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© Runtime verification of LTL
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Motivation

Software and systems verification

Secure systems life-cycle

Security External Static Penetration
requirements review analysis testing
isk- tools
Abuse Risk SR'Sk .'t’atseci (tools) Risk Security
cases analysis ecurity tests analysis breaks
L \ /I \ [| l [ I\ IJ
I 1 1 1 1 1
Requirements Design  Test Code  Test Field
and use cases plans results feedback

[McGraw 2003]
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Motivation

Software and systems verification

Secure systems life-cycle

Security External Static Penetration
requirements review analysis testing
isk- tools
Abuse Risk SR'Sk .'t’atseci (tools) Risk Security
cases analysis ecurity tests analysis breaks
L \ /I \ [| l [ I\ IJ
I 1 1 1 1 1
Requirements Design  Test Code  Test Field
and use cases plans results feedback
[McGraw 2003]

Some observations
@ Static analysis (and static verification) operate on abstractions
of the real-world system (code, state-models, etc.)

@ Penetration testing works on actual system, but is not

complete
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Motivation

Example: (semi-automatic) static verification

@ System model, e.g., UML message sequence chart (MSC) of a

protocol
C:Client S:Server
init(N, Kc,Sigan_l(C:: Ke))
resp ({S'éynKs—l (K::init1) Yinits »
Signicz3(5:Ks)) (snd (Extin, (inits))
= initz]

[fst(Exti,(cs)) =S A xchd ({s}x)

snd(fEtKr:(DecKE1(ck)))

=N § U
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Motivation

Example: (semi-automatic) static verification

@ System model, e.g., UML message sequence chart (MSC) of a
protocol

@ Predicate knows(E) meaning that adversary may get to know
E during the execution of the system
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Example: (semi-automatic) static verification

@ System model, e.g., UML message sequence chart (MSC) of a
protocol
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Motivation

Example: (semi-automatic) static verification

@ System model, e.g., UML message sequence chart (MSC) of a
protocol
@ Predicate knows(E) meaning that adversary may get to know
E during the execution of the system
@ E.g. secrecy requirement: For any secret s, check whether can
derive knows(s)
@ Automatically generate behavioural model of protocol (e.g.
from UMLsec)
@ Formalise security property, e.g.:
knows(N)A knows(K ) A knows(Sign,.(C::K.))
A Yinit, init, init,. [knows(init,) A knows(init,) A
knows(init,) A snd(Ext,,(init;)) = init,
) knows({Sign,.(...)}.) » [knows(Sign...)]
A Vresp,resp,. [...)...]]
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Motivation

Example: (semi-automatic) static verification

@ System model, e.g., UML message sequence chart (MSC) of a
protocol
@ Predicate knows(E) meaning that adversary may get to know
E during the execution of the system
@ E.g. secrecy requirement: For any secret s, check whether can
derive knows(s)
@ Automatically generate behavioural model of protocol (e.g.
from UMLsec)
@ Formalise security property, e.g.:
knows(N)A knows(K ) A knows(Sign,.(C::K.))
A Yinit, init, init,. [knows(init,) A knows(init,) A
knows(init,) A snd(Ext,,(init;)) = init,
) knows({Sign,.(...)}.) » [knows(Sign...)]
A Vresp,resp,. [...)...]]

@ Use theorem prover to check model against property
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Motivation

Monitoring /runtime verification

Mind the gap!

Potential errors
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Static methods
(static analysis, verification, etc.)

Andreas Bauer Security protocols, properties, and their monitoring



Motivation

Monitoring /runtime verification

Mind the g »

Static methods
(static analysis, verification, etc.)

Testing

Andreas Bauer Security protocols, properties, and their monitoring



Motivation

Monitoring /runtime verification

Mind the gap! »

Static methods
(static analysis, verification, etc.)

Testing

Andreas Bauer Security protocols, properties, and their monitoring



Motivation

Monitoring /runtime verification

Mind the gap! »

~ Static methods @ “Red area” typically not even
(static analysis, verification, etc.) ..
finite, because systems are often

infinite state systems (interaction
with environment, real-time, etc.)

Testing
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guarantee for safety or security
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Motivation

Monitoring /runtime verification

Mind the gap!

~ Static methods @ “Red area” typically not even
(static analysis, verification, etc.) L.
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Runtime verification

Testing I @ Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

@ Dynamic verification, operates on actual system

@ Checks actual system behaviour against correctness property

@ Ensures that statically verified properties hold at runtime

o
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Motivation

Runtime verification—how it's done
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Motivation

Runtime verification—how it's done

Central concept: m ing of actions

Temporal
Property

automatic
generation of

Behaviour Monitor
"\JZ, Property
e . fulfilled?
N
Actions
> {
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Motivation

Runtime verification—how it's done

Central concept: monitoring of actions

Fopory @ Property, ¢, specified in terms of
Il LTL(X) [Pnu77], where & = 2A4F:

W )= fulfilled?
\\'/\

Behaviour Monitor 9 <10 L= p | _‘SD | SD \/ <10 | SDUSD | XSD'
,J: Q ’ Property W|th p (S AP

Actions
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Runtime verification—how it's done

Central concept: monitoring of actions

Fopory @ Property, ¢, specified in terms of
Il LTL(X) [Pnu77], where & = 2A4F:

W )= fulfilled?
\\'/\

@ Interpretation of ¢ over linearly
fEs growing stream of actions, u € ¥*:

t @ Monitor: [u = ¢] = T7?.

Behaviour Monitor 9 <10 L= p | _‘SD | SD \/ <10 | SDUSD | XSD'
,J: Q ’ Property W|th p (S AP

\
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Motivation

Runtime verification—how it's done

Central concept: monitoring of actions

Pty @ Property, ¢, specified in terms of
Il LTL(X) [Pnu77], where & = 2A4F:

W )= fulfilled?
\\'/\

@ Interpretation of ¢ over linearly
fEs growing stream of actions, u € ¥*:

b @ Monitor: [u =] =T7?.

Central research questions

Behaviour Monitor 9 <10 L= p | _‘SD | SD \/ <10 | SDUSD | XSD'
&5 Q } Property with p € AP
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Motivation

Runtime verification—how it's done

Central concept: monitoring of actions

Temporal

ey @ Property, ¢, specified in terms of
Rl LTL(X) [Pnu77], where & = 2A4F:
Behaviour Monitor ° <10 = p | _‘SD | SD \/ <)0 | SDUSD | XSD'
J Q PRy with p < AP
s _/\ @ Interpretation of ¢ over linearly
Actons growing stream of actions, u € ¥*:
>t @ Monitor: [u =] = T7.

i

Central research questions

o Complexity of monitor generation usually irrelevant
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Central research questions

o Complexity of monitor generation usually irrelevant

@ How to generate good monitors?
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o Complexity of monitor generation usually irrelevant
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Motivation

Runtime verification—how it's done

Central concept: monitoring of actions

Temporal

ey @ Property, ¢, specified in terms of
Rl LTL(X) [Pnu77], where & = 2A4F:
Behaviour Monitor ° <10 = p | _‘SD | SD \/ <)0 | SDUSD | XSD'
J Q PRy with p < AP
s _/\ @ Interpretation of ¢ over linearly
Actons growing stream of actions, u € ¥*:
>t @ Monitor: [u =] = T7.

i

Central research questions

o Complexity of monitor generation usually irrelevant
@ How to generate good monitors?

@ What are suitable logics for property specification?

@ And what are their properties?
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Motivation

What can be specified?

Let ¢ € LTL(X) be an LTL formula, and i € N denote a position.
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Motivation

What can be specified?

Let ¢ € LTL(X) be an LTL formula, and i € N denote a position.

Formal LTL semantics

The semantics of LTL formulae is defined inductively over infinite
strings w € ¥ as follows:

w, i = true

w,i = —p S ow,ifEe

w,i=peAP & pew(i)

w,iEp1Ver & w,ilEpiVw,iE e

W)i)ZSDIUSOQ & dk >, W)k)2902/\

Vi<l<k w,Ee
w,i = Xp & wi+lEp
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Motivation

What can be specified?

Let ¢ € LTL(X) be an LTL formula, and i € N denote a position.

Formal LTL semantics

The semantics of LTL formulae is defined inductively over infinite
strings w € ¥ as follows:

w, i = true

w,i = —p S ow,ifEe

w,i=peAP & pew(i)

w,iEp1Ver & w,ilEpiVw,iE e

W)i)ZSDIUSOQ & dk >, W)k)2902/\

Vi<l<k w,Ee
w,i = Xp & wi+lEp

-

Notation: w = ¢, if and only if w,0 = ¢, and w(i) to denote the
ith element in w.
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Motivation

What can be specified? (intuitive semantics)
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What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” — L. Lamport, 1977. J
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Motivation

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” — L. Lamport, 1977. J

Safety properties

o If L C ¥¥ is a safety language, then all w & L have a finite
bad prefix.
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Safety properties

o If L C ¥¥ is a safety language, then all w & L have a finite
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@ Consider Gy:
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What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” — L. Lamport, 1977. J
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o If L C ¥¥ is a safety language, then all w & L have a finite
bad prefix.
@ Consider Gy:
s ¢ := p (“always p"), then Gy is safety
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Motivation

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” — L. Lamport, 1977. J

Safety properties

o If L C ¥¥ is a safety language, then all w & L have a finite
bad prefix.
@ Consider Gy:
s ¢ := p (“always p"), then Gy is safety
s ¢ := Fp (“eventually p"), then Gy is not safety — Why?
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Motivation

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” — L. Lamport, 1977. J

Safety properties

o If L C ¥¥ is a safety language, then all w & L have a finite
bad prefix.
@ Consider Gy:
s ¢ := p (“always p"), then Gy is safety
s ¢ := Fp (“eventually p"), then Gy is not safety — Why?

-

Liveness properties

o If L C X% is a liveness language, then for all u € ©* there
exists a w € X%, such that uw € L.

>
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Motivation

Is that all?
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Motivation

Is that all?

@ Interestingly, there are properties which are neither strictly
liveness nor strictly safety.
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Is that all?

@ Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

o If L C ¥¥ is a co-safety language, then all w € L have a finite
good prefix.
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Is that all?

@ Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

o If L C ¥¥ is a co-safety language, then all w € L have a finite
good prefix.

@ Let L be co-safety, then L is safety.
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Motivation

Is that all?

@ Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

o If L C ¥¥ is a co-safety language, then all w € L have a finite
good prefix.

@ Let L be co-safety, then L is safety.
@ pUgq is co-safety
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Motivation

Is that all?

@ Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

-

Co-safety properties

o If L C ¥¥ is a co-safety language, then all w € L have a finite
good prefix.

@ Let L be co-safety, then L is safety.
@ pUgq is co-safety

@ Fp is co-safety (but also liveness)

A\
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Motivation

Is that all? (Cont'd)

@ There are properties which are both, safety and co-safety, or
co-safety and liveness, etc. We call them “other”.

=~

Liveness

~~~~~

@ Natural question to ask: “which properties are the
monitorable properties, MON?" (cf. [PZ06])
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The SSL protocol

The SSL Protocol
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The SSL protocol

The SSL Protocol

Some facts in a nutshell

v
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The SSL protocol

The SSL Protocol

Some facts in a nutshell

@ Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

v
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The SSL Protocol

Some facts in a nutshell

@ Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

@ In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

@ as such, can also exist in user-space

v
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The SSL Protocol

Some facts in a nutshell

@ Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

@ In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

@ as such, can also exist in user-space
@ Many implementations exist (OpenSSL, Jessie, etc.)

@ Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

o Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

v
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The SSL protocol

The SSL Protocol

Some facts in a nutshell

@ Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

@ In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

@ as such, can also exist in user-space

@ Many implementations exist (OpenSSL, Jessie, etc.)
® Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages
o Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged
@ Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

i
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The SSL protocol

Monitoring the SSL handshake

ClientHello(Pve

. R...Sid, CipH{], Compl])

ServerHello(Pyer,. Ry Sid, Ciph, Comp)

Certificate{ X509Cery)
ClientKeyExchange(ency_(PMS))

Finished (HashMD5 (md5 .. ms, PADL, PAD?).

HashSHA(sha,_, ms, PAD\, PAD2))

[Very,, (Sig) ~

cheValnotBefore. notAfter))

[ Arrayequal(md5,', md5s) A
[Aerayequai(mds ;' md5.) A Arrayequal(sha, . sha)]
Arrayequal(sha, . sha, )] Finished (HashMD3(md5 . ms, PADL, PAD?2).
HashSHA(shag. ms. PADL, PAD2))
ExchangeData

sha, = HashFactory(SHA) sha, = HashFactory(SHA)

5. = HashFactory(MI5) md5, ::= HashFactory(MDS)

S ;= HashMDS (md5 g.ms. PADL. PADR) 5 5'= HashMDS (S, s, PADL PAD?)

shay = HashSHA(shay. ms. PADL PAD?) sha, "= HashSHA(sha,, ms, PADI, PADR)

Cert, = Certificate, X500Cert, = (Sign,., (N).Re vocation;  Validity ;.5 : K)

Sig = gerSignature(X 509Cert;) s = generateSecret(PMS)

notBefore = getNotBeforet X509Cert;)
rotAfter = getNotAfier (X 509Cert,)




The SSL protocol

Monitoring the SSL handshake

ClieniFetlo(Pver,, R Sid, CipH], Compl])

ServerHello(Pyer,. Ry Sid, Ciph, Comp)

Certificate{ X509Cery)
ClientKeyExchange(ency_(PMS))

Finished (HashMD5 (md5 .. ms, PADL, PAD?).

HashSHA(sha,_, ms, PAD\, PAD2))

[Very,, (Sig) ~

cheValnotBefore. notAfter))

[Arraye 5, md5s) A
[Array (md5 ', md5.) Arrayequal(shag ' shas)]
Arrayequat(sha,', sha, )] Finished (HashMD5 (., ms, PAD], PAD?),
: HashSHA(shas . ms, PADL. PAD2))
ExchangeData
sha, == HashFactory(SHA) shay, = HashFactory(SHA)
mdS, = HashFactory(MD5) md5, = HashFactory(MD5)

5 g

lashMD5 (md5 ;. ms, PADL, PAD2) md5 ;"= HashMD5(md5 .. ms, PADL. PAD2)
sha':= HashSHA(shag. ms. PADL, PAD?2) sh
Cert,

HashSHA(sha,., ms, PADI, PAD?)

Certificate, X509Cert; = (Sign,_, (N).Re vocation,  Validity ;.S : K;)

Sig = gerSignature(X 509Cert;) s = generateSecret(PMS)
notBefore = getNotBeforet X509Cert;)
rotAfter = getNotAfier (X 509Cert,)

@ Instead of generating behavioural model, we extract LTL
properties directly from the model and/or already formalised
FOL-security properties
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The SSL protocol

Monitoring the SSL handshake

ClieniFetlo(Pver,, R Sid, CipH], Compl])

ServerHello(Pyer,. Ry Sid, Ciph, Comp)

Certificate{ X509Cery)
ClientKeyExchange(ency_(PMS))

Finished (HashMD5 (md5 .. ms, PADL, PAD?).

HashSHA(sha,_, ms, PAD\, PAD2))

[Very,, (Sig) ~

cheValnotBefore. notAfter))

[Arraye 5, md5s) A
[Array (md5 ', md5.) Arrayequal(shag ' shas)]
Arrayequat(sha,', sha, )] Finished (HashMD5 (., ms, PAD], PAD?),
: HashSHA(shas . ms, PADL. PAD2))
ExchangeData
sha, == HashFactory(SHA) shay, = HashFactory(SHA)
mdS, = HashFactory(MD5) md5, = HashFactory(MD5)

5 g

lashMD5 (md5 ;. ms, PADL, PAD2) md5 ;"= HashMD5(md5 .. ms, PADL. PAD2)
sha':= HashSHA(shag. ms. PADL, PAD?2) sh
Cert,

HashSHA(sha,., ms, PADI, PAD?)

Certificate, X509Cert; = (Sign,_, (N).Re vocation,  Validity ;.S : K;)

Sig = gerSignature(X 509Cert;) s = generateSecret(PMS)
notBefore = getNotBeforet X509Cert;)
rotAfter = getNotAfier (X 509Cert,)

@ Instead of generating behavioural model, we extract LTL
properties directly from the model and/or already formalised
FOL-security properties

@ FOL over words and LTL expressively equivalent [Ka68

Andreas Bauer Security protocols, properties, and their monitoring



The SSL protocol

LTL security properties of the SSL protocol
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The SSL protocol

LTL security properties of the SSL protocol

Security property 1

“Client won't send out
ClientKeyExchange(enck, (PMS)) until it
has received Certificate(X509Cers), and the
validity check of the certificate is positive.”
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The SSL protocol

LTL security properties of the SSL protocol

Security property 1

“Client won't send out
ClientKeyExchange(enck, (PMS)) until it
has received Certificate(X509Cers), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

)
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The SSL protocol

LTL security properties of the SSL protocol

Security property 1

“Client won't send out
ClientKeyExchange(enck, (PMS)) until it
has received Certificate(X509Cers), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

© define alphabet accordingly wrt.
abstract functions & messages

)
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The SSL protocol

LTL security properties of the SSL protocol

Security property 1

“Client won't send out
ClientKeyExchange(enck, (PMS)) until it
has received Certificate(X509Cers), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

© define alphabet accordingly wrt.
abstract functions & messages

@ identify which functions &
messages are relevant

)
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The SSL protocol

LTL security properties of the SSL protocol

Security property 1

“Client won't send out
ClientKeyEXChange(enCK7 (PMS)) Until It in Model Send: ClientHello by Outpi .write in

type.getValue() Handshake.write

has received Certificate(X509Cers), and the bt > 6 0fHtondsaterte

validity check of the certificate is positive.” (boutsize() & OXFF) Handshake e

i ) Per < major ProtocolVersion.write
minor ProtocolVersion.write

(gmtUnixTime >>> 24) & OXFF) _| Random.write
((gmtUnixTime >>> 16) & OXFF) | Random.writ

To specify this in LTL, we have to (GmiUnixTime 55> ) & 0xFF) | Randomawrite
(gmtUnixTime & OxFF) Random.write

= B R —*|randomBytes ClientHello.write

© define alphabet accordingly wrt. cndomBytes et elounte

. Sid — | sessionld ClientHello.write.

abstract functions & messages (onensl s Lo Clenrelowie

i i ) ) ((suites size() << 1) & OXFF) ClientHello.write

@ identify which functions & Gyl N o,

m essages are releva nt Compll | compl2] ClientHello.write

@ instrument code to transmit
abstract values to monitor

~
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 1 in LTL

0,0

(<empty>)

(e (L0 N<empty>) (cert)

(cert) |(cert&&cke)

(cert&&cke) cke)

(cert&.& cke) G.-1) (<en corta & cke)

(cert&&cke)
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 1 in LTL

@ Y1 =
—ClientKeyExchange(ency, (PMS))U,, Certificate( X509 Cers)

0,0

(<empty>)

(e (L0 N<empty>) (cert)

(cert) |(cert&&cke)

(cert&&cke) cke)

(cert&.& cke) G.-1) (<en corta & cke)

(cert&&cke)
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 1 in LTL

@ Y1 =
—ClientKeyExchange(ency, (PMS))U,, Certificate( X509 Cers)

@ Safety property

0,0

(<empty>)

(e (L0 N<empty>) (cert)

(cert) |(cert&&cke)

(cert&&cke) cke)

(cert&.& cke) G.-1) (<en corta & cke)

(cert&&cke)
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 1 in LTL
@ Y1 =
—ClientKeyExchange(ency, (PMS))U,, Certificate( X509 Cers)

@ Safety property

@ Finite state machine of Moore-type:

0,0

(<empty>)

(ke (L0 N<empty>) (cert)

(cert) |(cert&&cke)

(cert&&cke) fcke)

(cert&.& cke) G.-) (<em cernt&acke)

(cert&&cke)
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 2

Finished(HashMD5(md5s, ms, PAD1, PAD?2)) is not sent by the server to
the client before the MD5 hash received from the client in the message
Finished(HashMD5(md5., ms, PAD1, PAD2)) has been checked to be
equal to the MD5 created by the server, and correspondingly for the SHA
hash, but will send it out eventually after that has been established.
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 2

Finished(HashMD5(md5s, ms, PAD1, PAD?2)) is not sent by the server to
the client before the MD5 hash received from the client in the message
Finished(HashMD5(md5., ms, PAD1, PAD2)) has been checked to be
equal to the MD5 created by the server, and correspondingly for the SHA

hash, but will send it out eventually after that has been established.
. ot

Security property 2 in LTL

w2 = (—Finished(HashMD5(md5s, ms, PAD1, PAD2))
U, Arrayequal(md5s, md5.))
A(FArrayequal(md5s, md5.)
= FFinished(HashMD5(md5s, ms, .. .))).

@ Not co-safety, not safety

-
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

0,0

ﬁm&)

LY _Dl<empty>)

(finished) (equal)

(equal) |\(equal & &finished)

(equal & & finished)

(2,3 <>(<empty>)(equal)

(equd&&finii\ed)

(equal & & finished)
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 3

“The client will not send any transport data to the server before the
MD5 hash received from the server in the Finished message has been
checked to be equal to the MD5 created by the client, and
correspondingly for the SHA hash.”
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The SSL protocol

LTL security properties of the SSL protocol (Cont'd)

Security property 3

“The client will not send any transport data to the server before the
MD5 hash received from the server in the Finished message has been
checked to be equal to the MD5 created by the client, and
correspondingly for the SHA hash.”

Security property 3 in LTL
@ 3 = - DataU,, ((MD5(Finishedg) = MD5(Finisheds))

o Safety
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Runtime verification of LTL

Runtime verification vs. model checking

LTL model checking using Buchi automata:
@ Translation: ¢ — A¥ s.t. L(.A¥) = models of ¢
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Runtime verification of LTL

Runtime verification vs. model checking

LTL model checking using Buchi automata:
@ Translation: ¢ — A¥ s.t. L(.A¥) = models of ¢
@ S | ¢: every run in S satisfies ¢, i.e., £(S x A™¥) = (7?
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Runtime verification of LTL

Runtime verification vs. model checking

LTL model checking using Buchi automata:
@ Translation: ¢ — A¥ s.t. L(.A¥) = models of ¢
@ S | ¢: every run in S satisfies ¢, i.e., £(S x A™¥) = (7?

@ Language inclusion often of higher complexity than “word
problem”, i.e. s € L(p)?
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Runtime verification of LTL

Runtime verification vs. model checking

LTL model checking using Buchi automata:
@ Translation: ¢ — A¥ s.t. L(A¥) = models of ¢
@ S |= ¢: every run in S satisfies ¢, i.e., L(S x A7%) = (7
@ Language inclusion often of higher complexity than “word
problem”, i.e. s € L(p)?

Properties of Biichi automata »

@ Biichi automata are nondeterministic (determinisation possible
but exponential time lower bound [Saf89])

v,
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Runtime verification of LTL

Runtime verification vs. model checking

LTL model checking using Buchi automata:
@ Translation: ¢ — A¥ s.t. L(A¥) = models of ¢
@ S |= ¢: every run in S satisfies ¢, i.e., L(S x A7%) = (7
@ Language inclusion often of higher complexity than “word
problem”, i.e. s € L(p)?

Properties of Biichi automata »

@ Biichi automata are nondeterministic (determinisation possible
but exponential time lower bound [Saf89])
@ Buchi-acceptance defined over infinite words

o Runtime verification deals only with prefixes
@ LTL semantics defined over infinite words, e. g., how to
interpret Xp at the end of a trace?

v,

Andreas Bauer Security protocols, properties, and their monitoring



Runtime verification of LTL

Runtime verification vs. model checking

LTL model checking using Buchi automata:
@ Translation: ¢ — A¥ s.t. L(A¥) = models of ¢
@ S |= ¢: every run in S satisfies ¢, i.e., L(S x A7%) = (7
@ Language inclusion often of higher complexity than “word
problem”, i.e. s € L(p)?

Properties of Biichi automata

@ Biichi automata are nondeterministic (determinisation possible
but exponential time lower bound [Saf89])

@ Buchi-acceptance defined over infinite words
o Runtime verification deals only with prefixes
@ LTL semantics defined over infinite words, e. g., how to
interpret Xp at the end of a trace?
@ For many applications, synchronous notion of time not
sufficient = support for timed languages )
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Runtime verification of LTL

An extension semantics for LTL
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Runtime verification of LTL

An extension semantics for LTL

Definition: Traditional LTL semantics
Given w € X%, ¢ € LTL, then w=p € {T, L}

Andreas Bauer Security protocols, properties, and their monitoring



Runtime verification of LTL

An extension semantics for LTL

Definition: Traditional LTL semantics
Given w € X%, ¢ € LTL, then w=p € {T, L}

Definition: Extension semantics over {T,L,?}: LTL3

Given u € X*, then

T ifVYweX¥: uwkyp
[uE¢l:=¢ L ifVweX¥: uwhp
?  otherwise
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Runtime verification of LTL

An extension semantics for LTL

Definition: Traditional LTL semantics
Given w € X%, p € LTL, then wEp € {T, 1}

Definition: Extension semantics over {T,L,7}: LTL3

Given u € X*, then

T ifVYweX¥: uwk=yp
[uE:=¢ L ifVweX¥: uwlp
7 otherwise

Wanted: An on-the-fly decision procedure for LTL3

@ How can we determine 7, i.e., whether 3w € X% : uw | ¢
and Iw’ € X¥ : uw’ B~ ©?

J

Andreas Bauer Security protocols, properties, and their monitoring



Runtime verification of LTL

An extension semantics for LTL

Definition: Traditional LTL semantics
Given w € X%, p € LTL, then wEp € {T, 1}

Definition: Extension semantics over {T,L,7}: LTL3

Given u € X*, then

T ifVYweX¥: uwk=yp
[uE:=¢ L ifVweX¥: uwlp
7 otherwise

Wanted: An on-the-fly decision procedure for LTL3
@ How can we determine 7, i.e., whether 3w € X% : uw | ¢
and Iw’ € X¥ : uw’ B~ ©?
@ How can we do this efficiently, i.e., at runtime?

Andreas Bauer Security protocols, properties, and their monitoring
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A%) = L(»)
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A%) = L(»)

© Emptiness per state: Labelling
F:Q?—{T,L1}
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}
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Towards an on-the-fly decision procedure for LTLj3
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Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
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Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}

a
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}

o
C—A1)
T

o,
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}

@
T

O
@ NFA: Turn A¥ into NFA A¢
using F as accepting states
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(y)

© Emptiness per state: Labelling
F:Q?—{T,1}

@
T

O
@ NFA: Turn A¥ into NFA A¢
using F as accepting states

@ DFA: Determinise A»
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
) — "
£(A%) = £(#) u € L(A¥) & ¢ is satisfiable

© Emptiness per state: Labelling
F:Qf —{T,1}

@
T

O
@ NFA: Turn A¥ into NFA A¢
using F as accepting states

@ DFA: Determinise A»
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
) — "
£(A%) = £(#) u € L(A¥) & ¢ is satisfiable

© Emptiness per state: Labelling
F:Q¥—{T, 1} .
However, there exists u € L£(A¥),

8 s.t. @ is unsatisfiable!

@
T

O
@ NFA: Turn A¥ into NFA A¢
using F as accepting states

@ DFA: Determinise A»
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(p)

© Emptiness per state: Labelling
F:Q?—{T,1}

u € L(A®) & ¢ is satisfiable

However, there exists u € L(A%),
s.t. @ is unsatisfiable!

@ Translation: —p — A7, s.t.
L{AT#) = Z\L(p)

@D
© NFA: Turn A¥ into NFA A¢
using F as accepting states

@ DFA: Determinise A ] 4
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
©) = "
£(A%) = £(¢) u € L(A®) & ¢ is satisfiable
© Emptiness per state: Labelling .

F Q‘p—>{—|—,J_}

However, there exists u € L(A%),
s.t. @ is unsatisfiable!

@ Translation: —p — A7, s.t.

D L(A™?) = Z\L(e)
@ NFA: Turn A% into NFA Ae @ Emptiness per state
using F as accepting states
© DFA: Determinise A% , D
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

© Translation: ¢ — A%, s.t.
L(A?) = L(p)

© Emptiness per state: Labelling
F:Q?—{T,1}

u € L(A®) & ¢ is satisfiable

However, there exists u € L(A%),
s.t. @ is unsatisfiable!

@ Translation: —p — A7, s.t.
L(A™?) = Z\L(e)
© Emptiness per state

@D
© NFA: Turn A¥ into NFA A¥ _
using F as accepting states © NFA: Turn A™ into NFA

@ DFA: Determinise A ] 4
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Runtime verification of LTL

Towards an on-the-fly decision procedure for LTLj3

@ Translation: 1~ A?, s.t.
) — 2
L£(A?) = L(¥) u € L(A¥) < o is satisfiable
© Emptiness per state: Labelling . <
F:Q?—{T,1} o
However, there exists u € L£(A%),
s.t. @ is unsatisfiable!

@ Translation: —p — A7, s.t.

L(A™?) = T\ L(p)
‘\:D )
O NFA: Turn A into NFA A% SIS A
using F as accepting states © NFA: Turn A™ into NFA
© DFA: Determinise A% 70 DFA: Determinise NFA
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Runtime verification of LTL

Monitor construction / decision procedure
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Runtime verification of LTL

Monitor construction / decision procedure

Given u € ¥*, p € LTL, then

T ifud L(A™?)
uE@l=2 L ifugL(A¥)
? ifue L(A™®) and u € L(AP)
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Runtime verification of LTL

Monitor construction / decision procedure

Given u € ¥*, p € LTL, then

T ifud L(A™?)
uE@l=2 L ifugL(A¥)
? ifue L(A™®) and u € L(AP)

A\

The procedure for getting [u = ¢] for a given ¢

Emptiness
Input Form il (1) NBA  (2) perpstate (3) NFA (4) DFA FSM
@ P »
y @ A F Ae A .
T A® F# Ao e

A\
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Runtime verification of TLTL

Real-time
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Runtime verification of TLTL

Real-time

Timed words
weTYY = (ao, to)(al, tl) R (a,- €L, te RZO)
@ Strict monotonicity: for each i € Z, t; < tiy1

@ Progress: for all t € RZ0 thereisan i € N, s.t. t; > t
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Runtime verification of TLTL

Real-time

Timed words
weTYY = (ao, to)(al, tl) R (a,- €L, te RZO)
@ Strict monotonicity: for each i € Z, t; < tiy1

@ Progress: for all t € RZ0 thereisan i € N, s.t. t; > t

(aj, t;) also called “event” |
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Runtime verification of TLTL

Real-time

Timed words
weE T := (a0, to)(a1, t1) ... (ai € L, t € R29)
@ Strict monotonicity: for each i € Z, t; < tiy1
@ Progress: for all t € RZ0 thereisan i € N, s.t. t; > t

(aj, t;) also called “event” |

Timed languages
A timed language L is a set of timed words
@ L is regular, if it is accepted by a timed automaton, whose
language is L

v
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Runtime verification of TLTL

Real-time

Timed words
weE T := (a0, to)(a1, t1) ... (ai € L, t € R29)
@ Strict monotonicity: for each i € Z, t; < tiy1
@ Progress: for all t € RZ0 thereisan i € N, s.t. t; > t

(aj, t;) also called “event” |

Timed languages

A timed language L is a set of timed words
@ L is regular, if it is accepted by a timed automaton, whose
language is L
@ Kleene and McNaughton Theorems exist (but we do not care
much right now. Active field of research.)

o
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Runtime verification of TLTL

Event clocks

For every a € ¥, there exists a recording and a predicting clock to
measure the distance between events.
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Runtime verification of TLTL

Event clocks

For every a € ¥, there exists a recording and a predicting clock to
measure the distance between events.

Clock

and

{oe)) = ti—t; ifdj<i:aj=aandVj<k<i:ax#a
Ti\Xa) = 1 otherwise
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Runtime verification of TLTL

Event clocks

For every a € ¥, there exists a recording and a predicting clock to
measure the distance between events.

{oe)) = ti—t; ifdj<i:aj=aandVj<k<i:ax#a
Ti\Xa) = 1 otherwise
o) = ti—t ifdj>iraj=aandVi<k<j:ax#a
iiYa) = 1 otherwise

Andreas Bauer Security protocols, properties, and their monitoring



Runtime verification of TLTL

Event clocks

For every a € ¥, there exists a recording and a predicting clock to
measure the distance between events.

loe)) = ti—t; ifdj<i:aj=aandVj<k<i:ax#a
el 1 otherwise
o) = ti—t ifdj>iraj=aandVi<k<j:ax#a
iiva) = 1 otherwise

Clock constraints
@ Constraint: zx ¢, with z € G, c € N, e {<, <, >, >}

)
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Runtime verification of TLTL

Event clocks

For every a € ¥, there exists a recording and a predicting clock to
measure the distance between events.

loe)) = ti—t; ifdj<i:aj=aandVj<k<i:ax#a
ey 1 otherwise
o) = ti—t ifdj>iraj=aandVi<k<j:ax#a
iiYa) = 1 otherwise

Clock constraints
@ Constraint: z ¢, with z € Gz, c € N, e {<, <, >, >}
@ Example: (x5 <5) € V()

J
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Runtime verification of TLTL

Event clocks

For every a € ¥, there exists a recording and a predicting clock to
measure the distance between events.

loe)) = ti—t; ifdj<i:aj=aandVj<k<i:ax#a
el 1 otherwise
o) = ti—t ifdj>iraj=aandVi<k<j:ax#a
iiva) = 1 otherwise

Clock constraints
@ Constraint: zx ¢, with z € G, c € N, e {<, <, >, >}
@ Example: (x5 <5) € V()
@ A valuation satisfies a constraint: v = ¢ € V((y)

)
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Runtime verification of TLTL

Event clocks

For every a € ¥, there exists a recording and a predicting clock to
measure the distance between events.

Clock

’\/i(Xa) = { IJ_J
ti—t;

vilya) = { T

Clock constraints

@ Constraint: zx ¢, with z € G, c € N, e {<, <, >, >}
@ Example: (x5 <5) € V()

@ A valuation satisfies a constraint: v = ¢ € V((y)

@ Example: y(x;) =32 = x, <5 )

Andreas Bauer Security protocols, properties, and their monitoring
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otherwise

ifdj>icaj=aandVi<k<j:ax#a
otherwise




Runtime verification of TLTL

Event-clock automata [AFH94]

Andreas Bauer Security protocols, properties, and their monitoring
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Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
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Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
@ Closed under all Boolean operations (e. g., complementation)
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Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
@ Closed under all Boolean operations (e. g., complementation)
@ Language inclusion is decidable, model checking possible
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Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
@ Closed under all Boolean operations (e. g., complementation)
@ Language inclusion is decidable, model checking possible
@ Less expressive (e. g., no arbitrary clock resets)
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Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
@ Closed under all Boolean operations (e. g., complementation)
@ Language inclusion is decidable, model checking possible
@ Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton A = (X, Q, Qo, E, F)
® ¥ Q, Qo, F as expected, and
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Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
@ Closed under all Boolean operations (e. g., complementation)
@ Language inclusion is decidable, model checking possible
@ Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton A = (X, Q, Qo, E, F)
® ¥ Q, Qo, F as expected, and
0 EC QxX xW(Cs) x 29 set of timed transitions.
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Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
@ Closed under all Boolean operations (e. g., complementation)
@ Language inclusion is decidable, model checking possible
@ Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton A = (X, Q, Qo, E, F)
® ¥ Q, Qo, F as expected, and
0 EC QxX xW(Cs) x 29 set of timed transitions.

Definition: Timed run |

Given w € TX%, a timed run is of the form:

0 6:(d0,7%0) 335 (q1,m) 23 (g2,7) B3 ...

v
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Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but
@ Closed under all Boolean operations (e. g., complementation)
@ Language inclusion is decidable, model checking possible
@ Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton A = (X, Q, Qo, E, F)

® ¥ Q, Qo, F as expected, and
0 EC QxX xW(Cs) x 29 set of timed transitions.

Definition: Timed run

| A\

Given w € TX%, a timed run is of the form:

0 6:(d0,7%0) 335 (q1,m) 23 (g2,7) B3 ...

Yo is initial, iff vo(x2) = L, and yo(ya) = tj (or y0(ya) = 1)
>
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Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])

pu=al<elll,n il -¢leVeleUp|Xp,acX
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Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])
pr=aldel(lnllEac((l,n]|—vleVepUp|Xpact

Semantics—intuitive account |
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Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])
pr=aldel(lnllEac((l,n]|—vleVepUp|Xpact

Semantics—intuitive account |

Same as LTL, except for two real-time operators
o G(r, €[0,5]): “always a within bs"
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Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])
pu=al<Lell,nleacl(in-pleVe|eUp|Xpact

Semantics—intuitive account

Same as LTL, except for two real-time operators
o G(r, €[0,5]): “always a within bs"
o G((«g €[0,3]) = p): “always if g was within 3s, then p now"
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Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])
pu=al<Lell,nleacl(in-pleVe|eUp|Xpact

Semantics—intuitive account

Same as LTL, except for two real-time operators
o G(r, €[0,5]): “always a within bs"
o G((«g €[0,3]) = p): “always if g was within 3s, then p now"

Acceptors for TLTL

[RI9]: ¢ — A&, s.t. L(AE&) = L(p)
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Monitoring TLTL properties
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Monitoring TLTL properties

The runtime verification problem for TLTL

Find an on-the-fly decision procedure for TLTL3:

T ifVvwe TEY tuw = ¢
[uE@l:=¢ L ifVYwe TZY: uw £ o,
?  otherwise

where ue€ TYX* and p € TLTL.
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Monitoring TLTL properties

The runtime verification problem for TLTL

Find an on-the-fly decision procedure for TLTL3:

T ifVwe TZY :uw ¢
[ulE @] = L ifVw e TZY :uw = o,
?  otherwise

where ue€ TYX* and o € TLTL.

Given w € TX%, a timed run is of the form:

d d d
® 9 (go,70) = (q1,m) 33 (q2,72) 33 ...
Yo is initial, iff vo(x2) = L, and yo(ya) = tj (or y0(ya) = 1)
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Runtime verification of TLTL

Monitoring TLTL properties

The runtime verification problem for TLTL

Find an on-the-fly decision procedure for TLTL3:

T fvweTXY: uw o
[u’:go]:: 1 ifVw e TZ“)ZUW%S%
?  otherwise

where ue€ TYX* and o € TLTL.

Given w € TX%, a timed run is of the form:

d d d
® 0:(90,70) 23 (q1,m) 33 (q2,72) 33 ...
Yo is initial, iff vo(x2) = L, and vo(ya) = tj (or yo(ya) = 1)

Problem #1: Given i, how can we determine v;(y,)? |
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Symbolic valuations
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Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, ' : C& — T, U/, assigning to each

@ recording (x,) clock variable a positive real, or bottom, and to
each
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Symbolic valuations

Use symbolic valuation, ' : C& — T, U/, assigning to each

@ recording (x,) clock variable a positive real, or bottom, and to
each

@ predicting (y,) clock variable an interval, constraining the
legal values for y, (rather than an absolute value)
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Symbolic valuations

Use symbolic valuation, ' : C& — T, U/, assigning to each

@ recording (x,) clock variable a positive real, or bottom, and to
each

@ predicting (y,) clock variable an interval, constraining the
legal values for y, (rather than an absolute value)

Definition: Operations on I'(xa), (va) = [(/, r)]
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Symbolic valuations

Use symbolic valuation, ' : C& — T, U/, assigning to each

@ recording (x,) clock variable a positive real, or bottom, and to
each

@ predicting (y,) clock variable an interval, constraining the
legal values for y, (rather than an absolute value)

Definition: Operations on I'(xa), (va) = [(/, r)]

@ Elapse of time t € R20:
M(xa) =M(xa) + t, " (va) = [(I—t,r — t)]
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Symbolic valuations

Use symbolic valuation, ' : C& — T, U/, assigning to each

@ recording (x,) clock variable a positive real, or bottom, and to
each

@ predicting (y,) clock variable an interval, constraining the
legal values for y, (rather than an absolute value)

Definition: Operations on I'(xa), (va) = [(/, r)]

@ Elapse of time t € R20:
M(xa) = T(xa) + £, (ya) = [(/=t,r — t)]
o (Reset) I' | a: x, =0,I"(ys) = [0,00),["(z # a) =T(z # a)
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Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, ' : C& — T, U/, assigning to each

@ recording (x,) clock variable a positive real, or bottom, and to
each

@ predicting (y,) clock variable an interval, constraining the
legal values for y, (rather than an absolute value)

Definition: Operations on I'(xa), (va) = [(/, r)]

@ Elapse of time t € R20:

M(xa) = T(x) + £, (ya) = [(I—t, r — t)]
@ (Reset) ' | a: x,=0,I"(ys) =[0,00),["(z # a) =T(z # a)
@ (Conjunction) " =T A (¢ € V((x)):

M(ya) =T(ya) A N{ya xc Sy}
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Symbolic runs

Instead of state-valuation tuples, (g,7), we use
state-symbolic-valuation tuples:

a1 a2

(90,T0) = (q1,T1) 23 (q2,T2) 2 ... a; = (aj, tj)
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Symbolic runs

Instead of state-valuation tuples, (g,7), we use
state-symbolic-valuation tuples:

(90,T0) = (q1,T1) 23 (q2,T2) 2 ... a; = (aj, tj)

Let Aec = (X,Q, @0, E,F)and EC Q x ¥ x W((Cs) x 29
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Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (g,7), we use
state-symbolic-valuation tuples:

(90,T0) = (q1,T1) 3 (g2, T2) 2 ... aj = (aj, tj)
Let Aec = (X,Q, @0, E,F)and EC Q x ¥ x W((Cs) x 29

@ A transition (q,a,%,{q’}) € E is applicable to a pair (q,T) if
N=xppacep N0 el (y,)
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Symbolic runs

Instead of state-valuation tuples, (g,7), we use
state-symbolic-valuation tuples:

(90,T0) = (q1,T1) 3 (g2, T2) 2 ... aj = (aj, tj)
Let Aec = (X,Q, @0, E,F)and EC Q x ¥ x W((Cs) x 29

@ A transition (q,a,%,{q’}) € E is applicable to a pair (q,T) if
N=xppacep N0 el (y,)

@ Successor of (q,I) is (¢/,T") with " = (" | a)Ay
(Reset + Conjunction)
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Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (g,7), we use
state-symbolic-valuation tuples:

(90,T0) = (q1,T1) 23 (q2,T2) 2 ... a; = (aj, tj)

Let Aec = (X,Q, @0, E,F)and EC Q x ¥ x W((Cs) x 29

@ A transition (q,a,%,{q’}) € E is applicable to a pair (q,T) if
N=xppacep N0 el (y,)
@ Successor of (q,I) is (¢/,T") with " = (" | a)Ay
(Reset + Conjunction)
@ [ is initial, iff for all a € X, To(x;) = L, To(ya) = [0, 00)
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Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (g,7), we use
state-symbolic-valuation tuples:

(90,T0) = (q1,T1) 23 (q2,T2) 2 ... a; = (aj, tj)

Let Aec = (X,Q, @0, E,F)and EC Q x ¥ x W((Cs) x 29

@ A transition (q,a,%,{q’}) € E is applicable to a pair (q,T) if
N=xppacep N0 el (y,)

@ Successor of (q,I) is (¢/,T") with " = (" | a)Ay
(Reset + Conjunction)
@ [ is initial, iff for all a € X, To(x;) = L, To(ya) = [0, 00)

~o is dependent on w € TX*, and [y is not.

Andreas Bauer Security protocols, properties, and their monitoring




Runtime verification of TLTL

Checking emptiness per state
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Runtime verification of TLTL

Checking emptiness per state

@ a @ blx, > 2] a[xagl]

Problem #2: Although the language of Ac.(qg2) is non-empty,
there does not exist an accepting run.
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Region equivalence [AD94]

o
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Runtime verification of TLTL

Region equivalence [AD94]

Build equivalence relation which is of finite index and is

@ ‘“compatible” with clock constraints:
r,rf' € R=VY constraints y: ri=vy < r' Evy
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Region equivalence [AD94]

T

Build equivalence relation which is of finite index and is
@ ‘“compatible” with clock constraints:
r,rf' € R=VY constraints y: ri=vy < r' Evy
@ compatible with time elapsing:
r,r' € R = same delay successor region
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Region equivalence [AD94]

A7

Build equivalence relation which is of finite index and is
@ ‘“compatible” with clock constraints:
r,rf' € R=VY constraints y: ri=vy < r' Evy
@ compatible with time elapsing:
r,r' € R = same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring



Runtime verification of TLTL

Region equivalence [AD94]

Build equivalence relation which is of finite index and is
@ ‘“compatible” with clock constraints:
r,rf' € R=VY constraints y: ri=vy < r' Evy
@ compatible with time elapsing:
r,r' € R = same delay successor region
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Region equivalence [AD94]

y
region defined by
L =1(1,2), I, =(0,1)
2
1
0

Build equivalence relation which is of finite index and is
@ ‘“compatible” with clock constraints:
r,rf' € R=VY constraints y: ri=vy < r' Evy
@ compatible with time elapsing:
r,r' € R = same delay successor region
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Region equivalence [AD94]

y
region defined by
L =1(1,2), I, =(0,1)
2
1 — . delay successors
0

X

Build equivalence relation which is of finite index and is
@ ‘“compatible” with clock constraints:
r,rf' € R=VY constraints y: ri=vy < r' Evy
@ compatible with time elapsing:
r,r' € R = same delay successor region
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Region equivalence [AD94]

y
region defined by
L =1(1,2), I, =(0,1)
2
1 — . delay successors
0 —t— successor by reset

Build equivalence relation which is of finite index and is
@ ‘“compatible” with clock constraints:
r,rf' € R=VY constraints y: ri=vy < r' Evy

@ compatible with time elapsing:
r,r' € R = same delay successor region
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Region automaton

tion: Aec = (X,Q,Q, E,F) — RA

Andreas Bauer Security protocols, properties, and their monitoring
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Region automaton

Construction: Aec = (X, Q, Qu, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E
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Region automaton

Construction: Aec = (X, Q, Qu, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E

o Build transitions in the RA: (g, R) — (¢', R') if
s there exists R” a delay successor of R s. t.
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Region automaton

Construction: Aec = (X, Q, Qu, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E

o Build transitions in the RA: (g, R) — (¢', R') if
s there exists R” a delay successor of R s. t.
s R satisfies the constraint ¢ (i.e., R” C )
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Runtime verification of TLTL

Region automaton

Construction: Aec = (X, Q, Qu, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E
o Build transitions in the RA: (g, R) — (¢', R') if
s there exists R” a delay successor of R s. t.

s R satisfies the constraint ¢ (i.e., R” C )
s R"” (mod. reset + conjunction of clocks) is included in R’
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Runtime verification of TLTL

Region automaton

Construction: Aec = (X, Q, Qu, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E
o Build transitions in the RA: (g, R) — (¢', R') if
s there exists R” a delay successor of R s. t.

s R satisfies the constraint ¢ (i.e., R” C )
s R"” (mod. reset + conjunction of clocks) is included in R’

-

An ECA and its region automaton RA are time-abstract bisimilar
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Region automaton

Construction: Aec = (X, Q, Qo, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E
o Build transitions in the RA: (g, R) — (¢', R') if
s there exists R” a delay successor of R s. t.

s R satisfies the constraint ¢ (i.e., R” C )
s R"” (mod. reset + conjunction of clocks) is included in R’

.

An ECA and its region automaton RA are time-abstract bisimilar

o L(RA®) = ut(L(AE)) (w = (a,1.2)(b,3.4); ut(w) = ab)

v
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Region automaton

Construction: Aec = (X, Q, Qo, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E
o Build transitions in the RA: (g, R) — (¢', R') if
s there exists R” a delay successor of R s. t.

s R satisfies the constraint ¢ (i.e., R” C )
s R"” (mod. reset + conjunction of clocks) is included in R’

.

An ECA and its region automaton RA are time-abstract bisimilar

o L(RA®) = ut(L(AE)) (w = (a,1.2)(b,3.4); ut(w) = ab)
® The region automaton is finite

v
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Region automaton

Construction: Aec = (X, Q, Qo, E, F) — RA
@ For each transition (q,a,¢,{q'}) € E
o Build transitions in the RA: (g, R) — (¢', R') if
s there exists R” a delay successor of R s. t.

s R satisfies the constraint ¢ (i.e., R” C )
s R"” (mod. reset + conjunction of clocks) is included in R’

.

An ECA and its region automaton RA are time-abstract bisimilar

o L(RA®) = ut(L(AE)) (w = (a,1.2)(b,3.4); ut(w) = ab)
® The region automaton is finite

@ Language emptiness can be decided on the RA
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Region automaton example [A99]
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Monitoring TLTL—putting it all together

@ Monitoring is based on A& and RAY
@ No explicit monitor construction
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Runtime verification of TLTL

Monitoring TLTL—putting it all together

@ Monitoring is based on A& and RAY
@ No explicit monitor construction

Algorithm: Automata execution

Let Iy be initial symbolic valuation of AZ., and ly an initial state of AZ..

Al. [Compute successor set.] For the first event (ao, to), the set of successors
w.r.t. A% is computed.

v
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Monitoring TLTL—putting it all together

@ Monitoring is based on A& and RAY
@ No explicit monitor construction

Algorithm: Automata execution

Let Iy be initial symbolic valuation of AZ., and ly an initial state of AZ..

Al. [Compute successor set.] For the first event (ao, to), the set of successors
w.r.t. A% is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false
issued. If not, go to step A3.

v
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Monitoring TLTL—putting it all together

@ Monitoring is based on A& and RAY
@ No explicit monitor construction

Algorithm: Automata execution

Let Iy be initial symbolic valuation of AZ., and ly an initial state of AZ..
Al. [Compute successor set.] For the first event (ao, to), the set of successors
w.r.t. A% is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false
issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (/,I) and corresponds to a
set of states in RA”. Iff for all of them the accepted language is empty,
the underlying property is violated, and false issued.

v
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Runtime verification of TLTL

Monitoring TLTL—putting it all together

@ Monitoring is based on A& and RAY
@ No explicit monitor construction

Algorithm: Automata execution

Let g be initial symbolic valuation of A&, and y an initial state of AZ..

Al. [Compute successor set.] For the first event (ao, to), the set of successors
w.r.t. A% is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false
issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (/,I) and corresponds to a
set of states in RA”. Iff for all of them the accepted language is empty,
the underlying property is violated, and false issued.

A4. [Process next event.] Issue true, and continue procedure from A2 with
each successor state (/,I') for which a corresponding accepting state of
RA¥ exists, reading a new input event. )
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Many thanks!

Try it out: http://1t13tools.sf.net/!

NewTab Home http:/ilti3tools,sourceforge.net/ ~ |G- Adblock Plus v,

LTLz Tools

General informatio

The LTL3 tools are a collection of programs that convert a given LTL formula into a Moore-type finite-state machine (FSM), which can be used as a
monitor for that formula, It uses techniques known from the area of runtime verification. The semantics of the FSM is explained in greater detail in the
papers linked to below.

This software is released under the terms of the GNU General Public License. For more information, see the README and COPYING documents provided
with the LTL3 tools,

Usage:

To allow maximum flexibility, the LTLg tools consist of a number of independent programs for manipulating LTL formulae and autormata, which can be
combined in different ways. Note that although the LTLs tools process SPIN/Promela never claims, the tools have really been optimised to only work
with the ones generated by LTLZBA, This may change in future versions of the tools.

Currently, the LTL3 tools consist of;

® extractal phabet: takes as input a SPIN never-claim representing a nondeterministic Bichi automaton (generated by LTL28A) and prints the
corresponding alphabet simply as a comma-separated strin

® nevertofsm: takes as input a SPIN never-claim reprssenting a nondeterministic Buchi automaton (generated by LTLZBA) and prints the
corresponding state-machine in ATST's fsmiibrary format,

© BEertoayi s ks bn i & SPIN lvar <l oot it o ATt G AR oY LTLABA S
corresponding symbol table (alphabet) in ATET's fsmiibrary for
o roasg ] ke am B ) T nroacitig detds e b firte:atats machings i ATAT'a femlpary farmatiand prints Ehe priduct 5 the
state machines.
Utl2non: a wrapper shell script around the above programs which takes as input an LTL formula, and prints a corresponding 3-valued/coloured
monitor for it

Formulas can be built according to the following grammar. (Note the somewhat peculiar use of "I" as negation with a space between.)
wu=si(e)Co)lestelelele->0lo<>0l0ol<>olXeleUaloVe

where s is an alphanumeric string. For example, you can use 1t12mon like this:

Example 1: Creating a monitor for the requirement "don’t spawn threads until initialisation has finished!”

The most straightformard use of the LTL tools would be as fallows, via the 1t12non shel script.
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