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Abstract— We propose a topological perspective on the diag-  Saturation involves a language and an equivalence refation
nosis problem for discrete-event systems. In an infinitary frame-  The language is saturated if it does not distinguish between
work, we argue that the construction of a centralized diagnoser equivalent elements. We giveRSPACE decision procedure

is conditioned by two fundamental properties: saturation and for th turati bl hen the | . |
openness. We show that these properties are decidable for- 1O € saturation probiem when the languageviseguiar

regular languages. Usually, openness is guaranteed implicitly and the equivalence relation is-rational. Our method is
in practical settings. In contrast to this, we prove that the inspired from [14]. We specialize this general problem to

saturation problem is PSPACE-complete, which is relevant for  the case of the observational equivalence between words
the overall complexity of diagnosis. induced by the imperfect information setting and show that

this instance of the saturation problem, which corresponds
precisely to diagnosability, i®SPACE-complete.

The diagnosis of (discrete-event) systems, originally for The paper is organized as follows: in Sec. Il we present no-
malized in [20], consists in establishing a verdict on theations and vocabulary and in Sec. 11l we introduce topolog-
status of the actual computation of the system regardingjgal concepts in the space of infinite words such as openness
given property, based on external observable events of thiad the central notion of saturation. As a preliminary to our
computation. decision procedure for saturation, we dedicate the Sec. IV

The system under consideration is assumed to be finite rational relations between words and to 2-automata. In
state and the property under scrutiny is given by a regul&@ec. V, we present the decision procedures for saturation
language over the behaviors of the system. Traditiondllg, t and openness, and analyze their complexity. We conclude
regular property is described by a finite-state automatgn [Ahe contribution with a comparison of our approach with
but logical specifications have also been considered [9]. existing work on centralized diagnosis.

The central difficulty in diagnosis problems is the imper-

fect information about the computations. Given a stream of 0
observations, there are in general several behaviors of the
systems that are consistent with this information. To know
with certainty that the actual computation has the desir
property, one needs to make sure that the entire set eu, ., ... (resp.w,w’,wi,...) as typical elements of
consistent behaviors have this property. This is precisely. (résp’.E’w). For w € ’Z“’,’we7writewk for the k-th prefix
what diagnosabilityis about. Several procedures to decideOf w. A -language (respu-language)lis any subset &F
diagnosability have been studied. The most efficient ONfesp.5) — we will indifferently use “language” and “set” —.
is based on thewin plant construction[8], which runs We useB, B/, ... (resp.L, L', S, .. .) for typical #-languages

in quadratic time when the property is described by %esp.w-languages). For ang, C ¥, let us denote by.c
deterministic finite state automaton. Diagnosability isved the complement of., that is E”_\ I ,Given a setB C 3+

to be a necessary and sufficient condition for the existen@@e denote byBY* the set of words of the fornuuw with

of a bound in the number of observations that are needed 1506 B andw € 3¢

establish that the property holds. On the other hand, when th ) . .
property We fix a distinguished subset, of X. Elements of

roperty is specified in a logical formalism, diagnosaypilit .
property P g g » I%O are calledobservablesand elements of its complement

is not sufficient anymore to guarantee that a verdict on t b blesTvoical el o Sw
computation can be delivered in a finite amount of time. Thig'o: ar? uhobservables ypllca elements of; (resp.35)
TyT yT1y.-- LT, T, T ) o
RUE (resp ). Any word over X, is

can be achieved only when the system satisfies an additio . S
an observation We denote byP the projection on words

roperty calledorediagnosability[9].
P Ip h.y ® gh y[ ] di bil q dWhich transforms a word oveE into a word overX,
n this paper, we characterize diagnosability and pre By erasing every element df,. From the projectionP,

agnosability in terms of classical mathematical concepty’. yerive an equivalence relation between words, called
saturationand opennessn the topological space of infinite

ds. We i i h ated decisi bl thf observational equivalencevhich identifies two words
worl s ﬁ |_nvest|g:|;1te_t € associated decision problems apgle o er theirP-images coincide and they are both either
analyze their complexity. finite or infinite. Given any equivalence between finite

This research was supported by the Marie Curie ScientifigePro (reSP' mfm'te) words, we denote W]N (resp. [w]N) the
MASLOG 021669 (FP6-2004-Mobility-6) and Univ. de Rennes 1. equivalence class af (resp.w).

I. INTRODUCTION

. ELEMENTARY NOTATIONS AND VOCABULARY

Given an alphabekE = {a,b,l,...}, we denote byx*
fsp.zw) the set of finite (resp. infinite) words ov&r. We



I1l. TOPOLOGIES ON THESPACE OFINFINITE WORDS Proof: Consider a languag®8X“ with B C X*. It is

~-saturated inS if and only if BX“ NS = (BX¥). NS,
Er31ich shows that it isv-open inS. For the reciprocal, apply
em. 3. |

In the rest of this section, we focus on the case where
is =, the observational equivalence. The following lemma
shows that the equivalence is very particular:

Lemma 5:For anyB C ¥*

The Cantor topologyover the set:“ of infinite words
is defined as follows: the basic open sets are the sets of
form BX“ where B C ¥* (see [15, Chapter 3]). A set is
closedif its complement is open. It iglopenis it is both
open and closed. Clopen sets are of the f@&@x* where B
is a finite subset ok*.

We refine the Cantor topology with respect to a fixed
equivalence relation between words. This is done by en-
forcing the open sets to be “saturated” by the equivalence
relation. In the rest of the section we fix an eo|uivalenc9\,here(B)z = Uyepltl~-

reIatlo.n.N. over . ) ] Lemma 6:A language is~-open in S if and only if it
w-language(L).. defined by(L)~ := UL [w]~- Proof; Assume a languagé is ~-open inS. Since

(BXY)~ = (B)~2” )

L is~-saturated wheneverL = (L)... L satisfiesL N S = (BX¥)~ N S and by (1) this language
In Sec. V-A, we examine a procedure to decide whetheyoincides onS with an open set, namel{B) . :*.
a language is--saturated. AssumeLNS = L'NS whereL’ is open andv-saturated.
Lemma 2:Complement, union and intersection preserv&Ve apply Lem. 4 tal’ to rewrite L’ NS as(BY*)~ NS for
~-saturation. someB C ¥*, which shows thaf. is ~-open inS.
We consider a new topology an“ where the open sets ]
are (BX¥)~ with B C X*. They are the~-saturations of e now establish Prop. 7 and Cor. 8 as essential resuits
open sets in the Cantor topology. for the theory of discrete-event systems diagnosis.

As words corresponding to computations of a given Tq everyr ¢ S* we associate the sét) := P—1(7)x%.
(discrete-event) system are not in general arbitrary eine gy gefinition, () is open, and it isv-saturated by construc-
of ¥, we consider the topology induced by some fixed tion; hence it isa-open by Lem. 4. Note that an infinite
languageS’ € ¥¥. The language' is called asystemIn the  \yord 4 € (7) whenevenw is of the formw = uw’ for some
topology induced bys, (Cantor) open sets are of the form,, with P(v) = . We will abuse notation by writingr) to
BY¥“NS and~-open sets are of the forBX*)..NS (Where  mean the set of infinite words such thatP(w) = .

B C %7). A languagel, C 3+ is open(resp.~-oper) in 3 Proposition 7: Let L C ¥¥“. L is ~-open if and only if

wheneverL N5 = BX*N S (resp.= (BX¥). N 5). Notice ¢, every observatiomr € ¢ with L N (7) # (), there exists
that an open in (resp~-open) set inS is not necessarily k() € N such that{my) C L

open (resp~-open) in the Cantor topology.
pWe (Sa pthatLpis) _saturated inS V\F/)hen?a)\//er Proof: <) is immediate since th(aP(w)k(p(w))>’s are
y ~-open sets and. = (J,, ¢, (P (W) k(P (w)))-

LnS=(L).NnS =) By Lem. 6 (forS = Xv) L is open andk-saturated,

. . . . and by the laterL N implies
Note that ~-saturation and~-saturation inX“ coincide. y £ {m) #0 imp

Being ~-saturated inS implies being~-saturated inS’ for (7) C L 2)
any S’ C S, but that the converse does not hold in general.
To see this, consider any situation with the following stricFor the readability of the remaining we simply writefor

inclusionsS’ c L € S = (L)~. k(m). Assume that for each > 0 there existsv;, € (my) \ L.
Lemma 3:1f a set is~-open inS then it is ~-saturated SinceL is open, it is of the formBL* with B C X*. Since
in S. wy, ¢ L, the j-th prefix (wy,); of wj is not B, for every

j € N. Because the alphabgt is finite, we apply Koenig’s
lemma to the se{(wy,);|j,k € N} and obtain an infinite
sequence of elements < u; < us... such that for every
i, P(u;) is thei-th prefix of 7. Since the set§u;}X“ are

clopen sets, their intersection is closed and thereforéagmn
the limit of the u;’s, sayw’, which lies outside the sef.

But P(w’) = =, since eachP(u;) is a prefix ofr, hence
w’ € (), which contradicts (2).

Proof: It is sufficient to show that for any3 C ¥*,
(B¥).NS).NS = (BX¥).NS. We only establish
((B¥¥).NS).NS C (BX¥).NS, as the reverse inclusion
is immediate. Letw € ((BX*¥). NS). NS, thenw € S
and it remains to prove that € (BX¥).. Because by
assumptiorw € ((BX*). N .S)~, there existaw’ ~ w with
w' € (BX¥).NS. In particular,w’ € (BX*)... There must
existw” € BX* such thatw” ~ w’. Since~ is transitive,
w ~ w” which entailsw € (BX*)... ] u

Lemma 4:An open set isv-saturated inS if and only if ~ We assume given a systeth C 3. For T € X7, (1)s
it is ~-open inS. denotes the setr) N S; note that(r)s is ~-open inS.



Corollary 8: Let L C X¢. L is ~-open inS if and only
if for every observationr € 3% with L N (m)s # 0, there
existsk(r) € N such that(my(y)s € L.

Proof: We simply write & for k(7). AssumelL is ~-
open inS. ThenL NS = (BX¥)~ NS for someB C ¥*.
Let 7 € 3¢ be such thatL N (m)s # 0. SinceL NS C
(BX¥)xNS, we also havé BX¥) N () s # 0. By applying
Prop. 7 to the~-open(BX¥)., = has some prefix;, with
(m) C (BX¥)~. Hence(my)s C L.

Reciprocally, assume that for everye 3%, LN (w)g # 0
implies there existg: € N such that(m;)s C L. We want
to show thatL is of the formL = (BX%)~ N S for some
B C ¥*. The candidate foB3 is (U, ¢y P~ (k).

By Lem. 5, BY¥ is ~-saturated, so tha>« = (BX¥)..
It remains to show that NS = BX“ N S:

e« LNSCBYXNS:Letwe LNS, and letr = P(w).
Sincew € P~} (m)¥“ NS and P~1(m,) € B, w €
B NS.

e BYX¥*NS CLNS: Letw € BX NS, thenw €

P~1(m,)2% = () which by hypothesis is contained

in L and we are done.
| |

In Sec. V we investigate decidability of-saturation,

According to the general theorygcognizablerelations
over ¥ are particular cases of recognizable subsets of a
monoid (see [2, Chapter Ill]). In the case of the monoid
3* x 3* (for binary relations), we use the following intuitive
characterization due to [3], known as the Mezei’s Theorem:
a recognizablerelation R C ¥* x ¥* is a finite union of
sets of the formB; x B}, whereB;, B, C ¥* are regular-
languages. As the monold* x X* is implicit in this work,
we simply writeRec for the set of recognizable subsets of
* x ¥,

It is well established thakec C Rat. However, because
the monoidX* x ¥* is not free, the reciprocal does not hold.

Closure properties of the class@at and Rec are as
follows: Rec is closed under union, intersection and com-
plement, whereaRat is closed under union (by definition)
but not under intersection in general, therefore neitheleun
complementation. One way to achieve good closure prop-
erties while maintaining expressiveness is by mixing the
two classes. The following lemma from [2, Proposition 2.6,
Chapter Ill] is at the basis of our analysis.

Lemma 9:If R € Rat and R’ € Rec, thenRN R’ € Rat.

Operationally, rationab-relations are characterized Ry
automata[17].

Definition 10: A 2-automatonover the alphabebl is a

openness, anek-openness. Elementary notions on rationakiycture@ — (S, %, s0,t, A, Sy, S2) where (S, X, so,t, A)

relations are required to present the solution.

IV. RATIONAL RELATIONS

is a Buchi automaton with acceptance det S, and where
{51,552} is a partition ofS into control states for the first
and second input tape respectively.

A 2-automaton reads a pair of wor@ls;, w-) each placed

The class ofrational relations and its subclasses rangingOn a distinct input tape; the partitiopSy, S»} tells which
from recognizableelations to e.gsynchronizedelations are tape is to be rezd Pe; P Loz

of particular interest since they possess acceptors whgse e
emptiness can be decided. A detailed literature on the topic
can be found in [2], [25], [5], [16], [4].

For the purpose of this work, we will focus on binary
relations only, that is pairs of words over the alphabgt
and we simply call thermelations

For finite words, a relation is a subset of the Cartesian
product¥* x ¥*. The notions needed in the contribution are
listed below.

A subsetR of 3* x ¥* is rational whenever it is an element
of the setRaty«xx+, OF Simply Rat, defined as the least
subset oR¥ *=" such that: (1) every finite subset Bf x ¥*
is in Rat, (2) if R, R’ € Rat, thenRU R’, RR’ € Rat, and
(3) if R € Rat, thenR* :=J,~, R’ € Rat.

The following properties are decidable.

« Emptiness: for any rational-relationp C ¥“ xX*, one
can construct non-deterministic Buchi automata which
accept the first and the second projectiorpoNow, p
is empty if and only if either one of the two projections We illustrate the behavior of the 2-automaton in Fig. 1
is empty. Buchi automata emptiness is decidable. characterizing the observational equivalence induced by

« Finteness: whether a rationalrelation is finite amounts ¥, = {a,b} C ¥ = {a,b,l} for a pair of input words
to checking that the two projections are finiteregular  (w,ws) of the formw; = alblaaw] andws = llaballaw}
languages. (states filled in grey are inS;). As the initial statesg

Fig. 1.



belongs toS;, the automaton first reads from w; on The following non-deterministic algorithmAl finds
tape 1, then it moves to statg, € S, to remember that an accepting run of®’, namely a sequence of states
the last observable read on tape 1 waslt then reads rqry...7;...r, Whererq is an initial stater; is an accepting

I of wy on tape 2, which causes a transition backsto state, and; = r,,.

Eventually, the firsu of w; is read, and since this matchesa|gorithm Al

the expected observable, the automaton moves back.to
After a few more transitions, the automaton is in staje
and the tapes contaim} andw/ respectively. Assume that
wy % wh, henceforthw; % wsy, because saw] starts with _ i
ana whgereaSw’2 starts with ab. In this case, the run of the else halt (without accepting)

automaton gets trapped inside the non accepting maximal4) If r is accepting, goto 5, or 2, else goto 2
strongly connected componertL;, L»}. Notice that the ) Le€tra=r  /lguessitisr;

states; € S; is meant to “absorb” unobservables on tape 6) Ch9qse a state/ ,

1; as it is not accepting, only words with a finite number of 7) If r"is a successor of, letr =
consecutive unobservables are recognized. else halt (without accepting)

We remark that any observational equivalence can be 8) If r=ra, accept, else goto 6
characterized by a 2-automaton of size(|3,| + 4). This algorithm can be implemented by a non-deterministic

Notice that for a 2-automaton accepting an observationgP!yspace Turing machine, which concludes since
equivalence relation, the distance between the two heatd SPACE = PSPACE by Savitch Theorem [22].
cannot be bounded in general, because of unobservables. Ifi) PSPACE hardness: let us denote by the trivial
other words, observational equivalences aresyathronized relation 3« x ¥¥. Given a Buchi automatod, we reduce
rational relations [4]. Nevertheless, their complement ighe universality problem fo€ (whetherZ(C) = ¥*), known
rational. to be PSPACE-complete [23], to the=-saturation ofZ(C).

If L(C) = 0, which can be checked linearly in the size
V. DECISIONPROBLEMS of C, then return “no”. Otherwise, let; € L(C). C is not

) universal if and only there exisiss ¢ L(C). Sincew; = ws
We address the problems of saturation and openness @b ayse= is trivial) this is equivalent to saying thdt(C)
w-regular languages described by non-deterministic BUCki ot —_saturated. n

automata.

1) Letr be the initial state 0B’
2) Choose a state
3) If ' is a successor of, letr = 1’

When anw-regular systent' is considered, Algorithri\1
can be easily adapted to decidesaturation ofL in S by
checking emptiness aoR intersected with the recognizable
In the following, letZ(©) C ¥« x ¥ denote the language relation.s x S.

A. Deciding saturation

accepted by a 2-automatdn Corollary 12: The problem of checkingz-saturation inS
Theorem 11:Fix a non-deterministic Buchi automatonis PSPACE-complete.
A=(Q,%,0,q,F) and a 2-automato® whose language Proof: For membership, use the fact that the set of
L(©) is an equivalence relation. The problem of whethestates of the 2-automato®’ can be encoded in space
L(A) is L(©)-saturated i?SPACE-complete. O(log(|Xo| +4)) + log| A| + |A|log|A]). For hardness, take
Proof: Simply write L for L(.A) and~ for L(0). S =X“andX, = () and consider the proof for hardness in
i) PSPACE membership: le? :=~ N(L x L¢). Clearly, 1" 11, as in this case: and = maich. .

R = ( if and only if L is ~-saturated, as both conditions

mean that there are no two words, ~ w, with w; € B. Deciding openness
L andws ¢ L. By Mezei's Theorem, the relatiof x L°
is recognizable sincd, and L¢ are w-regular. Since~ is
rational, so isR (see a variant of Lem. 9 fap-relations in
[5]) and a 2-automaton can be effectively constructedHor open inS if and only if LU S¢ is open.

We present an algorithm to check emptinessiof Regarding openness, [12] proposes a polynomial proce-

Let B be a non-deterministic Buchi automaton which aCdure to decide whether the |anguage of a deterministic
ceptsL® usingO(214I1°e 141) states. This can be constructedyuller automaton (MA), see for example [6], is an open
following [10] (see also [6, Chapter 4]). set. Deterministic MA are sufficiently expressive enough to

Let © be the 2-automaton which behaves lilge but cover the class ofv-regular languages, and in contrast to
whose input is componentwise constrained dyand B  Buchi automata, they can always be assumed deterministic.
respectively. The 2-automatof’ has O((|%,| + 4) - |A| -  Basically, a (deterministic) MAM is given by a finite state
2lAllog |Al) states encoded in spad@(log(|%,| + 4)) + automaton(Q, Y, ¢, ) and a distinguished sef C 29 of
log |A| + |Allog |A]). accepting setsAn infinite word is accepted by if along

We recall that openness implies opennessSjnfor any
S C ¥, but that the converse does not hold in general.
However, it is easy to show that 8§ is a closed set[ is



the (unique) run ofM for this input word, the set of states For a diagnoser to be useful, one expects a positive verdict
that are visited infinitely often matches some elemenfof to be eventually delivered if the actual computation of the
In an MA M, the set of accepting set8 consists of non system is a faulty sequence.

trivial strongly connected components. Theorem 13:L is ~-open in S if and only if for every
For non-deterministic Buchi automata (NBA), the openw € L, there existsi(w) € N s.t. Diag(P(w) ) = T.

ness problem is more complex. It is obviously decidable by  proof; By definition of the diagnosis function,
translating the NBA into a deterministic MA [13], but with Diag(P(w)k(w)) = T is equivalent to(P(w)ye,) C L.

an exponential blow-up. Alternatively, by complementihg t e can apply Cor. 8 forr = P(w) to conclude. [
NBA, one can use the procedu_re of [1] which determines Note that~-openness inS guarantees only issuing of
whether a Ianggage of an NBA IS closed [1]: thg method positive verdicts. Regarding non faulty sequences, ngthin
consists in verifying thatd and its closure (obtained by can be inferred in a finite amount of time in general
making all co-reachable states accepting) denote the sal@ass I.¢ is ~-open inS: Th. 13 then applies so that a'
language. According to [24] this verification problem iSnegative verdict eventually occurs when observing a non

PSPACE-complete in general, and it is linear timeAifis faulty sequence. To be more specific, fifis ~-clopen in
deterministic [11]. However, the preliminary complementas confused situations cannot last

tion of the NBA has an exponential cost. . o .
P Theorem 14:L is ~-clopen inS if and only if for all w €

To our knowledge, no lower bound for the opennesg ; .
. , there existsk € N such thatDiag(P w ?.
problem of NBA has been established. (w) fag(P(w)u) #
Proof: =) Let w € X¥. If w € L, becausel is ~-

open inS, we can apply Th. 13 to infer the existence of
k(w). Otherwisew € S\ L. SinceL is ~-closed inS, L°

In this section we consider the problem of diagnosings ~-open inS. We therefore can apply Th. 13 tb° and
arbitraryw-regular languages. The infinitary setting is worthobtain the existence of(w) such that(P(w)g.) S L,
considering as it brings insight into existing work on di-that is Diag(P(w)j(w)) =-L.
agnosis. The reader familiar with classic diagnosis may be-) Consider the partition of into L and S \ L. For every
puzzled by the definition according to Eq. (3) as it does nab € L, Diag(P(w)x) #? is equivalent toDiag(P(w)x) =
match the standard definition of the diagnosis functionpas iT. By Th. 13, L is ~-open inS. By a similar reasoning,
[7]. Differences and similarities between the infinitarydan S\ L is ~~-open in.S, hencel is ~-closed inS. ]
the finitary settings are discussed in Sec. VI-B.

VI. APPLICATION TODIAGNOSIS

B. Comparison with classic diagnosis

A. Diagnosis otu-languages The classic diagnosis framework [21] deals with finite

Assume given twow-languagesS and L. We want to words. A discrete-event syste§ can be viewed as a finite
diagnose that a word of belongs toL on the basis state deterministic automaton over an alphabet gSpwith
of the observations of its prefixes; traditionally, elensentall states marked as final. As presented in a most general
of L are calledfaulty sequencesThe diagnoser is fed setting in [7], asupervision patter is a regular-language
incrementally with the sequence of finite observations of awhich is open in the standard topology of finite words
infinite word of S. Let 7 € X be an observation. Assume a(2 = QX*).
situation where for every possible infinite continuatioh In the following, letS; be thex-language denoted by,
of 7, any concrete scenario € S consistent with77’, and as in the previous sections, I6tbe thew-language
that isw € (77’)s, belongs toL. In such a situation, denoted byS when interpreted as a Buchi automaton.
membership of the actual gompqtation of the sy's'ter.rLin We recall the approach of [7]. By writingr)s, for
can be safely declared/predicted, i.e. we set a positivdicter o set of finite words inS; which are consistent with

(T). Dually, if every scenario consistent with any possiblgne opservationr and which end with an observable, the
infinite continuation of the observation does not belong Wiagnosis functionliag,, : £% — {YES, N0, Don’tKnow} is
. o 9 9

L, we set a negative verdictL]. The remaining cases are yefined by
“confused” situations since scenarios consistent with the .
observation spread inside and outsiflgin this case, the YES _ if ()s, €L
diagnoser returng. diagq(7) :== { NO if (1)s;,NL=10
, .
According to the possible situations described above, we Don’tKnow otherwise.

define thediagnosis functioDiagy : 35 — {T, 1,7} by The comparison between the approach of [7] and the

T if (1Ys CL one of Sec. VI-A should be made by correlatidipg,
Diag, (1) :={ L if (r)g mL_:(Z) 3) and DiagQZ-w. Whereas the former focuseg onIy. on whe}t
2 otherwise. happened in the past, the latter one considers information

accumulated so far and anticipates on the possible future.
We shall omit the subscript when clear from the context. An accurate comparison of these two views is out of the



scope of this paper. We rather discuss the relation betweenlt is not difficult to see that the existence of a reachable

the ~-saturation of2X* in S and the &-)diagnosabilityof cycle in TP(S,0) which contains confusing vertices

2 with respect toSy [20]. witnesses a counter-example of thediagnosability of(2
The diagnosability property ensures the “usefulness” oFith respect taSy. This leads to the following algorithm.

the functiondiagg,; it guarantees that there existé € N

such that if the current executiom € Sy belongs tof2,  Algorithm A2 /I Diagnosability
then any infinite sequencB(w) =79 < 71 < 72 < ... of Inputs: two finite automata and#é (the latter one represents
observations satisfieiagg, (tn) = YES. the languagé? and is assumed deterministic)

Diagnosability therefore fails if one can find arbitraryOutputs: “$ is not~-diagnosable with respect t8" if the
long pairs of words which are observationally equivalertt budraphTP(S, 6) contains a cycle of confusing vertices} is
which do not agree on membership§in In fact, if infinitely ~ ~-diagnosable with respect t8;" otherwise.
many such pairs exist, by using Koenig's lemma one can In fact Algorithm A2 solves instances of thedsaturation
exhibit two infinite wordsw; and w, in S such that (a) inS” problem (solved byA1) for which the input languagé
w1 ~ we, and (b) no prefix ofw; reaches) whereas almost is open (of the forn2X«). The differences betweehl and
all prefixes ofw, do. Notice that the conjunction of (a) and A2 are the following: On the one handys*saturation in S” is
(b) precisely matches the property thBf“ is ~-saturated in a PSPACE-complete problem (Cor. 12) and Algorith#il
S. As a consequencey-saturation of2¥“ in S and thex~- is optimal. On the other hand, AlgorithiA2 is quadratic,
diagnosability of2 with respect toS; are equivalent notions. by searching a cycle in the graphP(S,6) whose size

As QX is an open set, by Lem. 4y-openness ir§ and i in O((|S]|6])?). Although the complexity ofA2 seems
~-saturation inS coincide. Th. 13 provides a necessary angonsiderably lower in that case, the assumption thas
sufficient condition to diagnose faulty sequences aftetefipi  deterministic is very strong (it hides an exponential time
many observation steps. However, Th. 13 somehow relaxBEeprocessing procedure to determinize a finite automaton)
the “openness assumption” by requiring only “openness iRhe twin plant approach hence solves fortunate instances
S”. Actually, by Lem. 6, openness and opennessSirare of the saturation problem where rejection of a word by the
almost the same if the system languafjeis assumed to automaton of is withessed by a single run. AlgorithA?2
be closed: it is always possible to replatewith the open would become “incomplete” for arbitrary non-determingsti
set LU S, asL NS = (LUS?NS. This explains automatad: a cycle of confusing vertices would not char-
why the so-called “prediagnosability” condition of [9] vehi  acterize a pair of wordgw,,w2) wherew; ~ ws, w1 €
corresponds to openness is optimalSifvas not closed, the 2%, andw, ¢ QY. Because of non-determinism, paths
optimal notion would be “openness 81’ instead. in TP(S,0) denote only pairs of rungp:,p2) over words

We now turn to the comparison of Algorith/&l to decide (w1, wa); _and in generil the fact Fhai? s r_10t accepting
~-saturation (inS) and the standard algorithm to decided0€s not implyws ¢ QZ , unlessp, is the unique run. Th's.
diagnosability, as originally proposed by [8]. We inforiyal would be the case if. !s_allanguage whose complement is
recall this algorithm, according to its generalization irficcepted by a deterministic Buchi automaton.

[7]. The central object is a graph called tiwin plant  This last remark leads us to propose Algorité@ as an
whose paths denote pairs sfequivalent words, and where extension of AlgorithmA2 from the class of open languages
some vertices are marked. The twin plant constructiolp the class of languages whose complement is deterministic
h|gh|y relies on a Synchronous product of automata: in th|§UCh| definable. This class is characterized in the Borel
Synchronous product’ a vertex G'snfusingif in the pair of hierarChy asis which contains sets obtained by a countable
states it corresponds to, only the first state is final. The twjunion of closed sets. Membership Ky, is decidable [15,
plant is build in three steps: Chapter |, Proposition 7.10]. For this strictly larger das
Function TP(S, 0) /I Twin plant construction Of languages, confusing cycles become cycles of the form

Inputs: two finite automatas ands (the latter one represents {(41,41), (42, %), - - -, (qx, ;) } Whereg; is accepting and all
the |anguag@ and is assumed deterministic) th6q;'S are I’ejec'[lng. Because open sets are StI’ICtly contained

a true extension of AlgorithmA2, but is still quadratic,
although it solves instances of the-“saturation” problem
(where~ is an observational equivalence ahd: X5).

1) Build the product automatos, := S x 0 (a state is
final if its second component is final);

2) Abstract away from unobservables & by replacing

every sequence of transitions carrying a word%&, by a VIl. CONCLUSION
single transition carrying the unique observable of thisdvo _ )
This yields OBS$S). We have introduced the problems of saturation and open-

ness on the space of infinite words, shown their decidabil-
i% and studied their complexity; the former BRSPACE-
complete and the latter one IBXPTIME. Recall that no
lower bound for the openness problem is know when the

3) Return the graph OBSy) x OBS(Sy), where confusing
vertices are those whose first component is final whereas t
second one is not.



input is given as a non-deterministic Buchi automaton. Alsq14]
we are not aware of any decision procedure the “openness

in S” problem in general, but by assuming th#is a closed
set, this problem reduces to the one of openness.

Finally, we have investigated diagnosiswfregular prop-

(18]

[16]

erties and its relation with classic diagnosis. More specifi17]

cally, we have shown that the standard algorithm for check-

ing diagnosability is a particular case of the saturatioft™!

problem corresponding to properties that are open sets.

For future work, we believe the rationalrelations~ and

R (Th. 11) are central objects for the main following reasons.

o The relation¢, the complement of, is also rational

Advisedly exploiting these aspects is ongoing work.

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

(23]

whereas rational relations are not closed under comple-
ment in general.

As finiteness of rational relations
number of confusing cycles can be estimated.
Although a naive extension e¢-saturation to a decen-

tralized setting would fail (as rational relations are no{ ]
closed under intersection), we can tune the devices (&3]

decide the co-observability property [19], [26]. Also, by

scanning the relatio?, we can exhibit strategic situa- [24]

tions where observation capabilities can be augmented

to achieve an objective (e.g. by a communication meche®]

anism), in the spirit of [18].
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