
Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Security protocols, properties, and their monitoring

Andreas Bauer

Computer Sciences Laboratory,

The Australian National University

October 22, 2008

Based on work undertaken with Jan Jürjens, Martin Leucker, and
Christian Schallhart.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Outline

1 Motivation

2 The SSL protocol

3 Runtime verification of LTL

4 Runtime verification of TLTL

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Software and systems verification

Secure systems life-cycle

Some observations

Static analysis (and static verification) operate on abstractions
of the real-world system (code, state-models, etc.)

Penetration testing works on actual system, but is not
complete

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Software and systems verification

Secure systems life-cycle

Some observations

Static analysis (and static verification) operate on abstractions
of the real-world system (code, state-models, etc.)

Penetration testing works on actual system, but is not
complete

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Software and systems verification

Secure systems life-cycle

Some observations

Static analysis (and static verification) operate on abstractions
of the real-world system (code, state-models, etc.)

Penetration testing works on actual system, but is not
complete

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Software and systems verification

Secure systems life-cycle

Some observations

Static analysis (and static verification) operate on abstractions
of the real-world system (code, state-models, etc.)

Penetration testing works on actual system, but is not
complete

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Example: (semi-automatic) static verification

System model, e.g., UML message sequence chart (MSC) of a
protocol

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Example: (semi-automatic) static verification

System model, e.g., UML message sequence chart (MSC) of a
protocol

Predicate knows(E) meaning that adversary may get to know
E during the execution of the system

E.g. secrecy requirement: For any secret s, check whether can
derive knows(s)

Automatically generate behavioural model of protocol (e.g.
from UMLsec)

Formalise security property, e.g.:

Use theorem prover to check model against property

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Example: (semi-automatic) static verification

System model, e.g., UML message sequence chart (MSC) of a
protocol

Predicate knows(E) meaning that adversary may get to know
E during the execution of the system

E.g. secrecy requirement: For any secret s, check whether can
derive knows(s)

Automatically generate behavioural model of protocol (e.g.
from UMLsec)

Formalise security property, e.g.:

Use theorem prover to check model against property

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Example: (semi-automatic) static verification

System model, e.g., UML message sequence chart (MSC) of a
protocol

Predicate knows(E) meaning that adversary may get to know
E during the execution of the system

E.g. secrecy requirement: For any secret s, check whether can
derive knows(s)

Automatically generate behavioural model of protocol (e.g.
from UMLsec)

Formalise security property, e.g.:

Use theorem prover to check model against property

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Example: (semi-automatic) static verification

System model, e.g., UML message sequence chart (MSC) of a
protocol
Predicate knows(E) meaning that adversary may get to know
E during the execution of the system
E.g. secrecy requirement: For any secret s, check whether can
derive knows(s)
Automatically generate behavioural model of protocol (e.g.
from UMLsec)
Formalise security property, e.g.:

Use theorem prover to check model against property
Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Example: (semi-automatic) static verification

System model, e.g., UML message sequence chart (MSC) of a
protocol
Predicate knows(E) meaning that adversary may get to know
E during the execution of the system
E.g. secrecy requirement: For any secret s, check whether can
derive knows(s)
Automatically generate behavioural model of protocol (e.g.
from UMLsec)
Formalise security property, e.g.:

Use theorem prover to check model against property
Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring/runtime verification

Mind the gap!

“Red area” typically not even
finite, because systems are often
infinite state systems (interaction
with environment, real-time, etc.)

Often impossible to give a 100%
guarantee for safety or security

Monitoring/runtime verification “sits in the gap”

Dynamic verification, operates on actual system

Checks actual system behaviour against correctness property

Ensures that statically verified properties hold at runtime

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification—how it’s done

Central concept: monitoring of actions

Property, ϕ, specified in terms of
LTL(Σ) [Pnu77], where Σ = 2AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ,
with p ∈ AP

Interpretation of ϕ over linearly
growing stream of actions, u ∈ Σ∗:

Monitor: [u |= ϕ] = ⊤?.

Central research questions

Complexity of monitor generation usually irrelevant

How to generate good monitors?

What are suitable logics for property specification?

And what are their properties?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified?

Let ϕ ∈ LTL(Σ) be an LTL formula, and i ∈ N denote a position.

Formal LTL semantics

The semantics of LTL formulae is defined inductively over infinite
strings w ∈ Σω as follows:

w , i |= true

w , i |= ¬ϕ ⇔ w , i 6|= ϕ

w , i |= p ∈ AP ⇔ p ∈ w(i)
w , i |= ϕ1 ∨ ϕ2 ⇔ w , i |= ϕ1 ∨ w , i |= ϕ2

w , i |= ϕ1Uϕ2 ⇔ ∃k ≥ i . w , k |= ϕ2∧
∀i ≤ l < k. w , l |= ϕ1

w , i |= Xϕ ⇔ w , i + 1 |= ϕ

Notation: w |= ϕ, if and only if w , 0 |= ϕ, and w(i) to denote the
ith element in w .

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified?

Let ϕ ∈ LTL(Σ) be an LTL formula, and i ∈ N denote a position.

Formal LTL semantics

The semantics of LTL formulae is defined inductively over infinite
strings w ∈ Σω as follows:

w , i |= true

w , i |= ¬ϕ ⇔ w , i 6|= ϕ

w , i |= p ∈ AP ⇔ p ∈ w(i)
w , i |= ϕ1 ∨ ϕ2 ⇔ w , i |= ϕ1 ∨ w , i |= ϕ2

w , i |= ϕ1Uϕ2 ⇔ ∃k ≥ i . w , k |= ϕ2∧
∀i ≤ l < k. w , l |= ϕ1

w , i |= Xϕ ⇔ w , i + 1 |= ϕ

Notation: w |= ϕ, if and only if w , 0 |= ϕ, and w(i) to denote the
ith element in w .

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified?

Let ϕ ∈ LTL(Σ) be an LTL formula, and i ∈ N denote a position.

Formal LTL semantics

The semantics of LTL formulae is defined inductively over infinite
strings w ∈ Σω as follows:

w , i |= true

w , i |= ¬ϕ ⇔ w , i 6|= ϕ

w , i |= p ∈ AP ⇔ p ∈ w(i)
w , i |= ϕ1 ∨ ϕ2 ⇔ w , i |= ϕ1 ∨ w , i |= ϕ2

w , i |= ϕ1Uϕ2 ⇔ ∃k ≥ i . w , k |= ϕ2∧
∀i ≤ l < k. w , l |= ϕ1

w , i |= Xϕ ⇔ w , i + 1 |= ϕ

Notation: w |= ϕ, if and only if w , 0 |= ϕ, and w(i) to denote the
ith element in w .

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” – L. Lamport, 1977.

Safety properties

If L ⊆ Σω is a safety language, then all w 6∈ L have a finite
bad prefix.

Consider Gϕ:

ϕ := p (“always p”), then Gϕ is safety
ϕ := Fp (“eventually p”), then Gϕ is not safety – Why?

Liveness properties

If L ⊆ Σω is a liveness language, then for all u ∈ Σ∗ there
exists a w ∈ Σω, such that uw ∈ L.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” – L. Lamport, 1977.

Safety properties

If L ⊆ Σω is a safety language, then all w 6∈ L have a finite
bad prefix.

Consider Gϕ:

ϕ := p (“always p”), then Gϕ is safety
ϕ := Fp (“eventually p”), then Gϕ is not safety – Why?

Liveness properties

If L ⊆ Σω is a liveness language, then for all u ∈ Σ∗ there
exists a w ∈ Σω, such that uw ∈ L.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” – L. Lamport, 1977.

Safety properties

If L ⊆ Σω is a safety language, then all w 6∈ L have a finite
bad prefix.

Consider Gϕ:

ϕ := p (“always p”), then Gϕ is safety
ϕ := Fp (“eventually p”), then Gϕ is not safety – Why?

Liveness properties

If L ⊆ Σω is a liveness language, then for all u ∈ Σ∗ there
exists a w ∈ Σω, such that uw ∈ L.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” – L. Lamport, 1977.

Safety properties

If L ⊆ Σω is a safety language, then all w 6∈ L have a finite
bad prefix.

Consider Gϕ:

ϕ := p (“always p”), then Gϕ is safety
ϕ := Fp (“eventually p”), then Gϕ is not safety – Why?

Liveness properties

If L ⊆ Σω is a liveness language, then for all u ∈ Σ∗ there
exists a w ∈ Σω, such that uw ∈ L.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” – L. Lamport, 1977.

Safety properties

If L ⊆ Σω is a safety language, then all w 6∈ L have a finite
bad prefix.

Consider Gϕ:

ϕ := p (“always p”), then Gϕ is safety
ϕ := Fp (“eventually p”), then Gϕ is not safety – Why?

Liveness properties

If L ⊆ Σω is a liveness language, then for all u ∈ Σ∗ there
exists a w ∈ Σω, such that uw ∈ L.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” – L. Lamport, 1977.

Safety properties

If L ⊆ Σω is a safety language, then all w 6∈ L have a finite
bad prefix.

Consider Gϕ:

ϕ := p (“always p”), then Gϕ is safety
ϕ := Fp (“eventually p”), then Gϕ is not safety – Why?

Liveness properties

If L ⊆ Σω is a liveness language, then for all u ∈ Σ∗ there
exists a w ∈ Σω, such that uw ∈ L.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

What can be specified? (intuitive semantics)

“All interesting properties about a system can be expressed using
safety and liveness properties.” – L. Lamport, 1977.

Safety properties

If L ⊆ Σω is a safety language, then all w 6∈ L have a finite
bad prefix.

Consider Gϕ:

ϕ := p (“always p”), then Gϕ is safety
ϕ := Fp (“eventually p”), then Gϕ is not safety – Why?

Liveness properties

If L ⊆ Σω is a liveness language, then for all u ∈ Σ∗ there
exists a w ∈ Σω, such that uw ∈ L.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Is that all?

Other

Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

If L ⊆ Σω is a co-safety language, then all w ∈ L have a finite
good prefix.

Let L be co-safety, then L is safety.

pUq is co-safety

Fp is co-safety (but also liveness)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Is that all?

Other

Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

If L ⊆ Σω is a co-safety language, then all w ∈ L have a finite
good prefix.

Let L be co-safety, then L is safety.

pUq is co-safety

Fp is co-safety (but also liveness)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Is that all?

Other

Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

If L ⊆ Σω is a co-safety language, then all w ∈ L have a finite
good prefix.

Let L be co-safety, then L is safety.

pUq is co-safety

Fp is co-safety (but also liveness)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Is that all?

Other

Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

If L ⊆ Σω is a co-safety language, then all w ∈ L have a finite
good prefix.

Let L be co-safety, then L is safety.

pUq is co-safety

Fp is co-safety (but also liveness)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Is that all?

Other

Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

If L ⊆ Σω is a co-safety language, then all w ∈ L have a finite
good prefix.

Let L be co-safety, then L is safety.

pUq is co-safety

Fp is co-safety (but also liveness)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Is that all?

Other

Interestingly, there are properties which are neither strictly
liveness nor strictly safety.

Co-safety properties

If L ⊆ Σω is a co-safety language, then all w ∈ L have a finite
good prefix.

Let L be co-safety, then L is safety.

pUq is co-safety

Fp is co-safety (but also liveness)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Is that all? (Cont’d)

Other

There are properties which are both, safety and co-safety, or
co-safety and liveness, etc. We call them “other”.

SafetyLiveness

Other
MON

Natural question to ask: “which properties are the
monitorable properties, MON?” (cf. [PZ06])

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

The SSL Protocol

Some facts in a nutshell

Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

as such, can also exist in user-space

Many implementations exist (OpenSSL, Jessie, etc.)

Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

The SSL Protocol

Some facts in a nutshell

Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

as such, can also exist in user-space

Many implementations exist (OpenSSL, Jessie, etc.)

Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

The SSL Protocol

Some facts in a nutshell

Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

as such, can also exist in user-space

Many implementations exist (OpenSSL, Jessie, etc.)

Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

The SSL Protocol

Some facts in a nutshell

Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

as such, can also exist in user-space

Many implementations exist (OpenSSL, Jessie, etc.)

Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

The SSL Protocol

Some facts in a nutshell

Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

as such, can also exist in user-space

Many implementations exist (OpenSSL, Jessie, etc.)

Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

The SSL Protocol

Some facts in a nutshell

Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

as such, can also exist in user-space

Many implementations exist (OpenSSL, Jessie, etc.)

Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

The SSL Protocol

Some facts in a nutshell

Secure Sockets Layer: Cryptographic protocol providing secure
communication on the Internet

In the protocol stack, between higher-level protocols (HTTP,
FTP, etc.) and TCP/IP layer

as such, can also exist in user-space

Many implementations exist (OpenSSL, Jessie, etc.)

Most common attack: Man-in-the-middle-attack, trying to
intercept, block, and alter messages

Typically, attacker has to interfere with the handshake phase of
protocol, when certificates are exchanged

Other attacks: E.g., attack cryptohashing functions for
MAC-address comparison, etc.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring the SSL handshake

Instead of generating behavioural model, we extract LTL
properties directly from the model and/or already formalised
FOL-security properties
FOL over words and LTL expressively equivalent [Ka68]

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring the SSL handshake

Instead of generating behavioural model, we extract LTL
properties directly from the model and/or already formalised
FOL-security properties
FOL over words and LTL expressively equivalent [Ka68]

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring the SSL handshake

Instead of generating behavioural model, we extract LTL
properties directly from the model and/or already formalised
FOL-security properties
FOL over words and LTL expressively equivalent [Ka68]

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol

Security property 1

“Client won’t send out
ClientKeyExchange(encK , (PMS)) until it
has received Certificate(X509CerS), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

1 define alphabet accordingly wrt.
abstract functions & messages

2 identify which functions &
messages are relevant

3 instrument code to transmit
abstract values to monitor

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol

Security property 1

“Client won’t send out
ClientKeyExchange(encK , (PMS)) until it
has received Certificate(X509CerS), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

1 define alphabet accordingly wrt.
abstract functions & messages

2 identify which functions &
messages are relevant

3 instrument code to transmit
abstract values to monitor

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol

Security property 1

“Client won’t send out
ClientKeyExchange(encK , (PMS)) until it
has received Certificate(X509CerS), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

1 define alphabet accordingly wrt.
abstract functions & messages

2 identify which functions &
messages are relevant

3 instrument code to transmit
abstract values to monitor

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol

Security property 1

“Client won’t send out
ClientKeyExchange(encK , (PMS)) until it
has received Certificate(X509CerS), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

1 define alphabet accordingly wrt.
abstract functions & messages

2 identify which functions &
messages are relevant

3 instrument code to transmit
abstract values to monitor

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol

Security property 1

“Client won’t send out
ClientKeyExchange(encK , (PMS)) until it
has received Certificate(X509CerS), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

1 define alphabet accordingly wrt.
abstract functions & messages

2 identify which functions &
messages are relevant

3 instrument code to transmit
abstract values to monitor

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol

Security property 1

“Client won’t send out
ClientKeyExchange(encK , (PMS)) until it
has received Certificate(X509CerS), and the
validity check of the certificate is positive.”

To specify this in LTL, we have to

1 define alphabet accordingly wrt.
abstract functions & messages

2 identify which functions &
messages are relevant

3 instrument code to transmit
abstract values to monitor

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 1 in LTL

ϕ1 =
¬ClientKeyExchange(encK , (PMS))UwCertificate(X509CerS)

Safety property

Monitor for ϕ1

Finite state machine of Moore-type:
(0, 0)

(1, 0)

(<empty>)

(-1, 1)

(cke)

(2, -1)

(cert)

(3, -1)

(cert&&cke)

(<empty>)

(cke) (cert)

(cert&&cke)(<empty>)(cke)

(-1, 2)

(cert) (cert&&cke)

(cert)(<empty>)

(cert&&cke) (cke)

(<empty>)(cke)(cert)(cert&&cke)(<empty>)(cke)(cert)(cert&&cke)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 1 in LTL

ϕ1 =
¬ClientKeyExchange(encK , (PMS))UwCertificate(X509CerS)

Safety property

Monitor for ϕ1

Finite state machine of Moore-type:
(0, 0)

(1, 0)

(<empty>)

(-1, 1)

(cke)

(2, -1)

(cert)

(3, -1)

(cert&&cke)

(<empty>)

(cke) (cert)

(cert&&cke)(<empty>)(cke)

(-1, 2)

(cert) (cert&&cke)

(cert)(<empty>)

(cert&&cke) (cke)

(<empty>)(cke)(cert)(cert&&cke)(<empty>)(cke)(cert)(cert&&cke)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 1 in LTL

ϕ1 =
¬ClientKeyExchange(encK , (PMS))UwCertificate(X509CerS)

Safety property

Monitor for ϕ1

Finite state machine of Moore-type:
(0, 0)

(1, 0)

(<empty>)

(-1, 1)

(cke)

(2, -1)

(cert)

(3, -1)

(cert&&cke)

(<empty>)

(cke) (cert)

(cert&&cke)(<empty>)(cke)

(-1, 2)

(cert) (cert&&cke)

(cert)(<empty>)

(cert&&cke) (cke)

(<empty>)(cke)(cert)(cert&&cke)(<empty>)(cke)(cert)(cert&&cke)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 1 in LTL

ϕ1 =
¬ClientKeyExchange(encK , (PMS))UwCertificate(X509CerS)

Safety property

Monitor for ϕ1

Finite state machine of Moore-type:
(0, 0)

(1, 0)

(<empty>)

(-1, 1)

(cke)

(2, -1)

(cert)

(3, -1)

(cert&&cke)

(<empty>)

(cke) (cert)

(cert&&cke)(<empty>)(cke)

(-1, 2)

(cert) (cert&&cke)

(cert)(<empty>)

(cert&&cke) (cke)

(<empty>)(cke)(cert)(cert&&cke)(<empty>)(cke)(cert)(cert&&cke)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 2

Finished(HashMD5(md5s,ms,PAD1,PAD2)) is not sent by the server to
the client before the MD5 hash received from the client in the message
Finished(HashMD5(md5c ,ms,PAD1,PAD2)) has been checked to be
equal to the MD5 created by the server, and correspondingly for the SHA
hash, but will send it out eventually after that has been established.

Security property 2 in LTL

ϕ2 = (¬Finished(HashMD5(md5s ,ms,PAD1,PAD2))
UwArrayequal(md5s ,md5c))

∧(FArrayequal(md5s ,md5c)
⇒ FFinished(HashMD5(md5s ,ms, . . .))).

Not co-safety, not safety

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 2

Finished(HashMD5(md5s,ms,PAD1,PAD2)) is not sent by the server to
the client before the MD5 hash received from the client in the message
Finished(HashMD5(md5c ,ms,PAD1,PAD2)) has been checked to be
equal to the MD5 created by the server, and correspondingly for the SHA
hash, but will send it out eventually after that has been established.

Security property 2 in LTL

ϕ2 = (¬Finished(HashMD5(md5s ,ms,PAD1,PAD2))
UwArrayequal(md5s ,md5c))

∧(FArrayequal(md5s ,md5c)
⇒ FFinished(HashMD5(md5s ,ms, . . .))).

Not co-safety, not safety

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 2

Finished(HashMD5(md5s,ms,PAD1,PAD2)) is not sent by the server to
the client before the MD5 hash received from the client in the message
Finished(HashMD5(md5c ,ms,PAD1,PAD2)) has been checked to be
equal to the MD5 created by the server, and correspondingly for the SHA
hash, but will send it out eventually after that has been established.

Security property 2 in LTL

ϕ2 = (¬Finished(HashMD5(md5s ,ms,PAD1,PAD2))
UwArrayequal(md5s ,md5c))

∧(FArrayequal(md5s ,md5c)
⇒ FFinished(HashMD5(md5s ,ms, . . .))).

Not co-safety, not safety

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Monitor for ϕ2

(0, 0)

(1, 1)

(<empty>)

(-1, 2)

(finished)

(2, 3)

(equal)

(3, -1)

(equal&&finished)

(<empty>)

(finished) (equal)

(equal&&finished)(<empty>)(finished)

(-1, 4)

(equal) (equal&&finished)

(equal)(<empty>)

(equal&&finished) (finished)

(<empty>)(finished)(equal)(equal&&finished)(<empty>)(finished)(equal)(equal&&finished)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 3

“The client will not send any transport data to the server before the
MD5 hash received from the server in the Finished message has been
checked to be equal to the MD5 created by the client, and
correspondingly for the SHA hash.”

Security property 3 in LTL

ϕ3 = ¬DataUw ((MD5(FinishedR) = MD5(FinishedS))

Safety

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 3

“The client will not send any transport data to the server before the
MD5 hash received from the server in the Finished message has been
checked to be equal to the MD5 created by the client, and
correspondingly for the SHA hash.”

Security property 3 in LTL

ϕ3 = ¬DataUw ((MD5(FinishedR) = MD5(FinishedS))

Safety

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

LTL security properties of the SSL protocol (Cont’d)

Security property 3

“The client will not send any transport data to the server before the
MD5 hash received from the server in the Finished message has been
checked to be equal to the MD5 created by the client, and
correspondingly for the SHA hash.”

Security property 3 in LTL

ϕ3 = ¬DataUw ((MD5(FinishedR) = MD5(FinishedS))

Safety

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification vs. model checking

LTL model checking using Büchi automata:

Translation: ϕ 7→ Aϕ s. t. L(Aϕ) = models of ϕ

S |= ϕ: every run in S satisfies ϕ, i. e., L(S ×A¬ϕ) = ∅?

Language inclusion often of higher complexity than “word
problem”, i. e. s ∈ L(ϕ)?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification vs. model checking

LTL model checking using Büchi automata:

Translation: ϕ 7→ Aϕ s. t. L(Aϕ) = models of ϕ

S |= ϕ: every run in S satisfies ϕ, i. e., L(S ×A¬ϕ) = ∅?

Language inclusion often of higher complexity than “word
problem”, i. e. s ∈ L(ϕ)?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification vs. model checking

LTL model checking using Büchi automata:

Translation: ϕ 7→ Aϕ s. t. L(Aϕ) = models of ϕ

S |= ϕ: every run in S satisfies ϕ, i. e., L(S ×A¬ϕ) = ∅?

Language inclusion often of higher complexity than “word
problem”, i. e. s ∈ L(ϕ)?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification vs. model checking

LTL model checking using Büchi automata:

Translation: ϕ 7→ Aϕ s. t. L(Aϕ) = models of ϕ
S |= ϕ: every run in S satisfies ϕ, i. e., L(S ×A¬ϕ) = ∅?
Language inclusion often of higher complexity than “word
problem”, i. e. s ∈ L(ϕ)?

Properties of Büchi automata

Büchi automata are nondeterministic (determinisation possible
but exponential time lower bound [Saf89])

Büchi-acceptance defined over infinite words

Runtime verification deals only with prefixes
LTL semantics defined over infinite words, e. g., how to
interpret Xp at the end of a trace?

For many applications, synchronous notion of time not
sufficient ⇒ support for timed languages

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification vs. model checking

LTL model checking using Büchi automata:

Translation: ϕ 7→ Aϕ s. t. L(Aϕ) = models of ϕ
S |= ϕ: every run in S satisfies ϕ, i. e., L(S ×A¬ϕ) = ∅?
Language inclusion often of higher complexity than “word
problem”, i. e. s ∈ L(ϕ)?

Properties of Büchi automata

Büchi automata are nondeterministic (determinisation possible
but exponential time lower bound [Saf89])

Büchi-acceptance defined over infinite words

Runtime verification deals only with prefixes
LTL semantics defined over infinite words, e. g., how to
interpret Xp at the end of a trace?

For many applications, synchronous notion of time not
sufficient ⇒ support for timed languages

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Runtime verification vs. model checking

LTL model checking using Büchi automata:

Translation: ϕ 7→ Aϕ s. t. L(Aϕ) = models of ϕ
S |= ϕ: every run in S satisfies ϕ, i. e., L(S ×A¬ϕ) = ∅?
Language inclusion often of higher complexity than “word
problem”, i. e. s ∈ L(ϕ)?

Properties of Büchi automata

Büchi automata are nondeterministic (determinisation possible
but exponential time lower bound [Saf89])

Büchi-acceptance defined over infinite words

Runtime verification deals only with prefixes
LTL semantics defined over infinite words, e. g., how to
interpret Xp at the end of a trace?

For many applications, synchronous notion of time not
sufficient ⇒ support for timed languages

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

An extension semantics for LTL

Definition: Traditional LTL semantics

Given w ∈ Σω, ϕ ∈ LTL, then w |=ϕ ∈ {⊤,⊥}

Definition: Extension semantics over {⊤,⊥, ?}: LTL3

Given u ∈ Σ∗, then

[u |= ϕ] :=

⊤ if ∀w ∈ Σω : uw |=ϕ
⊥ if ∀w ∈ Σω : uw 6|=ϕ
? otherwise

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

An extension semantics for LTL

Definition: Traditional LTL semantics

Given w ∈ Σω, ϕ ∈ LTL, then w |=ϕ ∈ {⊤,⊥}

Definition: Extension semantics over {⊤,⊥, ?}: LTL3

Given u ∈ Σ∗, then

[u |= ϕ] :=

⊤ if ∀w ∈ Σω : uw |=ϕ
⊥ if ∀w ∈ Σω : uw 6|=ϕ
? otherwise

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

An extension semantics for LTL

Definition: Traditional LTL semantics

Given w ∈ Σω, ϕ ∈ LTL, then w |=ϕ ∈ {⊤,⊥}

Definition: Extension semantics over {⊤,⊥, ?}: LTL3

Given u ∈ Σ∗, then

[u |= ϕ] :=

⊤ if ∀w ∈ Σω : uw |=ϕ
⊥ if ∀w ∈ Σω : uw 6|=ϕ
? otherwise

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

An extension semantics for LTL

Definition: Traditional LTL semantics

Given w ∈ Σω, ϕ ∈ LTL, then w |=ϕ ∈ {⊤,⊥}

Definition: Extension semantics over {⊤,⊥, ?}: LTL3

Given u ∈ Σ∗, then

[u |= ϕ] :=

⊤ if ∀w ∈ Σω : uw |=ϕ
⊥ if ∀w ∈ Σω : uw 6|=ϕ
? otherwise

Wanted: An on-the-fly decision procedure for LTL3

How can we determine ?, i. e., whether ∃w ∈ Σω : uw |= ϕ

and ∃w ′ ∈ Σω : uw ′ 6|= ϕ?

How can we do this efficiently, i. e., at runtime?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

An extension semantics for LTL

Definition: Traditional LTL semantics

Given w ∈ Σω, ϕ ∈ LTL, then w |=ϕ ∈ {⊤,⊥}

Definition: Extension semantics over {⊤,⊥, ?}: LTL3

Given u ∈ Σ∗, then

[u |= ϕ] :=

⊤ if ∀w ∈ Σω : uw |=ϕ
⊥ if ∀w ∈ Σω : uw 6|=ϕ
? otherwise

Wanted: An on-the-fly decision procedure for LTL3

How can we determine ?, i. e., whether ∃w ∈ Σω : uw |= ϕ

and ∃w ′ ∈ Σω : uw ′ 6|= ϕ?

How can we do this efficiently, i. e., at runtime?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Theorem

u ∈ L(Âϕ) ⇔ ϕ is satisfiable

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Theorem

u ∈ L(Âϕ) ⇔ ϕ is satisfiable

However, there exists u ∈ L(Âϕ),
s. t. ϕ is unsatisfiable!

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Theorem

u ∈ L(Âϕ) ⇔ ϕ is satisfiable

However, there exists u ∈ L(Âϕ),
s. t. ϕ is unsatisfiable!

1 Translation: ¬ϕ 7→ A¬ϕ, s. t.
L(A¬ϕ) = Σω\L(ϕ)

2 Emptiness per state

3 NFA: Turn A¬ϕ into NFA

4 DFA: Determinise NFA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Theorem

u ∈ L(Âϕ) ⇔ ϕ is satisfiable

However, there exists u ∈ L(Âϕ),
s. t. ϕ is unsatisfiable!

1 Translation: ¬ϕ 7→ A¬ϕ, s. t.
L(A¬ϕ) = Σω\L(ϕ)

2 Emptiness per state

3 NFA: Turn A¬ϕ into NFA

4 DFA: Determinise NFA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Theorem

u ∈ L(Âϕ) ⇔ ϕ is satisfiable

However, there exists u ∈ L(Âϕ),
s. t. ϕ is unsatisfiable!

1 Translation: ¬ϕ 7→ A¬ϕ, s. t.
L(A¬ϕ) = Σω\L(ϕ)

2 Emptiness per state

3 NFA: Turn A¬ϕ into NFA

4 DFA: Determinise NFA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Towards an on-the-fly decision procedure for LTL3

1 Translation: ϕ 7→ Aϕ, s. t.
L(Aϕ) = L(ϕ)

2 Emptiness per state: Labelling
F : Qϕ → {⊤,⊥}

⊤

⊤

⊤

⊤

⊥

3 NFA: Turn Aϕ into NFA Âϕ

using F as accepting states

4 DFA: Determinise Âϕ

Theorem

u ∈ L(Âϕ) ⇔ ϕ is satisfiable

However, there exists u ∈ L(Âϕ),
s. t. ϕ is unsatisfiable!

1 Translation: ¬ϕ 7→ A¬ϕ, s. t.
L(A¬ϕ) = Σω\L(ϕ)

2 Emptiness per state

3 NFA: Turn A¬ϕ into NFA

4 DFA: Determinise NFA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitor construction / decision procedure

Theorem

Given u ∈ Σ∗, ϕ ∈ LTL, then

[u |= ϕ] =

⊤ if u 6∈ L(ˆA¬ϕ)

⊥ if u 6∈ L(Âϕ)

? if u ∈ L(ˆA¬ϕ) and u ∈ L(Âϕ)

The procedure for getting [u |= ϕ] for a given ϕ

ϕ

ϕ

¬ϕ

A
ϕ

A
¬ϕ

F
ϕ

F
¬ϕ

Â
ϕ

Â
¬ϕ

Ã
ϕ

Ã
¬ϕ

Ā

Input Formula (1) NBA (2)
Emptiness
per state

(3) NFA (4) DFA FSM

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitor construction / decision procedure

Theorem

Given u ∈ Σ∗, ϕ ∈ LTL, then

[u |= ϕ] =

⊤ if u 6∈ L(ˆA¬ϕ)

⊥ if u 6∈ L(Âϕ)

? if u ∈ L(ˆA¬ϕ) and u ∈ L(Âϕ)

The procedure for getting [u |= ϕ] for a given ϕ

ϕ

ϕ

¬ϕ

A
ϕ

A
¬ϕ

F
ϕ

F
¬ϕ

Â
ϕ

Â
¬ϕ

Ã
ϕ

Ã
¬ϕ

Ā

Input Formula (1) NBA (2)
Emptiness
per state

(3) NFA (4) DFA FSM

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitor construction / decision procedure

Theorem

Given u ∈ Σ∗, ϕ ∈ LTL, then

[u |= ϕ] =

⊤ if u 6∈ L(ˆA¬ϕ)

⊥ if u 6∈ L(Âϕ)

? if u ∈ L(ˆA¬ϕ) and u ∈ L(Âϕ)

The procedure for getting [u |= ϕ] for a given ϕ

ϕ

ϕ

¬ϕ

A
ϕ

A
¬ϕ

F
ϕ

F
¬ϕ

Â
ϕ

Â
¬ϕ

Ã
ϕ

Ã
¬ϕ

Ā

Input Formula (1) NBA (2)
Emptiness
per state

(3) NFA (4) DFA FSM

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Real-time

Timed words

w ∈ TΣω := (a0, t0)(a1, t1) . . . (ai ∈ Σ, t ∈ R
≥0)

Strict monotonicity: for each i ∈ Z, ti < ti+1

Progress: for all t ∈ R
≥0 there is an i ∈ N, s. t. ti > t

(ai , ti) also called “event”

Timed languages

A timed language L is a set of timed words

L is regular, if it is accepted by a timed automaton, whose
language is L

Kleene and McNaughton Theorems exist (but we do not care
much right now. Active field of research.)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Real-time

Timed words

w ∈ TΣω := (a0, t0)(a1, t1) . . . (ai ∈ Σ, t ∈ R
≥0)

Strict monotonicity: for each i ∈ Z, ti < ti+1

Progress: for all t ∈ R
≥0 there is an i ∈ N, s. t. ti > t

(ai , ti) also called “event”

Timed languages

A timed language L is a set of timed words

L is regular, if it is accepted by a timed automaton, whose
language is L

Kleene and McNaughton Theorems exist (but we do not care
much right now. Active field of research.)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Real-time

Timed words

w ∈ TΣω := (a0, t0)(a1, t1) . . . (ai ∈ Σ, t ∈ R
≥0)

Strict monotonicity: for each i ∈ Z, ti < ti+1

Progress: for all t ∈ R
≥0 there is an i ∈ N, s. t. ti > t

(ai , ti) also called “event”

Timed languages

A timed language L is a set of timed words

L is regular, if it is accepted by a timed automaton, whose
language is L

Kleene and McNaughton Theorems exist (but we do not care
much right now. Active field of research.)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Real-time

Timed words

w ∈ TΣω := (a0, t0)(a1, t1) . . . (ai ∈ Σ, t ∈ R
≥0)

Strict monotonicity: for each i ∈ Z, ti < ti+1

Progress: for all t ∈ R
≥0 there is an i ∈ N, s. t. ti > t

(ai , ti) also called “event”

Timed languages

A timed language L is a set of timed words

L is regular, if it is accepted by a timed automaton, whose
language is L

Kleene and McNaughton Theorems exist (but we do not care
much right now. Active field of research.)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Real-time

Timed words

w ∈ TΣω := (a0, t0)(a1, t1) . . . (ai ∈ Σ, t ∈ R
≥0)

Strict monotonicity: for each i ∈ Z, ti < ti+1

Progress: for all t ∈ R
≥0 there is an i ∈ N, s. t. ti > t

(ai , ti) also called “event”

Timed languages

A timed language L is a set of timed words

L is regular, if it is accepted by a timed automaton, whose
language is L

Kleene and McNaughton Theorems exist (but we do not care
much right now. Active field of research.)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event clocks

For every a ∈ Σ, there exists a recording and a predicting clock to
measure the distance between events.

Clock variables and valuations

γi (xa) :=

{

ti − tj if ∃j < i : aj = a and ∀j < k < i : ak 6= a

⊥ otherwise

γi (ya) :=

{

tj − ti if ∃j > i : aj = a and ∀i < k < j : ak 6= a

⊥ otherwise

Clock constraints

Constraint: z ⊲⊳ c , with z ∈ CΣ, c ∈ N, ⊲⊳∈ {<,≤,≥, >}

Example: (xa ≤ 5) ∈ Ψ(CΣ)

A valuation satisfies a constraint: γ |= ψ ∈ Ψ(CΣ)

Example: γ(xa) = 3.2 |= xa ≤ 5

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event clocks

For every a ∈ Σ, there exists a recording and a predicting clock to
measure the distance between events.

Clock variables and valuations

γi (xa) :=

{

ti − tj if ∃j < i : aj = a and ∀j < k < i : ak 6= a

⊥ otherwise

γi (ya) :=

{

tj − ti if ∃j > i : aj = a and ∀i < k < j : ak 6= a

⊥ otherwise

Clock constraints

Constraint: z ⊲⊳ c , with z ∈ CΣ, c ∈ N, ⊲⊳∈ {<,≤,≥, >}

Example: (xa ≤ 5) ∈ Ψ(CΣ)

A valuation satisfies a constraint: γ |= ψ ∈ Ψ(CΣ)

Example: γ(xa) = 3.2 |= xa ≤ 5

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event clocks

For every a ∈ Σ, there exists a recording and a predicting clock to
measure the distance between events.

Clock variables and valuations

γi (xa) :=

{

ti − tj if ∃j < i : aj = a and ∀j < k < i : ak 6= a

⊥ otherwise

γi (ya) :=

{

tj − ti if ∃j > i : aj = a and ∀i < k < j : ak 6= a

⊥ otherwise

Clock constraints

Constraint: z ⊲⊳ c , with z ∈ CΣ, c ∈ N, ⊲⊳∈ {<,≤,≥, >}

Example: (xa ≤ 5) ∈ Ψ(CΣ)

A valuation satisfies a constraint: γ |= ψ ∈ Ψ(CΣ)

Example: γ(xa) = 3.2 |= xa ≤ 5

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event clocks

For every a ∈ Σ, there exists a recording and a predicting clock to
measure the distance between events.

Clock variables and valuations

γi (xa) :=

{

ti − tj if ∃j < i : aj = a and ∀j < k < i : ak 6= a

⊥ otherwise

γi (ya) :=

{

tj − ti if ∃j > i : aj = a and ∀i < k < j : ak 6= a

⊥ otherwise

Clock constraints

Constraint: z ⊲⊳ c , with z ∈ CΣ, c ∈ N, ⊲⊳∈ {<,≤,≥, >}

Example: (xa ≤ 5) ∈ Ψ(CΣ)

A valuation satisfies a constraint: γ |= ψ ∈ Ψ(CΣ)

Example: γ(xa) = 3.2 |= xa ≤ 5

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event clocks

For every a ∈ Σ, there exists a recording and a predicting clock to
measure the distance between events.

Clock variables and valuations

γi (xa) :=

{

ti − tj if ∃j < i : aj = a and ∀j < k < i : ak 6= a

⊥ otherwise

γi (ya) :=

{

tj − ti if ∃j > i : aj = a and ∀i < k < j : ak 6= a

⊥ otherwise

Clock constraints

Constraint: z ⊲⊳ c , with z ∈ CΣ, c ∈ N, ⊲⊳∈ {<,≤,≥, >}

Example: (xa ≤ 5) ∈ Ψ(CΣ)

A valuation satisfies a constraint: γ |= ψ ∈ Ψ(CΣ)

Example: γ(xa) = 3.2 |= xa ≤ 5

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event clocks

For every a ∈ Σ, there exists a recording and a predicting clock to
measure the distance between events.

Clock variables and valuations

γi (xa) :=

{

ti − tj if ∃j < i : aj = a and ∀j < k < i : ak 6= a

⊥ otherwise

γi (ya) :=

{

tj − ti if ∃j > i : aj = a and ∀i < k < j : ak 6= a

⊥ otherwise

Clock constraints

Constraint: z ⊲⊳ c , with z ∈ CΣ, c ∈ N, ⊲⊳∈ {<,≤,≥, >}

Example: (xa ≤ 5) ∈ Ψ(CΣ)

A valuation satisfies a constraint: γ |= ψ ∈ Ψ(CΣ)

Example: γ(xa) = 3.2 |= xa ≤ 5

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event clocks

For every a ∈ Σ, there exists a recording and a predicting clock to
measure the distance between events.

Clock variables and valuations

γi (xa) :=

{

ti − tj if ∃j < i : aj = a and ∀j < k < i : ak 6= a

⊥ otherwise

γi (ya) :=

{

tj − ti if ∃j > i : aj = a and ∀i < k < j : ak 6= a

⊥ otherwise

Clock constraints

Constraint: z ⊲⊳ c , with z ∈ CΣ, c ∈ N, ⊲⊳∈ {<,≤,≥, >}

Example: (xa ≤ 5) ∈ Ψ(CΣ)

A valuation satisfies a constraint: γ |= ψ ∈ Ψ(CΣ)

Example: γ(xa) = 3.2 |= xa ≤ 5

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Event-clock automata [AFH94]

Real-time automata, similar to Timed Automata [AD90], but

Closed under all Boolean operations (e. g., complementation)

Language inclusion is decidable, model checking possible

Less expressive (e. g., no arbitrary clock resets)

Definition: Event-clock automaton Aec = (Σ,Q,Q0,E ,F)

Σ,Q,Q0,F as expected, and

E ⊆ Q × Σ × Ψ(CΣ) × 2Q set of timed transitions.

Definition: Timed run

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])

ϕ ::= a | ⊳a ∈ [(l , r)] | ⊲a ∈ [(l , r)] | ¬ϕ | ϕ∨ϕ | ϕUϕ | Xϕ, a ∈ Σ

Semantics—intuitive account

Same as LTL, except for two real-time operators

G(⊲a ∈ [0, 5]): “always a within 5s”

G((⊳q ∈ [0, 3]) ⇒ p): “always if q was within 3s, then p now”

Acceptors for TLTL

[R99]: ϕ 7→ Aϕ

ec , s. t. L(Aϕ

ec) = L(ϕ)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])

ϕ ::= a | ⊳a ∈ [(l , r)] | ⊲a ∈ [(l , r)] | ¬ϕ | ϕ∨ϕ | ϕUϕ | Xϕ, a ∈ Σ

Semantics—intuitive account

Same as LTL, except for two real-time operators

G(⊲a ∈ [0, 5]): “always a within 5s”

G((⊳q ∈ [0, 3]) ⇒ p): “always if q was within 3s, then p now”

Acceptors for TLTL

[R99]: ϕ 7→ Aϕ

ec , s. t. L(Aϕ

ec) = L(ϕ)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])

ϕ ::= a | ⊳a ∈ [(l , r)] | ⊲a ∈ [(l , r)] | ¬ϕ | ϕ∨ϕ | ϕUϕ | Xϕ, a ∈ Σ

Semantics—intuitive account

Same as LTL, except for two real-time operators

G(⊲a ∈ [0, 5]): “always a within 5s”

G((⊳q ∈ [0, 3]) ⇒ p): “always if q was within 3s, then p now”

Acceptors for TLTL

[R99]: ϕ 7→ Aϕ

ec , s. t. L(Aϕ

ec) = L(ϕ)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])

ϕ ::= a | ⊳a ∈ [(l , r)] | ⊲a ∈ [(l , r)] | ¬ϕ | ϕ∨ϕ | ϕUϕ | Xϕ, a ∈ Σ

Semantics—intuitive account

Same as LTL, except for two real-time operators

G(⊲a ∈ [0, 5]): “always a within 5s”

G((⊳q ∈ [0, 3]) ⇒ p): “always if q was within 3s, then p now”

Acceptors for TLTL

[R99]: ϕ 7→ Aϕ

ec , s. t. L(Aϕ

ec) = L(ϕ)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])

ϕ ::= a | ⊳a ∈ [(l , r)] | ⊲a ∈ [(l , r)] | ¬ϕ | ϕ∨ϕ | ϕUϕ | Xϕ, a ∈ Σ

Semantics—intuitive account

Same as LTL, except for two real-time operators

G(⊲a ∈ [0, 5]): “always a within 5s”

G((⊳q ∈ [0, 3]) ⇒ p): “always if q was within 3s, then p now”

Acceptors for TLTL

[R99]: ϕ 7→ Aϕ

ec , s. t. L(Aϕ

ec) = L(ϕ)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Timed LTL

Syntax: TLTL (aka state-clock logic [RS97])

ϕ ::= a | ⊳a ∈ [(l , r)] | ⊲a ∈ [(l , r)] | ¬ϕ | ϕ∨ϕ | ϕUϕ | Xϕ, a ∈ Σ

Semantics—intuitive account

Same as LTL, except for two real-time operators

G(⊲a ∈ [0, 5]): “always a within 5s”

G((⊳q ∈ [0, 3]) ⇒ p): “always if q was within 3s, then p now”

Acceptors for TLTL

[R99]: ϕ 7→ Aϕ

ec , s. t. L(Aϕ

ec) = L(ϕ)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL properties

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL properties

The runtime verification problem for TLTL

Find an on-the-fly decision procedure for TLTL3:

[u |= ϕ] :=

⊤ if ∀w ∈ TΣω : uw |= ϕ

⊥ if ∀w ∈ TΣω : uw 6|= ϕ,

? otherwise

where u ∈ TΣ∗ and ϕ ∈ TLTL.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL properties

The runtime verification problem for TLTL

Find an on-the-fly decision procedure for TLTL3:

[u |= ϕ] :=

⊤ if ∀w ∈ TΣω : uw |= ϕ

⊥ if ∀w ∈ TΣω : uw 6|= ϕ,

? otherwise

where u ∈ TΣ∗ and ϕ ∈ TLTL.

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL properties

The runtime verification problem for TLTL

Find an on-the-fly decision procedure for TLTL3:

[u |= ϕ] :=

⊤ if ∀w ∈ TΣω : uw |= ϕ

⊥ if ∀w ∈ TΣω : uw 6|= ϕ,

? otherwise

where u ∈ TΣ∗ and ϕ ∈ TLTL.

Given w ∈ TΣω, a timed run is of the form:

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

γ0 is initial, iff γ0(xa) = ⊥, and γ0(ya) = tj (or γ0(ya) = ⊥)

Problem #1: Given i , how can we determine γi(ya)?

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, Γ : CΣ → T⊥ ∪ I , assigning to each

recording (xa) clock variable a positive real, or bottom, and to
each

predicting (ya) clock variable an interval, constraining the
legal values for ya (rather than an absolute value)

Definition: Operations on Γ(xa),Γ(ya) = [(l , r)]

Elapse of time t ∈ R
≥0:

Γ′(xa) = Γ(xa) + t,Γ′(ya) = [(l−̇t, r − t)]

(Reset) Γ ↓ a: xa = 0,Γ′(ya) = [0,∞),Γ′(z 6= a) = Γ(z 6= a)

(Conjunction) Γ′ = Γ ∧ (ψ ∈ Ψ(CΣ)):
Γ′(ya) = Γ(ya) ∧

∧

{ya ⊲⊳ c ⊆ ψ}

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, Γ : CΣ → T⊥ ∪ I , assigning to each

recording (xa) clock variable a positive real, or bottom, and to
each

predicting (ya) clock variable an interval, constraining the
legal values for ya (rather than an absolute value)

Definition: Operations on Γ(xa),Γ(ya) = [(l , r)]

Elapse of time t ∈ R
≥0:

Γ′(xa) = Γ(xa) + t,Γ′(ya) = [(l−̇t, r − t)]

(Reset) Γ ↓ a: xa = 0,Γ′(ya) = [0,∞),Γ′(z 6= a) = Γ(z 6= a)

(Conjunction) Γ′ = Γ ∧ (ψ ∈ Ψ(CΣ)):
Γ′(ya) = Γ(ya) ∧

∧

{ya ⊲⊳ c ⊆ ψ}

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, Γ : CΣ → T⊥ ∪ I , assigning to each

recording (xa) clock variable a positive real, or bottom, and to
each

predicting (ya) clock variable an interval, constraining the
legal values for ya (rather than an absolute value)

Definition: Operations on Γ(xa),Γ(ya) = [(l , r)]

Elapse of time t ∈ R
≥0:

Γ′(xa) = Γ(xa) + t,Γ′(ya) = [(l−̇t, r − t)]

(Reset) Γ ↓ a: xa = 0,Γ′(ya) = [0,∞),Γ′(z 6= a) = Γ(z 6= a)

(Conjunction) Γ′ = Γ ∧ (ψ ∈ Ψ(CΣ)):
Γ′(ya) = Γ(ya) ∧

∧

{ya ⊲⊳ c ⊆ ψ}

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, Γ : CΣ → T⊥ ∪ I , assigning to each

recording (xa) clock variable a positive real, or bottom, and to
each

predicting (ya) clock variable an interval, constraining the
legal values for ya (rather than an absolute value)

Definition: Operations on Γ(xa),Γ(ya) = [(l , r)]

Elapse of time t ∈ R
≥0:

Γ′(xa) = Γ(xa) + t,Γ′(ya) = [(l−̇t, r − t)]

(Reset) Γ ↓ a: xa = 0,Γ′(ya) = [0,∞),Γ′(z 6= a) = Γ(z 6= a)

(Conjunction) Γ′ = Γ ∧ (ψ ∈ Ψ(CΣ)):
Γ′(ya) = Γ(ya) ∧

∧

{ya ⊲⊳ c ⊆ ψ}

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, Γ : CΣ → T⊥ ∪ I , assigning to each

recording (xa) clock variable a positive real, or bottom, and to
each

predicting (ya) clock variable an interval, constraining the
legal values for ya (rather than an absolute value)

Definition: Operations on Γ(xa),Γ(ya) = [(l , r)]

Elapse of time t ∈ R
≥0:

Γ′(xa) = Γ(xa) + t,Γ′(ya) = [(l−̇t, r − t)]

(Reset) Γ ↓ a: xa = 0,Γ′(ya) = [0,∞),Γ′(z 6= a) = Γ(z 6= a)

(Conjunction) Γ′ = Γ ∧ (ψ ∈ Ψ(CΣ)):
Γ′(ya) = Γ(ya) ∧

∧

{ya ⊲⊳ c ⊆ ψ}

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, Γ : CΣ → T⊥ ∪ I , assigning to each

recording (xa) clock variable a positive real, or bottom, and to
each

predicting (ya) clock variable an interval, constraining the
legal values for ya (rather than an absolute value)

Definition: Operations on Γ(xa),Γ(ya) = [(l , r)]

Elapse of time t ∈ R
≥0:

Γ′(xa) = Γ(xa) + t,Γ′(ya) = [(l−̇t, r − t)]

(Reset) Γ ↓ a: xa = 0,Γ′(ya) = [0,∞),Γ′(z 6= a) = Γ(z 6= a)

(Conjunction) Γ′ = Γ ∧ (ψ ∈ Ψ(CΣ)):
Γ′(ya) = Γ(ya) ∧

∧

{ya ⊲⊳ c ⊆ ψ}

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic valuations

Use symbolic valuation, Γ : CΣ → T⊥ ∪ I , assigning to each

recording (xa) clock variable a positive real, or bottom, and to
each

predicting (ya) clock variable an interval, constraining the
legal values for ya (rather than an absolute value)

Definition: Operations on Γ(xa),Γ(ya) = [(l , r)]

Elapse of time t ∈ R
≥0:

Γ′(xa) = Γ(xa) + t,Γ′(ya) = [(l−̇t, r − t)]

(Reset) Γ ↓ a: xa = 0,Γ′(ya) = [0,∞),Γ′(z 6= a) = Γ(z 6= a)

(Conjunction) Γ′ = Γ ∧ (ψ ∈ Ψ(CΣ)):
Γ′(ya) = Γ(ya) ∧

∧

{ya ⊲⊳ c ⊆ ψ}

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (q, γ), we use
state-symbolic-valuation tuples:

(q0,Γ0)
α1→ (q1,Γ1)

α2→ (q2,Γ2)
α3→ . . . αi = (ai , ti)

Let Aec = (Σ,Q,Q0,E ,F) and E ⊆ Q × Σ × Ψ(CΣ) × 2Q

A transition (q, a, ψ, {q′}) ∈ E is applicable to a pair (q,Γ) if
Γ |= xb ⊲⊳ c ∈ ψ ∧ 0 ∈ Γ(ya)

Successor of (q,Γ) is (q′,Γ′) with Γ′ = (Γ ↓ a)∧ψ
(Reset + Conjunction)

Γ0 is initial, iff for all a ∈ Σ, Γ0(xa) = ⊥, Γ0(ya) = [0,∞)

Corollary

γ0 is dependent on w ∈ TΣω, and Γ0 is not.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (q, γ), we use
state-symbolic-valuation tuples:

(q0,Γ0)
α1→ (q1,Γ1)

α2→ (q2,Γ2)
α3→ . . . αi = (ai , ti)

Let Aec = (Σ,Q,Q0,E ,F) and E ⊆ Q × Σ × Ψ(CΣ) × 2Q

A transition (q, a, ψ, {q′}) ∈ E is applicable to a pair (q,Γ) if
Γ |= xb ⊲⊳ c ∈ ψ ∧ 0 ∈ Γ(ya)

Successor of (q,Γ) is (q′,Γ′) with Γ′ = (Γ ↓ a)∧ψ
(Reset + Conjunction)

Γ0 is initial, iff for all a ∈ Σ, Γ0(xa) = ⊥, Γ0(ya) = [0,∞)

Corollary

γ0 is dependent on w ∈ TΣω, and Γ0 is not.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (q, γ), we use
state-symbolic-valuation tuples:

(q0,Γ0)
α1→ (q1,Γ1)

α2→ (q2,Γ2)
α3→ . . . αi = (ai , ti)

Let Aec = (Σ,Q,Q0,E ,F) and E ⊆ Q × Σ × Ψ(CΣ) × 2Q

A transition (q, a, ψ, {q′}) ∈ E is applicable to a pair (q,Γ) if
Γ |= xb ⊲⊳ c ∈ ψ ∧ 0 ∈ Γ(ya)

Successor of (q,Γ) is (q′,Γ′) with Γ′ = (Γ ↓ a)∧ψ
(Reset + Conjunction)

Γ0 is initial, iff for all a ∈ Σ, Γ0(xa) = ⊥, Γ0(ya) = [0,∞)

Corollary

γ0 is dependent on w ∈ TΣω, and Γ0 is not.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (q, γ), we use
state-symbolic-valuation tuples:

(q0,Γ0)
α1→ (q1,Γ1)

α2→ (q2,Γ2)
α3→ . . . αi = (ai , ti)

Let Aec = (Σ,Q,Q0,E ,F) and E ⊆ Q × Σ × Ψ(CΣ) × 2Q

A transition (q, a, ψ, {q′}) ∈ E is applicable to a pair (q,Γ) if
Γ |= xb ⊲⊳ c ∈ ψ ∧ 0 ∈ Γ(ya)

Successor of (q,Γ) is (q′,Γ′) with Γ′ = (Γ ↓ a)∧ψ
(Reset + Conjunction)

Γ0 is initial, iff for all a ∈ Σ, Γ0(xa) = ⊥, Γ0(ya) = [0,∞)

Corollary

γ0 is dependent on w ∈ TΣω, and Γ0 is not.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (q, γ), we use
state-symbolic-valuation tuples:

(q0,Γ0)
α1→ (q1,Γ1)

α2→ (q2,Γ2)
α3→ . . . αi = (ai , ti)

Let Aec = (Σ,Q,Q0,E ,F) and E ⊆ Q × Σ × Ψ(CΣ) × 2Q

A transition (q, a, ψ, {q′}) ∈ E is applicable to a pair (q,Γ) if
Γ |= xb ⊲⊳ c ∈ ψ ∧ 0 ∈ Γ(ya)

Successor of (q,Γ) is (q′,Γ′) with Γ′ = (Γ ↓ a)∧ψ
(Reset + Conjunction)

Γ0 is initial, iff for all a ∈ Σ, Γ0(xa) = ⊥, Γ0(ya) = [0,∞)

Corollary

γ0 is dependent on w ∈ TΣω, and Γ0 is not.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Symbolic runs

Instead of state-valuation tuples, (q, γ), we use
state-symbolic-valuation tuples:

(q0,Γ0)
α1→ (q1,Γ1)

α2→ (q2,Γ2)
α3→ . . . αi = (ai , ti)

Let Aec = (Σ,Q,Q0,E ,F) and E ⊆ Q × Σ × Ψ(CΣ) × 2Q

A transition (q, a, ψ, {q′}) ∈ E is applicable to a pair (q,Γ) if
Γ |= xb ⊲⊳ c ∈ ψ ∧ 0 ∈ Γ(ya)

Successor of (q,Γ) is (q′,Γ′) with Γ′ = (Γ ↓ a)∧ψ
(Reset + Conjunction)

Γ0 is initial, iff for all a ∈ Σ, Γ0(xa) = ⊥, Γ0(ya) = [0,∞)

Corollary

γ0 is dependent on w ∈ TΣω, and Γ0 is not.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Checking emptiness per state

q0 q1 q2
a b[xa ≥ 2]

a[xa ≤ 1]

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Checking emptiness per state

q0 q1 q2
a b[xa ≥ 2]

a[xa ≤ 1]

Problem #2: Although the language of Aec(q2) is non-empty,
there does not exist an accepting run.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

region defined by

Ix = (1, 2), Iy = (0, 1)

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

region defined by

Ix = (1, 2), Iy = (0, 1)

delay successors

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region equivalence [AD94]

0 1 2 3
0

1

2

x

y

region defined by

Ix = (1, 2), Iy = (0, 1)

delay successors

successor by reset

Build equivalence relation which is of finite index and is

“compatible” with clock constraints:
r , r ′ ∈ R ⇒ ∀ constraints γ : r |= γ ⇔ r ′ |= γ

compatible with time elapsing:
r , r ′ ∈ R ⇒ same delay successor region

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton

Construction: Aec = (Σ,Q,Q0,E ,F) 7→ RA

For each transition (q, a, ψ, {q′}) ∈ E

Build transitions in the RA: (q,R)
a

−→ (q′,R ′) if

there exists R ′′ a delay successor of R s. t.
R ′′ satisfies the constraint ψ (i. e., R ′′ ⊆ ψ)
R ′′ (mod. reset + conjunction of clocks) is included in R ′

Theorem

An ECA and its region automaton RA are time-abstract bisimilar

L(RAϕ) = ut(L(Aϕ

ec)) (w = (a, 1.2)(b, 3.4); ut(w) = ab)

The region automaton is finite

Language emptiness can be decided on the RA

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Region automaton example [A99]

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL—putting it all together

Monitoring is based on Aϕ

ec and RAϕ

No explicit monitor construction

Algorithm: Automata execution

Let Γ0 be initial symbolic valuation of Aϕ

ec , and l0 an initial state of Aϕ

ec .

A1. [Compute successor set.] For the first event (a0, t0), the set of successors
w. r. t. A

ϕ

ec is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false

issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (l , Γ) and corresponds to a
set of states in RA

ϕ. Iff for all of them the accepted language is empty,
the underlying property is violated, and false issued.

A4. [Process next event.] Issue true, and continue procedure from A2 with
each successor state (l , Γ) for which a corresponding accepting state of
RA

ϕ exists, reading a new input event.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL—putting it all together

Monitoring is based on Aϕ

ec and RAϕ

No explicit monitor construction

Algorithm: Automata execution

Let Γ0 be initial symbolic valuation of Aϕ

ec , and l0 an initial state of Aϕ

ec .

A1. [Compute successor set.] For the first event (a0, t0), the set of successors
w. r. t. A

ϕ

ec is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false

issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (l , Γ) and corresponds to a
set of states in RA

ϕ. Iff for all of them the accepted language is empty,
the underlying property is violated, and false issued.

A4. [Process next event.] Issue true, and continue procedure from A2 with
each successor state (l , Γ) for which a corresponding accepting state of
RA

ϕ exists, reading a new input event.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL—putting it all together

Monitoring is based on Aϕ

ec and RAϕ

No explicit monitor construction

Algorithm: Automata execution

Let Γ0 be initial symbolic valuation of Aϕ

ec , and l0 an initial state of Aϕ

ec .

A1. [Compute successor set.] For the first event (a0, t0), the set of successors
w. r. t. A

ϕ

ec is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false

issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (l , Γ) and corresponds to a
set of states in RA

ϕ. Iff for all of them the accepted language is empty,
the underlying property is violated, and false issued.

A4. [Process next event.] Issue true, and continue procedure from A2 with
each successor state (l , Γ) for which a corresponding accepting state of
RA

ϕ exists, reading a new input event.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL—putting it all together

Monitoring is based on Aϕ

ec and RAϕ

No explicit monitor construction

Algorithm: Automata execution

Let Γ0 be initial symbolic valuation of Aϕ

ec , and l0 an initial state of Aϕ

ec .

A1. [Compute successor set.] For the first event (a0, t0), the set of successors
w. r. t. A

ϕ

ec is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false

issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (l , Γ) and corresponds to a
set of states in RA

ϕ. Iff for all of them the accepted language is empty,
the underlying property is violated, and false issued.

A4. [Process next event.] Issue true, and continue procedure from A2 with
each successor state (l , Γ) for which a corresponding accepting state of
RA

ϕ exists, reading a new input event.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Monitoring TLTL—putting it all together

Monitoring is based on Aϕ

ec and RAϕ

No explicit monitor construction

Algorithm: Automata execution

Let Γ0 be initial symbolic valuation of Aϕ

ec , and l0 an initial state of Aϕ

ec .

A1. [Compute successor set.] For the first event (a0, t0), the set of successors
w. r. t. A

ϕ

ec is computed.

A2. [Set empty?] If set is empty, the underlying formula is violated, and false

issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (l , Γ) and corresponds to a
set of states in RA

ϕ. Iff for all of them the accepted language is empty,
the underlying property is violated, and false issued.

A4. [Process next event.] Issue true, and continue procedure from A2 with
each successor state (l , Γ) for which a corresponding accepting state of
RA

ϕ exists, reading a new input event.

Andreas Bauer Security protocols, properties, and their monitoring

Motivation
The SSL protocol

Runtime verification of LTL
Runtime verification of TLTL

Many thanks!

Try it out: http://ltl3tools.sf.net/!

Andreas Bauer Security protocols, properties, and their monitoring

http://ltl3tools.sf.net/

	Motivation
	The SSL protocol
	Runtime verification of LTL
	Runtime verification of TLTL

