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Abstract— We propose a topological perspective on the diag-
nosis problem for discrete-event systems. In an infinitary frame-
work, we argue that the construction of a centralized diagnoser
is conditioned by two fundamental properties: saturation and
openness. We show that these properties are decidable forω-
regular languages. Usually, openness is guaranteed implicitly
in practical settings. In contrast to this, we prove that the
saturation problem is PSPACE-complete, which is relevant for
the overall complexity of diagnosis.

I. I NTRODUCTION

The diagnosis of (discrete-event) systems, originally for-
malized in [20], consists in establishing a verdict on the
status of the actual computation of the system regarding a
given property, based on external observable events of this
computation.

The system under consideration is assumed to be finite
state and the property under scrutiny is given by a regular
language over the behaviors of the system. Traditionally, this
regular property is described by a finite-state automaton [7],
but logical specifications have also been considered [9].

The central difficulty in diagnosis problems is the imper-
fect information about the computations. Given a stream of
observations, there are in general several behaviors of the
systems that are consistent with this information. To know
with certainty that the actual computation has the desired
property, one needs to make sure that the entire set of
consistent behaviors have this property. This is precisely
what diagnosability is about. Several procedures to decide
diagnosability have been studied. The most efficient one
is based on thetwin plant construction[8], which runs
in quadratic time when the property is described by a
deterministic finite state automaton. Diagnosability is proved
to be a necessary and sufficient condition for the existence
of a bound in the number of observations that are needed to
establish that the property holds. On the other hand, when the
property is specified in a logical formalism, diagnosability
is not sufficient anymore to guarantee that a verdict on the
computation can be delivered in a finite amount of time. This
can be achieved only when the system satisfies an additional
property calledprediagnosability[9].

In this paper, we characterize diagnosability and predi-
agnosability in terms of classical mathematical concepts:
saturationand opennessin the topological space of infinite
words. We investigate the associated decision problems and
analyze their complexity.
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Saturation involves a language and an equivalence relation:
The language is saturated if it does not distinguish between
equivalent elements. We give aPSPACE decision procedure
for the saturation problem when the language isω-regular
and the equivalence relation isω-rational. Our method is
inspired from [14]. We specialize this general problem to
the case of the observational equivalence between words
induced by the imperfect information setting and show that
this instance of the saturation problem, which corresponds
precisely to diagnosability, isPSPACE-complete.

The paper is organized as follows: in Sec. II we present no-
tations and vocabulary and in Sec. III we introduce topolog-
ical concepts in the space of infinite words such as openness
and the central notion of saturation. As a preliminary to our
decision procedure for saturation, we dedicate the Sec. IV
to rational relations between words and to 2-automata. In
Sec. V, we present the decision procedures for saturation
and openness, and analyze their complexity. We conclude
the contribution with a comparison of our approach with
existing work on centralized diagnosis.

II. ELEMENTARY NOTATIONS AND VOCABULARY

Given an alphabetΣ = {a, b, l, . . .}, we denote byΣ∗

(resp.Σω) the set of finite (resp. infinite) words overΣ. We
useu, u′, v, . . . (resp.w,w′, w1, . . .) as typical elements of
Σ∗ (resp.Σω). For w ∈ Σω, we writewk for the k-th prefix
of w. A ∗-language (resp.ω-language) is any subset ofΣ∗

(resp.Σω) – we will indifferently use “language” and “set” –.
We useB,B′, . . . (resp.L,L′, S, . . .) for typical ∗-languages
(resp.ω-languages). For anyL ⊆ Σω, let us denote byLc

the complement ofL, that isΣω \ L. Given a setB ⊆ Σ∗,
we denote byBΣω the set of words of the formuw with
u ∈ B andw ∈ Σω.

We fix a distinguished subsetΣo of Σ. Elements of
Σo are calledobservablesand elements of its complement
Σuo, areunobservables. Typical elements ofΣ∗

o (resp.Σω
o )

are τ, τ ′, τ1, . . . (resp. π, π′, π1). Any word over Σo is
an observation. We denote byP the projection on words
which transforms a word overΣ into a word overΣo

by erasing every element ofΣo. From the projectionP ,
we derive an equivalence relation≈ between words, called
the observational equivalence, which identifies two words
whenever theirP -images coincide and they are both either
finite or infinite. Given any equivalence∼ between finite
(resp. infinite) words, we denote by[u]∼ (resp. [w]∼) the
equivalence class ofu (resp.w).



III. T OPOLOGIES ON THESPACE OFINFINITE WORDS

The Cantor topologyover the setΣω of infinite words
is defined as follows: the basic open sets are the sets of the
form BΣω whereB ⊆ Σ∗ (see [15, Chapter 3]). A set is
closed if its complement is open. It isclopen is it is both
open and closed. Clopen sets are of the formBΣω whereB
is a finite subset ofΣ∗.

We refine the Cantor topology with respect to a fixed
equivalence relation between words. This is done by en-
forcing the open sets to be “saturated” by the equivalence
relation. In the rest of the section we fix an equivalence
relation∼ over Σω.

Definition 1: The∼-saturationof anω-languageL is the
ω-language(L)∼ defined by(L)∼ :=

⋃

w∈L[w]∼.

L is∼-saturated, wheneverL = (L)∼.

In Sec. V-A, we examine a procedure to decide whether
a language is∼-saturated.

Lemma 2:Complement, union and intersection preserve
∼-saturation.

We consider a new topology onΣω where the open sets
are (BΣω)∼ with B ⊆ Σ∗. They are the∼-saturations of
open sets in the Cantor topology.

As words corresponding to computations of a given
(discrete-event) system are not in general arbitrary elements
of Σω, we consider the topology induced by some fixedω-
languageS ⊆ Σω. The languageS is called asystem. In the
topology induced byS, (Cantor) open sets are of the form
BΣω∩S and∼-open sets are of the form(BΣω)∼∩S (where
B ⊆ Σ∗). A languageL ⊆ Σω is open(resp.∼-open) in S
wheneverL∩ S = BΣω ∩ S (resp.= (BΣω)∼ ∩ S). Notice
that an open in (resp.∼-open) set inS is not necessarily
open (resp.∼-open) in the Cantor topology.

We say thatL is ∼-saturated inS whenever

L ∩ S = (L)∼ ∩ S

Note that ∼-saturation and∼-saturation inΣω coincide.
Being∼-saturated inS implies being∼-saturated inS′ for
any S′ ⊆ S, but that the converse does not hold in general.
To see this, consider any situation with the following strict
inclusionsS′ ⊂ L ⊂ S = (L)∼.

Lemma 3: If a set is∼-open inS then it is∼-saturated
in S.

Proof: It is sufficient to show that for anyB ⊆ Σ∗,
((BΣω)∼ ∩ S)∼ ∩ S = (BΣω)∼ ∩ S. We only establish
((BΣω)∼∩S)∼∩S ⊆ (BΣω)∼∩S, as the reverse inclusion
is immediate. Letw ∈ ((BΣω)∼ ∩ S)∼ ∩ S, then w ∈ S
and it remains to prove thatw ∈ (BΣω)∼. Because by
assumptionw ∈ ((BΣω)∼ ∩ S)∼, there existsw′ ∼ w with
w′ ∈ (BΣω)∼ ∩S. In particular,w′ ∈ (BΣω)∼. There must
exist w′′ ∈ BΣω such thatw′′ ∼ w′. Since∼ is transitive,
w ∼ w′′ which entailsw ∈ (BΣω)∼.

Lemma 4:An open set is∼-saturated inS if and only if
it is ∼-open inS.

Proof: Consider a languageBΣω with B ⊆ Σ∗. It is
∼-saturated inS if and only if BΣω ∩ S = (BΣω)∼ ∩ S,
which shows that it is∼-open inS. For the reciprocal, apply
Lem. 3.

In the rest of this section, we focus on the case where∼
is ≈, the observational equivalence. The following lemma
shows that the equivalence≈ is very particular:

Lemma 5:For anyB ⊆ Σ∗

(BΣω)≈ = (B)≈Σω (1)

where(B)≈ =
⋃

u∈B [u]≈.

Lemma 6:A language is≈-open in S if and only if it
coincides onS with an open and≈-saturated language.

Proof: Assume a languageL is ≈-open in S. Since
L satisfiesL ∩ S = (BΣω)≈ ∩ S and by (1) this language
coincides onS with an open set, namely(B)≈Σω.

AssumeL∩S = L′∩S whereL′ is open and≈-saturated.
We apply Lem. 4 toL′ to rewriteL′∩S as(BΣω)≈∩S for
someB ⊆ Σ∗, which shows thatL is ≈-open inS.

We now establish Prop. 7 and Cor. 8 as essential results
for the theory of discrete-event systems diagnosis.

To everyτ ∈ Σ∗
o we associate the set〈τ〉 := P−1(τ)Σω.

By definition,〈τ〉 is open, and it is≈-saturated by construc-
tion; hence it is≈-open by Lem. 4. Note that an infinite
word w ∈ 〈τ〉 wheneverw is of the formw = uw′ for some
u with P (u) = τ . We will abuse notation by writing〈π〉 to
mean the set of infinite wordsw such thatP (w) = π.

Proposition 7: Let L ⊆ Σω. L is ≈-open if and only if
for every observationπ ∈ Σω

o with L∩ 〈π〉 6= ∅, there exists
k(π) ∈ IN such that〈πk(π)〉 ⊆ L.

Proof: ⇐) is immediate since the〈P (w)k(P (w))〉’s are
≈-open sets andL =

⋃

w∈L〈P (w)k(P (w))〉.

⇒) By Lem. 6 (for S = Σω) L is open and≈-saturated,
and by the later,L ∩ 〈π〉 6= ∅ implies

〈π〉 ⊆ L (2)

For the readability of the remaining we simply writek for
k(π). Assume that for eachk ≥ 0 there existsw′

k ∈ 〈πk〉\L.
SinceL is open, it is of the formBΣω with B ⊆ Σ∗. Since
w′

k /∈ L, the j-th prefix (w′
k)j of w′

k is not B, for every
j ∈ IN. Because the alphabetΣ is finite, we apply Koenig’s
lemma to the set{(w′

k)j | j, k ∈ IN} and obtain an infinite
sequence of elementsu0 < u1 < u2... such that for every
i, P (ui) is the i-th prefix of π. Since the sets{ui}Σ

ω are
clopen sets, their intersection is closed and therefore contains
the limit of the ui’s, say w′, which lies outside the setL.
But P (w′) = π, since eachP (ui) is a prefix ofπ, hence
w′ ∈ 〈π〉, which contradicts (2).

We assume given a systemS ⊆ Σω. For τ ∈ Σ∗
o, 〈τ〉S

denotes the set〈τ〉 ∩ S; note that〈τ〉S is ≈-open inS.



Corollary 8: Let L ⊆ Σω. L is ≈-open inS if and only
if for every observationπ ∈ Σω

o with L ∩ 〈π〉S 6= ∅, there
existsk(π) ∈ IN such that〈πk(π)〉S ⊆ L.

Proof: We simply writek for k(π). AssumeL is ≈-
open inS. ThenL ∩ S = (BΣω)≈ ∩ S for someB ⊆ Σ∗.
Let π ∈ Σω

o be such thatL ∩ 〈π〉S 6= ∅. SinceL ∩ S ⊆
(BΣω)≈∩S, we also have(BΣω)≈∩〈π〉S 6= ∅. By applying
Prop. 7 to the≈-open(BΣω)≈, π has some prefixπk with
〈πk〉 ⊆ (BΣω)≈. Hence〈πk〉S ⊆ L.

Reciprocally, assume that for everyπ ∈ Σω
o , L∩〈π〉S 6= ∅

implies there existsk ∈ IN such that〈πk〉S ⊆ L. We want
to show thatL is of the formL = (BΣω)≈ ∩ S for some
B ⊆ Σ∗. The candidate forB is

⋃

π∈Σω
o

P−1(πk).

By Lem. 5,BΣω is ≈-saturated, so thatBΣω = (BΣω)≈.
It remains to show thatL ∩ S = BΣω ∩ S:

• L ∩ S ⊆ BΣω ∩ S: Let w ∈ L ∩ S, and letπ = P (w).
Sincew ∈ P−1(πk)Σω ∩ S and P−1(πk) ⊆ B, w ∈
BΣω ∩ S.

• BΣω ∩ S ⊆ L ∩ S: Let w ∈ BΣω ∩ S, then w ∈
P−1(πk)Σω = 〈πk〉 which by hypothesis is contained
in L and we are done.

In Sec. V we investigate decidability of∼-saturation,
openness, and≈-openness. Elementary notions on rational
relations are required to present the solution.

IV. RATIONAL RELATIONS

The class ofrational relations and its subclasses ranging
from recognizablerelations to e.g.synchronizedrelations are
of particular interest since they possess acceptors whose e.g.
emptiness can be decided. A detailed literature on the topic
can be found in [2], [25], [5], [16], [4].

For the purpose of this work, we will focus on binary
relations only, that is pairs of words over the alphabetΣ,
and we simply call themrelations.

For finite words, a relation is a subset of the Cartesian
productΣ∗×Σ∗. The notions needed in the contribution are
listed below.

A subsetR of Σ∗×Σ∗ is rational whenever it is an element
of the setRatΣ∗×Σ∗ , or simply Rat, defined as the least
subset of2Σ∗×Σ∗

such that: (1) every finite subset ofΣ∗×Σ∗

is in Rat, (2) if R,R′ ∈ Rat, thenR ∪ R′, RR′ ∈ Rat, and
(3) if R ∈ Rat, thenR∗ :=

⋃

i≥0 Ri ∈ Rat.

The following properties are decidable.

• Emptiness: for any rationalω-relationρ ⊆ Σω×Σω, one
can construct non-deterministic Buchi automata which
accept the first and the second projection ofρ. Now, ρ
is empty if and only if either one of the two projections
is empty. Buchi automata emptiness is decidable.

• Finteness: whether a rationalω-relation is finite amounts
to checking that the two projections are finiteω-regular
languages.

According to the general theory,recognizablerelations
over Σ are particular cases of recognizable subsets of a
monoid (see [2, Chapter III]). In the case of the monoid
Σ∗×Σ∗ (for binary relations), we use the following intuitive
characterization due to [3], known as the Mezei’s Theorem:
a recognizablerelation R ⊆ Σ∗ × Σ∗ is a finite union of
sets of the formBi ×B′

i, whereBi, B
′
i ⊆ Σ∗ are regular∗-

languages. As the monoidΣ∗ ×Σ∗ is implicit in this work,
we simply writeRec for the set of recognizable subsets of
Σ∗ × Σ∗.

It is well established thatRec ⊆ Rat. However, because
the monoidΣ∗×Σ∗ is not free, the reciprocal does not hold.

Closure properties of the classesRat and Rec are as
follows: Rec is closed under union, intersection and com-
plement, whereasRat is closed under union (by definition)
but not under intersection in general, therefore neither under
complementation. One way to achieve good closure prop-
erties while maintaining expressiveness is by mixing the
two classes. The following lemma from [2, Proposition 2.6,
Chapter III] is at the basis of our analysis.

Lemma 9: If R ∈ Rat andR′ ∈ Rec, thenR∩R′ ∈ Rat.

Operationally, rationalω-relations are characterized by2-
automata[17].

Definition 10: A 2-automatonover the alphabetΣ is a
structureΘ = (S,Σ, s0, t, A, S1, S2) where (S,Σ, s0, t, A)
is a Buchi automaton with acceptance setA ⊆ S, and where
{S1, S2} is a partition ofS into control states for the first
and second input tape respectively.

A 2-automaton reads a pair of words(w1, w2) each placed
on a distinct input tape; the partition{S1, S2} tells which
tape is to be read.

s0 sl

l

l

sa

sb

b

a

⊥1⊥2

a

b

a, b, l

a, b, l

a

b

a

b

l

lFig. 1.

We illustrate the behavior of the 2-automaton in Fig. 1
characterizing the observational equivalence induced by
Σo = {a, b} ⊆ Σ = {a, b, l} for a pair of input words
(w1, w2) of the formw1 = alblaaw′

1 andw2 = llaballaw′
2

(states filled in grey are inS1). As the initial states0



belongs toS1, the automaton first readsa from w1 on
tape 1, then it moves to statesa ∈ S2 to remember that
the last observable read on tape 1 wasa. It then reads
l of w2 on tape 2, which causes a transition back tosa.
Eventually, the firsta of w2 is read, and since this matches
the expected observable, the automaton moves back tos0.
After a few more transitions, the automaton is in states0

and the tapes containw′
1 and w′

2 respectively. Assume that
w′

1 6≈ w′
2, henceforthw1 6≈ w2, because sayw′

1 starts with
an a whereasw′

2 starts with ab. In this case, the run of the
automaton gets trapped inside the non accepting maximal
strongly connected component{⊥1,⊥2}. Notice that the
statesl ∈ S1 is meant to “absorb” unobservables on tape
1; as it is not accepting, only words with a finite number of
consecutive unobservables are recognized.

We remark that any observational equivalence can be
characterized by a 2-automaton of size inO(|Σo| + 4).

Notice that for a 2-automaton accepting an observational
equivalence relation, the distance between the two heads
cannot be bounded in general, because of unobservables. In
other words, observational equivalences are notsynchronized
rational relations [4]. Nevertheless, their complement is
rational.

V. DECISION PROBLEMS

We address the problems of saturation and openness of
ω-regular languages described by non-deterministic Buchi
automata.

A. Deciding saturation

In the following, letL(Θ) ⊆ Σω×Σω denote the language
accepted by a 2-automatonΘ.

Theorem 11:Fix a non-deterministic Buchi automaton
A = (Q,Σ, δ, q0, F ) and a 2-automatonΘ whose language
L(Θ) is an equivalence relation. The problem of whether
L(A) is L(Θ)-saturated isPSPACE-complete.

Proof: Simply write L for L(A) and∼ for L(Θ).

i) PSPACE membership: letR :=∼ ∩(L × Lc). Clearly,
R = ∅ if and only if L is ∼-saturated, as both conditions
mean that there are no two wordsw1 ∼ w2 with w1 ∈
L and w2 /∈ L. By Mezei’s Theorem, the relationL × Lc

is recognizable sinceL and Lc are ω-regular. Since∼ is
rational, so isR (see a variant of Lem. 9 forω-relations in
[5]) and a 2-automaton can be effectively constructed forR.

We present an algorithm to check emptiness ofR.

Let B be a non-deterministic Buchi automaton which ac-
ceptsLc usingO(2|A| log |A|) states. This can be constructed
following [10] (see also [6, Chapter 4]).

Let Θ′ be the 2-automaton which behaves likeΘ but
whose input is componentwise constrained byA and B
respectively. The 2-automatonΘ′ has O((|Σo| + 4) · |A| ·
2|A| log |A|) states encoded in spaceO(log(|Σo| + 4)) +
log |A| + |A| log |A|).

The following non-deterministic algorithmA1 finds
an accepting run ofΘ′, namely a sequence of states
r0r1 . . . ri . . . rn wherer0 is an initial state,ri is an accepting
state, andri = rn.

Algorithm A1

1) Let r be the initial state ofΘ′

2) Choose a stater′

3) If r′ is a successor ofr, let r = r′

else halt (without accepting)
4) If r is accepting, goto 5 or 2, else goto 2
5) Let rA = r // guess it isri

6) Choose a stater′

7) If r′ is a successor ofr, let r = r′

else halt (without accepting)
8) If r = rA, accept, else goto 6

This algorithm can be implemented by a non-deterministic
polyspace Turing machine, which concludes since
NPSPACE = PSPACE by Savitch Theorem [22].

ii) PSPACE hardness: let us denote by≡ the trivial
relation Σω × Σω. Given a Buchi automatonC, we reduce
the universality problem forC (whetherL(C) = Σω), known
to bePSPACE-complete [23], to the≡-saturation ofL(C).

If L(C) = ∅, which can be checked linearly in the size
of C, then return “no”. Otherwise, letw1 ∈ L(C). C is not
universal if and only there existsw2 /∈ L(C). Sincew1 ≡ w2

(because≡ is trivial) this is equivalent to saying thatL(C)
is not≡-saturated.

When anω-regular systemS is considered, AlgorithmA1
can be easily adapted to decide∼-saturation ofL in S by
checking emptiness ofR intersected with the recognizable
relationS × S.

Corollary 12: The problem of checking≈-saturation inS
is PSPACE-complete.

Proof: For membership, use the fact that the set of
states of the 2-automatonΘ′ can be encoded in space
O(log(|Σo| + 4)) + log|A| + |A|log|A|). For hardness, take
S = Σω andΣo = ∅ and consider the proof for hardness in
Th. 11, as in this case≈ and≡ match.

B. Deciding openness

We recall that openness implies openness inS, for any
S ⊆ Σω, but that the converse does not hold in general.
However, it is easy to show that ifS is a closed set,L is
open inS if and only if L ∪ Sc is open.

Regarding openness, [12] proposes a polynomial proce-
dure to decide whether the language of a deterministic
Muller automaton (MA), see for example [6], is an open
set. Deterministic MA are sufficiently expressive enough to
cover the class ofω-regular languages, and in contrast to
Buchi automata, they can always be assumed deterministic.
Basically, a (deterministic) MAM is given by a finite state
automaton(Q,Σ, q0, δ) and a distinguished setF ⊆ 2Q of
accepting sets. An infinite word is accepted byM if along



the (unique) run ofM for this input word, the set of states
that are visited infinitely often matches some element ofF .
In an MA M, the set of accepting setsF consists of non
trivial strongly connected components.

For non-deterministic Buchi automata (NBA), the open-
ness problem is more complex. It is obviously decidable by
translating the NBA into a deterministic MA [13], but with
an exponential blow-up. Alternatively, by complementing the
NBA, one can use the procedure of [1] which determines
whether a language of an NBAA is closed [1]: the method
consists in verifying thatA and its closure (obtained by
making all co-reachable states accepting) denote the same
language. According to [24] this verification problem is
PSPACE-complete in general, and it is linear time ifA is
deterministic [11]. However, the preliminary complementa-
tion of the NBA has an exponential cost.

To our knowledge, no lower bound for the openness
problem of NBA has been established.

VI. A PPLICATION TO DIAGNOSIS

In this section we consider the problem of diagnosing
arbitraryω-regular languages. The infinitary setting is worth
considering as it brings insight into existing work on di-
agnosis. The reader familiar with classic diagnosis may be
puzzled by the definition according to Eq. (3) as it does not
match the standard definition of the diagnosis function, as in
[7]. Differences and similarities between the infinitary and
the finitary settings are discussed in Sec. VI-B.

A. Diagnosis ofω-languages

Assume given twoω-languagesS and L. We want to
diagnose that a word ofS belongs to L on the basis
of the observations of its prefixes; traditionally, elements
of L are called faulty sequences. The diagnoser is fed
incrementally with the sequence of finite observations of an
infinite word ofS. Let τ ∈ Σ∗

o be an observation. Assume a
situation where for every possible infinite continuationπ′

of τ , any concrete scenariow ∈ S consistent withτπ′,
that is w ∈ 〈τπ′〉S , belongs toL. In such a situation,
membership of the actual computation of the system inL
can be safely declared/predicted, i.e. we set a positive verdict
(⊤). Dually, if every scenario consistent with any possible
infinite continuation of the observation does not belong to
L, we set a negative verdict (⊥). The remaining cases are
“confused” situations since scenarios consistent with the
observation spread inside and outsideL; in this case, the
diagnoser returns?.

According to the possible situations described above, we
define thediagnosis functionDiagL : Σ∗

o → {⊤,⊥, ?} by

DiagL(τ) :=







⊤ if 〈τ〉S ⊆ L
⊥ if 〈τ〉S ∩ L = ∅
? otherwise.

(3)

We shall omit the subscriptL when clear from the context.

For a diagnoser to be useful, one expects a positive verdict
to be eventually delivered if the actual computation of the
system is a faulty sequence.

Theorem 13:L is ≈-open inS if and only if for every
w ∈ L, there existsk(w) ∈ IN s.t. Diag(P (w)k(w)) = ⊤.

Proof: By definition of the diagnosis function,
Diag(P (w)k(w)) = ⊤ is equivalent to〈P (w)k(w)〉 ⊆ L.
We can apply Cor. 8 forπ = P (w) to conclude.

Note that≈-openness inS guarantees only issuing of
positive verdicts. Regarding non faulty sequences, nothing
can be inferred in a finite amount of time in general,
unlessLc is ≈-open in S: Th. 13 then applies so that a
negative verdict eventually occurs when observing a non
faulty sequence. To be more specific, ifL is ≈-clopen in
S, confused situations cannot last.

Theorem 14:L is ≈-clopen inS if and only if for all w ∈
S, there existsk(w) ∈ IN such thatDiag(P (w)k(w)) 6=?.

Proof: ⇒) Let w ∈ Σω. If w ∈ L, becauseL is ≈-
open in S, we can apply Th. 13 to infer the existence of
k(w). Otherwisew ∈ S \ L. SinceL is ≈-closed inS, Lc

is ≈-open inS. We therefore can apply Th. 13 toLc and
obtain the existence ofk(w) such that(P (w)k(w)) ⊆ Lc,
that isDiag(P (w)k(w)) =⊥.
⇐) Consider the partition ofS into L andS \L. For every
w ∈ L, Diag(P (w)k) 6=? is equivalent toDiag(P (w)k) =
⊤. By Th. 13, L is ≈-open inS. By a similar reasoning,
S \ L is ≈-open inS, henceL is ≈-closed inS.

B. Comparison with classic diagnosis

The classic diagnosis framework [21] deals with finite
words. A discrete-event systemS can be viewed as a finite
state deterministic automaton over an alphabet (sayΣ) with
all states marked as final. As presented in a most general
setting in [7], asupervision patternΩ is a regular∗-language
which is open in the standard topology of finite words
(Ω = ΩΣ∗).

In the following, letSf be the∗-language denoted byS,
and as in the previous sections, letS be the ω-language
denoted byS when interpreted as a Buchi automaton.

We recall the approach of [7]. By writing(τ)Sf
for

the set of finite words inSf which are consistent with
the observationτ and which end with an observable, the
diagnosis functiondiagΩ : Σ∗

o → {YES, NO, Don′tKnow} is
defined by

diagΩ(τ) :=







YES if (τ)Sf
⊆ L

NO if (τ)Sf
∩ L = ∅

Don
′
tKnow otherwise.

The comparison between the approach of [7] and the
one of Sec. VI-A should be made by correlatingdiagΩ

and DiagΩΣω . Whereas the former focuses only on what
happened in the past, the latter one considers information
accumulated so far and anticipates on the possible future.
An accurate comparison of these two views is out of the



scope of this paper. We rather discuss the relation between
the≈-saturation ofΩΣω in S and the (≈-)diagnosabilityof
Ω with respect toSf [20].

The diagnosability property ensures the “usefulness” of
the functiondiagΩ; it guarantees that there existsN ∈ IN
such that if the current executionw ∈ Sf belongs toΩ,
then any infinite sequenceP (w) = τ0 < τ1 < τ2 < . . . of
observations satisfiesdiagΩ(τN ) = YES.

Diagnosability therefore fails if one can find arbitrary
long pairs of words which are observationally equivalent but
which do not agree on membership inΩ. In fact, if infinitely
many such pairs exist, by using Koenig’s lemma one can
exhibit two infinite wordsw1 and w2 in S such that (a)
w1 ≈ w2, and (b) no prefix ofw1 reachesΩ whereas almost
all prefixes ofw2 do. Notice that the conjunction of (a) and
(b) precisely matches the property thatΩΣω is≈-saturated in
S. As a consequence,≈-saturation ofΩΣω in S and the≈-
diagnosability ofΩ with respect toSf are equivalent notions.

As ΩΣω is an open set, by Lem. 4,≈-openness inS and
≈-saturation inS coincide. Th. 13 provides a necessary and
sufficient condition to diagnose faulty sequences after finitely
many observation steps. However, Th. 13 somehow relaxes
the “openness assumption” by requiring only “openness in
S”. Actually, by Lem. 6, openness and openness inS are
almost the same if the system languageS is assumed to
be closed: it is always possible to replaceL with the open
set L ∪ Sc, as L ∩ S = (L ∪ Sc) ∩ S. This explains
why the so-called “prediagnosability” condition of [9] which
corresponds to openness is optimal; ifS was not closed, the
optimal notion would be “openness inS” instead.

We now turn to the comparison of AlgorithmA1 to decide
≈-saturation (inS) and the standard algorithm to decide
diagnosability, as originally proposed by [8]. We informally
recall this algorithm, according to its generalization in
[7]. The central object is a graph called thetwin plant
whose paths denote pairs of≈-equivalent words, and where
some vertices are marked. The twin plant construction
highly relies on a synchronous product of automata: in this
synchronous product, a vertex isconfusingif in the pair of
states it corresponds to, only the first state is final. The twin
plant is build in three steps:
Function TP(S, θ) // Twin plant construction
Inputs: two finite automataS andθ (the latter one represents
the languageΩ and is assumed deterministic)
Outputs: a graph (the twin plant)

1) Build the product automatonSθ := S × θ (a state is
final if its second component is final);

2) Abstract away from unobservables inSθ by replacing
every sequence of transitions carrying a word ofΣ∗Σo by a
single transition carrying the unique observable of this word.
This yields OBS(Sθ).

3) Return the graph OBS(Sθ)×OBS(Sθ), where confusing
vertices are those whose first component is final whereas the
second one is not.

It is not difficult to see that the existence of a reachable
cycle in TP(S, θ) which contains confusing vertices
witnesses a counter-example of the≈-diagnosability ofΩ
with respect toSf . This leads to the following algorithm.

Algorithm A2 // Diagnosability
Inputs: two finite automataS andθ (the latter one represents
the languageΩ and is assumed deterministic)
Outputs: “Ω is not≈-diagnosable with respect toSf ” if the
graphTP(S, θ) contains a cycle of confusing vertices, “Ω is
≈-diagnosable with respect toSf ” otherwise.

In fact AlgorithmA2 solves instances of the “≈-saturation
in S” problem (solved byA1) for which the input languageL
is open (of the formΩΣω). The differences betweenA1 and
A2 are the following: On the one hand, “≈-saturation in S” is
a PSPACE-complete problem (Cor. 12) and AlgorithmA1
is optimal. On the other hand, AlgorithmA2 is quadratic,
by searching a cycle in the graphTP(S, θ) whose size
is in O((|S||θ|)2). Although the complexity ofA2 seems
considerably lower in that case, the assumption thatθ is
deterministic is very strong (it hides an exponential time
preprocessing procedure to determinize a finite automaton).
The twin plant approach hence solves fortunate instances
of the saturation problem where rejection of a word by the
automaton ofΩ is witnessed by a single run. AlgorithmA2
would become “incomplete” for arbitrary non-deterministic
automataθ: a cycle of confusing vertices would not char-
acterize a pair of words(w1, w2) where w1 ≈ w2, w1 ∈
ΩΣω, and w2 /∈ ΩΣω. Because of non-determinism, paths
in TP(S, θ) denote only pairs of runs(ρ1, ρ2) over words
(w1, w2); and in general the fact thatρ2 is not accepting
does not implyw2 /∈ ΩΣω, unlessρ2 is the unique run. This
would be the case ifL is a language whose complement is
accepted by a deterministic Buchi automaton.

This last remark leads us to propose AlgorithmA3 as an
extension of AlgorithmA2 from the class of open languages
to the class of languages whose complement is deterministic
Buchi definable. This class is characterized in the Borel
hierarchy asΣ2 which contains sets obtained by a countable
union of closed sets. Membership inΣ2 is decidable [15,
Chapter I, Proposition 7.10]. For this strictly larger class
of languages, confusing cycles become cycles of the form
{(q1, q

′
1), (q2, q

′
2), . . . , (qk, q′k)} whereqi is accepting and all

theq′j ’s are rejecting. Because open sets are strictly contained
in Σ2 [15, Chapter III, Proposition 2.9], AlgorithmA3 is
a true extension of AlgorithmA2, but is still quadratic,
although it solves instances of the “∼-saturation” problem
(where∼ is an observational equivalence andL ∈ Σ2).

VII. C ONCLUSION

We have introduced the problems of saturation and open-
ness on the space of infinite words, shown their decidabil-
ity, and studied their complexity; the former isPSPACE-
complete and the latter one isEXPTIME. Recall that no
lower bound for the openness problem is know when the



input is given as a non-deterministic Buchi automaton. Also,
we are not aware of any decision procedure the “openness
in S” problem in general, but by assuming thatS is a closed
set, this problem reduces to the one of openness.

Finally, we have investigated diagnosis ofω-regular prop-
erties and its relation with classic diagnosis. More specifi-
cally, we have shown that the standard algorithm for check-
ing diagnosability is a particular case of the saturation
problem corresponding to properties that are open sets.

For future work, we believe the rationalω-relations≈ and
R (Th. 11) are central objects for the main following reasons.

• The relation≈c, the complement of≈, is also rational
whereas rational relations are not closed under comple-
ment in general.

• As finiteness of rational relations is decidable, the
number of confusing cycles can be estimated.

• Although a naive extension of≈-saturation to a decen-
tralized setting would fail (as rational relations are not
closed under intersection), we can tune the devices to
decide the co-observability property [19], [26]. Also, by
scanning the relationR, we can exhibit strategic situa-
tions where observation capabilities can be augmented
to achieve an objective (e.g. by a communication mech-
anism), in the spirit of [18].

Advisedly exploiting these aspects is ongoing work.
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