns

Specification Patterns (Dwyer et al.) describe frequently occurring
requirements in software specification (absence, existence, etc.)

We generated 1000 LTL formulae, corresponding to each such requirement.

centralised decentralised diff. ratio
pattern |trace| #msg. |trace| #msg. |trace| #msg.
absence 156.17 468.51 156.72 37.94 1.0035 0.0809

existence 189.90 569.72 190.42 44.41 1.0027 0.0779
bounded existence 171.72 515.16 172.30 68.72 1.0033 0.1334

universal 97.03 291.09 97.66 11.05 1.0065 0.0379
precedence 224.11 672.33 224.72 53.703 1.0027 0.0798

response 636.28 1,908.86 636.54 360.33 1.0004 0.1887
precedence chain 200.23 600.69 200.76 62.08 1.0026 0.1033

response chain 581.20 1,743.60 581.54 377.64 1.0005 0.2165
constrained chain 409.12 1,227.35 409.62 222.84 1.0012 0.1815
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Thank you!

That’s Canberra:

View onto Lake Burley Griffin from Mount Ainslie (in winter).
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