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This paper studies runtime verification of properties expressed either in lineartime temporal logic
(LTL) or timed lineartime temporal logic (TLTL). It classifies runtime verification in identifying
its distinguishing features to model checking and testing, respectively. It introduces a three-valued
semantics (with truth values true, false, inconclusive) as an adequate interpretation as to whether
a partial observation of a running system meets an LTL or TLTL property.

For LTL, a conceptually simple monitor generation procedure is given, which is optimal in
two respects: First, the size of the generated deterministic monitor is minimal, and, second, the
monitor identifies a continuously monitored trace as either satisfying or falsifying a property as
early as possible. The feasibility of the developed methodology is demontrated using a collection
of real-world temporal logic specifications. Moreover, the presented approach is related to the
properties monitorable in general and is compared to existing concepts in the literature. It is
shown that the set of monitorable properties does not only encompass the safety and co-safety
properties but is strictly larger.

For TLTL, the same road map is followed by first defining a three-valued semantics. The
corresponding construction of a timed monitor is more involved, yet, as shown, possible.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Assertion check-
ers; D.2.5 [Testing and Debugging]: Monitors; F.3.1 [Logics and Meaning of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms: Verification, Testing

Additional Key Words and Phrases: Assertion checkers, Monitors, Runtime Verification

1. INTRODUCTION

Verification comprises all techniques suitable for showing that a system satisfies
its specification. Runtime verification deals with those verification techniques that
allow checking whether an execution of a system under scrutiny satisfies or violates
a given correctness property. It aims to be a lightweight verification technique
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complementing other verification techniques such as model checking [Clarke et al.
1999] and testing.

In runtime verification, a correctness property ϕ is typically automatically trans-
lated into a monitor . Such a monitor is then used to check the current execution
of a system or a (finite set of) recorded execution(s) with respect to the property
ϕ. In the former case, we speak of online monitoring while in the latter case we
speak of offline monitoring.

Formally, when L(ϕ) denotes the set of valid executions given by property ϕ,
runtime verification boils down to checking whether the execution w is an element
of L(ϕ). Thus, in its mathematical essence, runtime verification deals with the word
problem, i. e., the problem whether a given word is included in some language.

Correctness properties in runtime verification specify all admissible individual ex-
ecutions of a system and may be expressed using a variety of different formalisms.
These range from, for example, language oriented formalisms like extended regular
expressions [Sen and Rosu 2003] or tracematches by the AspectJ team [Allan et al.
2005], to query-oriented languages (PQL, [Martin et al. 2005]) and rule-based ap-
proaches like Eagle [Barringer et al. 2004] and RuleR [Barringer et al. 2007]. More-
over, temporal logic-based formalisms, which are well-known from model checking,
are also very popular in runtime verification, especially variants of linear temporal
logic, such as LTL [Pnueli 1977], as seen for example in [Havelund and Rosu 2001;
Giannakopoulou and Havelund 2001b; 2001a; Havelund and Rosu 2002; 2004; Stolz
and Bodden 2006]. But also linear µ-calculus variants or past-time temporal log-
ics that are not LTL-based are used, for example in [D’Angelo et al. 2005] and,
respectively, [Kim et al. 2004].

Research in runtime verification is mainly focussed on the detection of violations
(or satisfactions) of correctness properties, e.g., by developing synthethis algorithms
for monitors from high-level specifications. At the same time, most runtime ver-
ification systems allow the mitigation of the problem by executing suitable and
user-defined code, e.g., as in the MAC system [Kim et al. 2002]. Similarly, Monitor-
oriented programming [Chen and Rosu 2003; Chen and Roşu 2007] aims at a pro-
gramming methodology that allows for the execution of code whenever monitors
observe a violation of a given correctness property. Runtime reflection [Bauer et al.
2006a], on the other hand, is an architecture pattern that is applicable for systems
in which monitors are enriched with a diagnosis and reconfiguration layer.

Runtime verification is closely related to the field of runtime monitoring, which
has recent applications in monitoring web services [Baresi et al. 2008; Barbon et al.
2006; Robinson 2006] and fault monitoring, see [Delgado et al. 2004] for an overview.

A large number different runtime verification systems have been developed in
recent years. We only list their names with appropriate references as a further
comparison of these tools is beyond the scope of this paper: PQL [Martin et al.
2005], Tracematches [Allan et al. 2005], MOP [Chen and Roşu 2007], SASI [Erlings-
son and Schneider 2000], Pal [Chaudhuri and Alur 2007], Eagle [Barringer et al.
2004], RuleR [Barringer et al. 2007], J-Lo [Bodden 2004; Stolz and Bodden 2006],
PTQL [Goldsmith et al. 2005].
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1.1 Runtime Verification versus Model Checking

While runtime verification shares also many similarities with model checking, there
are important differences:

(1) In model checking, all executions of a given system are examined to answer
whether these satisfy a given correctness property ϕ—either explicitly or im-
plicitly, when using symbolic techniques. This corresponds to the language
inclusion problem. In contrast, runtime verification deals with the word prob-
lem. For most logical frameworks, the word problem is of far lower complexity
than the inclusion problem, e. g. in case of LTL see [Sistla and Clarke 1985]
and [Markey and Schnoebelen 2003].

(2) While model checking, especially in case of LTL, considers infinite traces, run-
time verification deals with finite traces—as non-idealised executions are nec-
essarily finite.

(3) While in model checking a complete model is given allowing to consider arbi-
trary positions of a trace, runtime verification, especially when dealing with
online monitoring, considers finite executions of increasing size. For this, a
monitor should be designed to consider executions in an incremental fashion.

These differences make it necessary to develop a set of core techniques differing
significantly from those used for model checking to enable runtime verification ap-
plications. For example, item (2) asks for coming up with a semantics for LTL on
finite traces that mimics LTL’s semantics on infinite traces—which we do in the
the first part of the paper. Note that LTL is originally defined on finite traces as
well [Kamp 1968]. However, this semantics as well as further alternatives given
in [Manna and Pnueli 1995] and [Eisner et al. 2003] are not suitable for runtime
verification, as we discuss in Section 1.3.
A popular branch of model checking is so-called bounded model checking [Biere

et al. 1999; Biere et al. 2003]. The underlying insight, which is equally used in
conformance testing [Vasilevski 1973; Chow 1978], is that for every finite-state
system, an infinite trace must reach at least one state twice. Thus, if a finite
trace reaches a state a second time, the trace can be extended to an infinite trace
by taking the corresponding loop infinitely often. Likewise, considering all finite
traces of length up-to the state-space plus one, one covers all possible loops of
the underlying system—without explicitly considering the system’s model, e.g. by
computing strongly connected components, as done in conventional model checking
algorithms. This observation paired with the right adaption of LTL’s semantics to
finite traces allows to deduce a formula’s validity with respect to infinite traces
based on all finite executions up-to a certain length.
Clearly, similar ideas seem tempting for runtime verification as well. However, in

runtime verification—in contrast to the standard approach taken in bounded model
checking, an upper bound on the system’s state space is typically not known. More
importantly, the states of an observed execution usually do not reflect the system’s
state completely but only contain the value of certain variables of interest. Thus,
seeing a state twice in an observed execution does not allow to infer that the
observed loop can be taken ad infinitum. Moreover, in runtime verification, one
does not have any symbolic representation of all executions up-to a certain length,
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but deals with one concrete finite execution. This renders the LTL semantics used
for bounded model checking inappropriate for runtime verification.

From an application point of view, there are also important differences between
model checking and runtime verification: Runtime verification deals only with ob-
served executions. Thus it is applicable to black box systems for which no system
model is at hand. In model checking, however, a precise description of the system
to check is mandatory as, before actually running the system, all possible execu-
tions must be checked. Note that it is possible to automatically learn [Berg et al.
2003] and verify a system model, thereby applying model checking techniques to
an a priori unknown system [Peled et al. 1999].

Furthermore, model checking suffers from the so-called state explosion prob-
lem, which terms the fact that analysing all executions of a system is typically
been carried out by generating the whole state space of the underlying system,
which becomes often infeasibly huge. Considering a single run, on the other hand,
most applications of runtime verification are not practically limited by their mem-
ory requirements, since the necessary history information—although potentially
unbounded—is commonly fairly small.

In online monitoring, the complexity for generating the monitor procedure is
often negligible, as the monitor is typically only generated once. However, the
complexity of the monitor, i. e., its memory and computation time requirements
for checking an execution are of important interest, as the monitor is part of the
running system and should only impose a minimal penalty on the system’s response
time and memory footprint. Ideally, the monitor does not alter the running system
in terms of its functional and non-functional behaviour.

1.2 Runtime Verification versus Testing

As runtime verification does not consider each possible execution of a system, but
just a single or a finite subset, it shares similarities with testing: both are usually
incomplete.

Typically, in testing one considers a finite set of finite input-output sequences
forming a test suite. Test-case execution is then checking whether the output of a
system agrees with the predicted one, when giving the input sequence to the system
under test.

A different form of testing, however, is closer to runtime verification, namely
oracle-based testing. Here, a test-suite is only formed by input-sequences. To make
sure that the output of the system is as anticipated, a so-called test oracle has to
be designed and “attached” to the system under test. This oracle then observes
the system under test and checks a number of properties, i. e. in terms of runtime
verification the oracle acts as a monitor. Thus, in essence, runtime verification can
be understood as this form of testing. There are, however, differences in the foci
of runtime verification and oracle-based testing: In testing, an oracle is typically
defined directly, rather than generated from some high-level specification. On the
other hand, in the domain of runtime verification, we do not consider the provision
of a suitable set of input sequences to “exhaustively” test a system.
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1.3 Monitoring of Discrete-Time Properties

In this paper, we are only considering monitoring of properties which are specified
in LTL (or later, in its timed counterpart TLTL). As Pnueli’s LTL [Pnueli 1977] is
a well-accepted lineartime temporal logic used for specifying properties of infinite
traces one usually wants to check properties specified in LTL in runtime verification
as well. However, one has to interpret their semantics with respect to finite prefixes
as they arise in observing actual systems. This approach to runtime verification is
summarised in the following rationale:

Pnueli’s LTL [Pnueli 1977] is a well-accepted lineartime temporal logic
used for specifying properties of infinite traces. In runtime verification,
our goal is to check LTL properties given finite prefixes of infinite traces.

Therefore, we introduce LTL3 as a lineartime temporal logic which shares the syntax
with LTL but deviates in its semantics for finite traces. To implement the idea
that, for a given LTL3 formula, its meaning for a prefix of an infinite trace should
correspond to its meaning considered as an LTL formula for the full infinite trace,
we use three truth values: true, false , and inconclusive, denoted respectively by
⊤, ⊥, and ?. More precisely, given a finite word u and an LTL3 formula ϕ, the
semantics is defined as follows:

—if there is no continuation of u satisfying ϕ (considered as an LTL formula), the
value of ϕ is false;

—if every continuation of u satisfies ϕ (considered as an LTL formula), it is true;

—otherwise, the value is inconclusive since the observations so far are inconclusive,
and neither true or false can be determined.

While there are semantics for LTL on finite traces ([Manna and Pnueli 1995;
Eisner et al. 2003], see also [Bauer et al. 2008] for their comparison), these use (only)
two truth values. We strongly believe that only two truth values lead to misleading
results in runtime verification: Consider the formula ¬pU init (read: not p until
init) stating that nothing bad (p) should happen before the init function is called.
If within an execution p becomes true before init , the formula is violated and thus
false (for any continuation of the current execution). If, on the other hand, the init
function has been called and no p has been observed before, the formula is true,
regardless of what will happen in the future. Besides observing failures, for testing
and verification, it is equally important to know whether some property is indeed
true or whether the current observation is just inconclusive and a violation of the
property to check may still occur.
Originally, we proposed this three-valued semantics and its use for runtime veri-

fication in [Bauer et al. 2006b]. However, some essential concepts were defined by
Kupferman and Vardi: In [Kupferman and Vardi 2001] a bad prefix (of a Büchi
automaton) is defined as a finite prefix which cannot be the prefix of any accepting
trace. Dually, a good prefix is a finite prefix such that any infinite continuation of
the trace will be accepted. It is exactly this classification that forms the basis of
our 3-valued semantics: “bad prefixes” (of formulae) are mapped to false , “good
prefixes” evaluate to true, while the remaining prefixes yield inconclusive.
For a given LTL3 formula, we describe how to construct a (deterministic) finite

state machine (FSM) with three output symbols. This automaton reads finite traces
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and yields their three-valued semantics. Thus, monitors for three-valued formulae
classify prefixes as one of good = ⊤, bad = ⊥, or ? (neither good nor bad). Standard
minimisation techniques for FSMs can be applied to obtain a unique FSM that is
optimal with respect to its number of states. In other words, any smaller FSM must
be non-deterministic or check a different property. As an FSM can straightforwardly
be deployed, we obtain a practical framework for runtime verification.

The proposed semantics of LTL3 has a valuable implication for a corresponding
monitor. It requires the monitor to report a violation of a given property as early as
possible: Since any continuation of a bad (good) prefix is bad (respectively good),
there exists a minimal bad (good) prefix for every bad (good) prefix. In runtime
verification, we are interested in getting feedback from the monitor as early as
possible, i. e., for minimal prefixes, let them be either good or bad. Since all bad
prefixes for a formula ϕ yield false and good prefixes yield true, also minimal ones
do so. Thus, the correctness of our monitor procedure ensures that already for
minimal good or bad prefixes either true or false is obtained.

In [d’Amorim and Rosu 2005], a Büchi automaton was modified to serve as a
monitor reporting false for minimal bad prefixes. However, no precise semantics in
terms of LTL of the resulting monitor was given. As such, LTL3 can be understood
as a logic which complements the constructions carried out in [d’Amorim and Rosu
2005] with a formal framework. Nevertheless, we feel that our constructions are
more explicit in their semantical foundation and are therefore easier to understand.
The feasibility of the developed methodology is demontrated using Dwyer et al.’s
collection of temporal logic specifications on which the common specification pat-
terns are based upon [Dwyer et al. 1999]. For the LTL properties among these
formulae, almost all resulting monitors had a size less than 100, measured in terms
of the number of states and transitions.

In this paper, we further discuss which LTL3 properties are monitorable at all.
We follow the definition given by Pnueli and Zaks in [Pnueli and Zaks 2006] es-
sentially stating that a property is monitorable with respect to a trace whenever a
corresponding monitor might still report a violation (or satisfaction). We point out
the precise relation to Rosu’s notion of never violate states [d’Amorim and Rosu
2005] in monitors, which is similar yet not the same. Moreover, we recall the notion
of safety and co-safety properties. We show that the popular belief that monitor-
ing is only suitable for safety properties is misleading: The class of monitorable
properties is richer than the union of safety and co-safety properties. Finally, we
discuss runtime verification based on good/bad-prefixes compared to approaches
based on Kupferman’s and Vardi’s notion of informative prefixes, as for example
the approach shown in [Geilen 2001]. We argue that runtime verification should be
based on good/bad prefixes rather than on informative prefixes, as it follows the as
early as possible maxim.

In general, in multi-valued logics, a formula is not evaluated to either true or
false, but one of several (truth) values. This allows for more precise assessment
to which extent a formula is considered true. Such multi-valued approaches have
been considered for LTL, for example, in the context of abstraction [Chechik et al.
2001]. There, the semantics is defined for infinite traces and the resulting logics
and model checking approaches are completely different from LTL3. In contrast,
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we designed LTL3 to specifically match the needs arising in runtime verification.

1.4 Monitoring of Real-time Properties

In the second part of the paper, we address real-time systems. We base our ideas
on the timed lineartime temporal logic (TLTL), a logic originally introduced by
Raskin in [Raskin 1999]. TLTL, as argued by D’Souza, can be considered a natural
counterpart of LTL in the timed setting: He showed in [D’Souza 2003] that, over
timed traces, TLTL is equally expressive as first-order logic, transferring Kamp’s
famous result that, over words, LTL and first-order logic coincide with respect to
expressiveness [Kamp 1968] to the world of real-time systems.
We define a three-valued version of TLTL for finite timed traces resulting in

the logic TLTL3, following a similar approach as for LTL. Moreover, for a TLTL3

formula we describe how to construct a monitor yielding the semantics for a finite
timed trace, again, “as early as possible”.
While the general scheme developed for LTL3 proves to be applicable in the real-

time setting as well, the monitor construction is technically much more involved.
Automata for TLTL employ so-called event recording and event predicting clocks.
Since in runtime verification, the future of a trace is not known, event predicting
clocks are difficult to handle. We introduce symbolic timed runs and show their
benefit for checking promises efficiently, avoiding a possible but generally expensive
translation of event-clock automata to (predicting-free) timed automata [Alur et al.
1999].
So far, not many approaches for runtime verification of real-time properties have

been given. [H̊akansson et al. 2003] studies monitor generation based on LTL en-
riched with a freeze quantifier for time. In [Thati and Rosu 2005], monitoring
algorithms for metric temporal logic specifications are presented. Moreover, the
very general rewriting-based approaces of RulerR [Barringer et al. 2007] and Ea-
gle [Barringer et al. 2004] also allow the specification of realtime properties. In
[Tripakis 2002] and [Bouyer et al. 2005], fault diagnosis for timed systems is ex-
amined, a problem that shares some similarities with runtime verification yet is
more complicated. However, in these approaches, only timed automata or event-
recording automata are used and no prediction of events is supported. Moreover,
no three-valued semantics in the sense used here has been discussed.
TLTL is event-based, meaning that the system emits events when the system’s

state has changed. In [Maler and Nickovic 2004] monitoring of continuous sig-
nals is considered, which is intrinsically different to observing discrete signals in a
continuous time domain.

1.5 Outline

In Section 2, we develop our runtime verification approach for the discrete-time
setting. After recalling standard LTL syntax and semantics, we introduce a three-
valued semantics for LTL formulae on finite words, yielding the three-valued logic
LTL3. Then we develop and discuss a monitor construction technique to produce
for an LTL-property ϕ a deterministic finite-state machine Mϕ which evaluates ϕ
on finite traces according to LTL3. We demonstrate this approach with an exam-
ple from concurrent C++-development practice and show its feasibility using the
formulae upon which Dwyer et al.’s patterns are based upon.
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Section 3 analyses the structure of the developed monitors, complements the
notions of good and bad prefixes with ugly prefixes to characterise the instant
when properties become non-monitorable. Moreover, we discuss monitoring in the
light of safety and co-safety properties and compare our work with ideas based on
informative prefixes.
In Section 4, we expand our runtime verification approach to the real-time setting.

After recalling standard TLTL syntax and semantics, we introduce a three-valued
semantics to evaluate standard TLTL formulae on finite timed words, yielding the
three-valued logic TLTL3. Then we develop and discuss a monitor construction
technique to produce for an TLTL-property ϕ a deterministic monitor Mϕ which
evaluates ϕ on finite timed traces according to TLTL3.
We draw our conclusion in Section 5.

2. THREE-VALUED LTL IN THE DISCRETE-TIME SETTING

In this section, we consider runtime verification for systems whose behaviour is
characterised by a sequence of states which occur at discrete time steps. These
states are then abstracted with a set of atomic properties AP which evaluate to
either true or false in such a state. Thus, the behaviour of the system under scrutiny
is described by an (in)finite word over the alphabet 2AP. Linear temporal logic
(LTL) is a well-accepted logic to specify properties of infinite words [Pnueli 1977],
and, consequently, our developments in this section are for LTL specifications.
More precisely, the section is organised as follows:

—Preliminaries (Section 2.1). We recall standard LTL syntax and semantics (Def-
initions 2.1 and 2.2) altogether with standard nondeterministic Büchi automata
(Definition 2.3) used to match words satisfying LTL properties.

—Syntax and Semantics of LTL3 (Section 2.2). Using LTL semantics as basis, we
introduce a three-valued semantics to evaluate standard LTL formulae on finite
words yielding the logic LTL3 (Definition 2.4). Thereby, LTL3 distinguishes three
cases:
—Either the observed finite word u is sufficient to prove that the monitored
property ϕ holds independently of the yet unknown future behaviour, or

—the observed finite word u already indicates that ϕ cannot be satisfied in any
possible future continuation, or finally,

—neither of both cases occurred so far.

—Monitor Construction for LTL3 (Section 2.3). Having the semantics of LTL3 at
hand, we develop and discuss a monitor construction technique to produce for an
LTL-property ϕ a deterministic finite-state machine Mϕ which evaluates ϕ on
finite words according to LTL3 semantics: First, we describe how to utilise the
Büchi automata Âϕ and Â¬ϕ accepting the infinite words which satisfy ϕ and
¬ϕ, respectively, to evaluate ϕ according to LTL3 semantics (Lemma 2.5). Then,
using this evaluation rule, we construct from Âϕ and Â¬ϕ the finite-state machine
Mϕ (Definition 2.6) and prove that it indeed implements the LTL3 semantics of ϕ
(Theorem 2.7). Note that the resulting monitor Mϕ evaluates ϕ as predictively
as possible, since once it can be decided that ϕ will remain either satisfied or
unsatisfied, the monitor will provide this information immediately. Moreover, it
can be minimised to obtain an FSM with a provably minimal number of states.

ACM Transactions on Software Engineering and Methodology, Vol. x, No. y, mm 20yy.



Bauer et al.: RV for LTL and TLTL · 9

—Example (Section 2.4). We demonstrate this approach with an example from
concurrent C++-development practise.

—Evaluation (Section 2.5). Taking the temporal logic formulae upon which Dwyer
et al.’s specification patterns are based upon as a starting point, we construct
corresponding monitors and measure their resulting size. Thereby, we show the
practical feasability of our monitoring methodology.

2.1 Preliminaries

For the remainder of this section, let AP be a finite set of atomic propositions
and Σ = 2AP a finite alphabet. We write ai for any single element of Σ, i.e.,
ai is a possibly empty set of propositions taken from AP. Finite traces over Σ
are elements of Σ∗, and are usually denoted by u, v, u′, v′, u1, v1, u2, . . . , whereas
infinite traces are elements of Σω, usually denoted by w,w′, w1, w2, . . . We also write
e.g. {p, q} {p} . . . for a finite or infinite word a0a1 . . . with a0 = {p, q} and a1 = {p}.
If clear from the context, we also drop the brackets around singletons, i.e., we write
{p, q} p . . . for the same word a0a1 . . . Finally, we call the concatenation uv of two
finite words u and v finite continuation of u with v. Similarly, the concatenation
uw of u with an infinite word w is called infinite continuation of u with w.
Then the syntax and semantics of LTL on infinite traces is defined as follows.

Definition 2.1 (LTL formulae [Pnueli 1977]) The set of LTL formulae is in-
ductively defined by the grammar

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ

with p ∈ AP .

In addition, we use three abbreviations, namely ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ), ϕ → ψ for
¬ϕ ∨ ψ, Fϕ for true U ϕ, and Gϕ for ¬(true U ¬ϕ).

Definition 2.2 (LTL semantics [Pnueli 1977]) Let w = a0a1 . . . ∈ Σω be a
infinite word with i ∈ N being a position. Then we define the semantics of LTL
formulae inductively as follows

w, i |= true
w, i |= ¬ϕ iff w, i 6|= ϕ
w, i |= p iff p ∈ ai
w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2

w, i |= ϕ1Uϕ2 iff ∃k ≥ i with w, k |= ϕ2

and ∀i ≤ l < k with w, l |= ϕ1

w, i |= Xϕ iff w, i + 1 |= ϕ

Further, w |= ϕ holds iff w, 0 |= ϕ holds.

We denote with L(ϕ) = {w ∈ Σω | w |= ϕ} the set of models of an LTL-
formula ϕ. Two LTL-formulae ϕ and ψ are called equivalent , written as ϕ ≡ ψ,
iff L(ϕ) = L(ψ) holds. The language L(ϕ), generated by an LTL-formula ϕ, is
a regular set of infinite traces and can be described by a corresponding Büchi
automaton defined next.
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Definition 2.3 (Nondeterministic Büchi automaton (NBA) [Büchi 1962])
A (nondeterministic) Büchi automaton (NBA) is a tuple A = (Σ, Q,Q0, δ, F ), where

—Σ is a finite alphabet,

—Q is a finite non-empty set of states,

—Q0 ⊆ Q is a set of initial states,

—δ : Q× Σ → 2Q is a transition function, and

—F ⊆ Q is a set of accepting states.

We extend the transition function δ : Q×Σ → 2Q, as usual, to δ′ : 2Q×Σ∗ → 2Q

by δ′(Q′, ǫ) = Q′ and δ′(Q′, ua) =
⋃

q′∈δ′(Q′,u) δ(q
′, a) for Q′ ⊆ Q, u ∈ Σ∗, and

a ∈ Σ. To simplify notation, we use δ for both δ and δ′.
A run of an automaton A on a word w = a0a1 . . . ∈ Σω is a sequence of states

and actions ρ = q0a0q1a1q2 . . . , where q0 is an initial state of A and where we
have qi+1 ∈ δ(qi, ai) for all i ∈ N. For a run ρ, let Inf(ρ) denote the states visited
infinitely often. A run ρ of an NBA A is called accepting iff Inf(ρ) ∩ F 6= ∅.
A nondeterministic finite automaton (NFA) A = (Σ, Q,Q0, δ, F ) is an automaton

where Σ, Q, Q0, δ, and F are defined as for a Büchi automaton, but which operates
on finite words. A run of A on a word w = a0 . . . an ∈ Σ∗ is a sequence of states
and actions ρ = q0a0q1a1 . . . anqn+1, where q0 is an initial state of A and for all
i ∈ N we have qi+1 ∈ δ(qi, ai). The run is called accepting if qn+1 ∈ F . An NFA
is called deterministic iff for all q ∈ Q, a ∈ Σ, |δ(q, a)| = 1, and |Q0| = 1. We use
DFA to denote a deterministic finite automaton.
In case of Büchi automata, we did not introduce their deterministic variant since

not every NBA can be converted into an equivalent deterministic one. Furthermore,
our monitor construction allows to apply determinisation once we have converted
all NBAs into NFAs—thereby yielding a deterministic finite-state machine. The
resulting FSM can be minimised to obtain an FSM with a provably minimal number
of states. Note that in many practical cases, the monitor will be based directly on
the underlying nondeterministic automata and will be determinised on-the-fly using
the power-set construction (cf. the discussion at the end of Section 2.3.)
Finally, let us recall the notion of a finite-state machine (FSM), which is a finite

state automaton enriched with output, denoted by a tuple (Σ, Q,Q0, δ,∆, λ), where
Σ, Q, Q0, and δ are defined as before and where ∆ is the output alphabet used in
the output function λ : Q→ ∆. The output of an FSM, defined by the function λ,
is thus determined by the current state q ∈ Q alone, rather than by input symbols.
As before, δ extends to the domain of words as expected. For a deterministic FSM,
we denote with λ also the function that yields for a given word u the output in the
state reached by u rather than the sequence of outputs.

2.2 Syntax and Semantics of LTL3

To overcome difficulties in defining an adequate Boolean semantics for LTL on finite
traces, we propose a three-valued semantics. The intuition is as follows: in theory,
we observe an infinite sequence w of some system. Thus, for a given formula ϕ,
either w |= ϕ holds or not. In practice, however, we can only observe a finite prefix
u of w. Consequently, we let the semantics of ϕ with respect to u be true, if uw′ |= ϕ
for every possible continuation w′. On the other hand, if uw′ is not a model of ϕ for
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ϕ

ϕ

¬ϕ

Aϕ

A¬ϕ

Fϕ

F¬ϕ

Âϕ

Â¬ϕ

Ãϕ

Ã¬ϕ

Mϕ

Input (1) Formula (2) NBA (3)
Emptiness
per state

(4) NFA (5) DFA (6) FSM

Fig. 1. The procedure for getting [u |= ϕ] for a given ϕ

all possible infinite continuations w′ of u, we define the semantics of ϕ with respect
to u as false. In the remaining case, the truth value of uw′ and ϕ depends on w′.
Thus, we define the semantics of u with respect to ϕ to be inconclusive, denoted by
?, to signal that the so far observed prefix u itself is insufficient to determine how
ϕ evaluates in any possible future continuation of u.
We define our three-valued semantics LTL3 to interpret common LTL formulae,

as defined in Definition 2.1 on finite prefixes to obtain a truth value from the set
B3 = {⊥, ?,⊤} as follows:

Definition 2.4 (LTL3 semantics) Let u ∈ Σ∗ denote a finite word. The truth
value of a LTL3 formula ϕ with respect to u, denoted by [u |= ϕ], is an element of
B3 defined as follows:

[u |= ϕ] =











⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise

Note that in the above definition, we use the semantic function [u |= ϕ] as well as
the standard notation uσ |= ϕ: Since we introduce a three-valued semantics on
finite words, we have to use a semantic function [u |= ϕ] to denote the truth value
of ϕ with respect to a finite word u. On the other hand, for the standard two-valued
semantics of LTL, we only write uσ |= ϕ to assert that uσ satisfies ϕ.
Note that already in [Kamp 1968], a coherent semantics for both, LTL on finite

and infinite words is given. However, in runtime verification, we aim at checking
LTL properties of infinite traces by considering their finite prefixes. This renders the
standard two-valued LTL semantics on finite traces as well as further approaches
given in [Manna and Pnueli 1995] or in [Eisner et al. 2003] inappropriate in our
case.

2.3 Monitor Construction for LTL3

Now we develop an automata-based monitoring procedure for LTL3. More specif-
ically, for a given formula ϕ ∈ LTL3, we construct an FSM Mϕ that reads finite
words u ∈ Σ∗ and outputs [u |= ϕ] which is a value in B3.
For an NBA A, we denote by A(q) the NBA that coincides with A except for

the set of initial states Q0, which is redefined in A(q) as Q0 = {q}. Let us fix
ϕ ∈ LTL for the rest of this section, and let Aϕ = (Σ, Qϕ, Qϕ

0 , δ
ϕ, Fϕ) denote the

NBA that accepts all models of ϕ and let A¬ϕ = (Σ, Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F¬ϕ) denote

the NBA, which accepts all words falsifying ϕ. The corresponding construction is
standard [Vardi and Wolper 1986] and explained, for example in [Vardi 1996]. Note
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that in order to obtain the complement of an NBA, we merely need to complement
the formula, rather than the original Büchi automaton itself.
For the automaton Aϕ, we define a function Fϕ : Qϕ → B (with B = {⊤,⊥})

where we set Fϕ(q) = ⊤ iff L(Aϕ(q)) 6= ∅, i.e., we evaluate a state q to ⊤ iff the
language of the automaton starting in state q is not empty. To determine Fϕ(q),
we identify in linear time the strongly connected components in Aϕ which can be
done using Tarjan’s algorithm [Tarjan 1972] or nested depth-first algorithms as
examined in [Schwoon and Esparza 2005]. Using Fϕ, we define the NFA Âϕ =
(Σ, Qϕ, Qϕ

0 , δ
ϕ, F̂ϕ) with F̂ϕ = {q ∈ Qϕ | Fϕ(q) = ⊤}. Analogously, we set

Â¬ϕ = (Σ, Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F̂¬ϕ) with F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = ⊤}.

Having Âϕ and Â¬ϕ at hand, we evaluate [u |= ϕ] according to the following
lemma:

Lemma 2.5 (LTL3 evaluation) With the notation as before, we have

[u |= ϕ] =











⊤ if u 6∈ L(Â¬ϕ)

⊥ if u 6∈ L(Âϕ)

? if u ∈ L(Âϕ) ∩ L(Â¬ϕ)

Proof. Let A¬ϕ = (Σ, Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F¬ϕ) denote the NBA with L(A¬ϕ) =

L(¬ϕ). Feeding a finite word u ∈ Σ∗ to A¬ϕ, we reach the set δ¬ϕ(Q¬ϕ
0 , u) ⊆ Q¬ϕ

of states. Thus, if there exists a state q ∈ δ¬ϕ(Q¬ϕ
0 , u) such that L(A¬ϕ(q)) 6= ∅,

then we can choose an infinite word σ ∈ L(A¬ϕ(q)) in order to expand u into
uσ ∈ L(A¬ϕ). By definition of the NFA Â¬ϕ, such a state q ∈ δ¬ϕ(Q¬ϕ

0 , u) exists

iff u ∈ L(Â¬ϕ) holds.
Therefore, if u /∈ L(Â¬ϕ) holds, then every possible continuation uσ of u will be

rejected by A¬ϕ, i.e., every possible continuation uσ will violate ¬ϕ and satisfy ϕ
and hence we have uσ |= ϕ for all σ ∈ Σω. If this is the case, by Definition 2.4,
[u |= ϕ] = ⊤.
By substituting ϕ for ¬ϕ, we obtain [u |= ϕ] = ⊥ if u 6∈ L(Âϕ). Finally, if

u ∈ L(Âϕ) ∩ L(Â¬ϕ), then there exist two continuations σ 6= σ′ ∈ Σω such that
uσ |= ϕ and uσ′ 6|= ϕ and therefore, [u |= ϕ] =?.

The lemma yields the following procedure to evaluate the semantics of ϕ for a
given finite trace u: we evaluate both u ∈ L(Â¬ϕ) and u ∈ L(Âϕ) and use Lemma
2.5 to determine whether [u |= ϕ]. As a final step, we now define a (deterministic)
FSM Mϕ that outputs for each finite word u its associated three-valued semantical
evaluation with respect to some LTL-formula ϕ.
Let Ãϕ and Ã¬ϕ be the deterministic versions of Âϕ and Â¬ϕ, which can be

computed in a standard manner using the power-set construction. Then, we define
the FSM in question as a product of Ãϕ and Ã¬ϕ.

Definition 2.6 (Monitor Mϕ for an LTL3 formula ϕ) Let ϕ be an LTL for-
mula and let Âϕ be the NFA, as defined above, indicating emptiness per state of ϕ’s
NBA. Moreover, let Ãϕ = (Σ, Qϕ, {qϕ0 }, δ

ϕ, F̃ϕ) be a deterministic automaton with

L(Ãϕ) = L(Âϕ) and let and Ã¬ϕ = (Σ, Q¬ϕ, {q¬ϕ
0 }, δ¬ϕ, F̃¬ϕ) be the analogously

defined DFA for ¬ϕ.

ACM Transactions on Software Engineering and Methodology, Vol. x, No. y, mm 20yy.



Bauer et al.: RV for LTL and TLTL · 13

We define the product automaton Āϕ = Ãϕ × Ã¬ϕ as the FSM (Σ, Q̄, q̄0, δ̄, λ̄),
where

—Q̄ = Qϕ ×Q¬ϕ,

—q̄0 = (qϕ0 , q
¬ϕ
0 ),

—δ̄((q, q′), a) = (δϕ(q, a), δ¬ϕ(q′, a)), and

—λ̄ : Q̄→ B3 is defined by

λ̄((q, q′)) =







⊤ if q′ 6∈ F̃¬ϕ

⊥ if q 6∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

The monitor Mϕ of ϕ is the unique FSM obtained by minimising the product au-
tomaton Āϕ .

We sum up our entire construction in Figure 1 and conclude by formulating the
correctness theorem.

Theorem 2.7 (LTL monitor correctness) Let ϕ be an LTL3 formula and let
Mϕ = (Σ, Q, q0, δ, λ) be the corresponding monitor. Then, for all u ∈ Σ∗, the
following holds:

[u |= ϕ] = λ(δ(q0, u))

Proof. The theorem follows directly from the monitor construction given in
Definition 2.6 and Lemma 2.5 on the evaluation of LTL3.

Complexity. Consider Figure 1: Given ϕ, step 1 requires replication and negation
of ϕ, i.e., it is linear in the size of ϕ. Step 2, the construction of the NBAs, causes
an exponential “blow-up” in the worst-case. Steps 3 and 4, leading to Âϕ and Â¬ϕ,
do not change the size of the original automata. Then, computing the deterministic
automata in step 5, causes in general an exponential “blow-up” in size, for a second
time. In total, the FSM of step 6 will have double exponential size with respect to
|ϕ|.
The size of the final FSM is in O(22

n

) but can be minimised with standard
algorithms for FSMs [Hopcroft 1971] to derive an optimal deterministic monitor
with a minimal number of states. In the worst case, however, a lower bound of

O(22
Ω(n)

) applies to the number of states, as proved in [Kupferman and Vardi
2001].
Thus, better complexity results in other approaches, like the one in [Havelund

and Rosu 2002], are due to one of the following reasons:

—First, one can use a fragment of LTL which is strictly less expressive than full
LTL, i.e., one gives up the possibility to specify certain properties and thereby
rules out some complicated cases exercising the worst case complexity. Our
construction yields an optimal monitor, independent of which fragment of LTL
is considered.

—Second, it is possible to use a variant of LTL which is still capable to express all
LTL-expressible properties but which requires strictly longer formulae for some
of these properties.
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—Third, one could abandon a single monolithic and deterministic automaton as
monitor procedure, and use instead an alternative concept such as synchronising
automata, hereby trading the size of automaton with an increased computational
overhead at runtime [Rosu and Bensalem 2006].

Moreover, we have implemented the above construction of the finite-state au-
tomaton Mϕ partly in an on-the-fly fashion. That is, for a given property ϕ, we
construct the two NFAs, but we do not determinise them to obtain the two cor-
responding DFAs Ãϕ and Ã¬ϕ. Consequently, we do not explicitly construct the
final automaton Mϕ, but instead perform steps 4–6 on-the-fly to avoid the second
exponential “blow-up”, similar to the approach taken in [d’Amorim and Rosu 2005].

To do so, our implementation employs the power-set construction, known from
compiler construction [Aho et al. 1986], in an on-the-fly manner: Instead of only
maintaining a single current state of a deterministic automaton, our monitor main-
tains the set of reachable states of the correspondingly underlying nondeterministic
automaton. Then, the deterministic automaton would be in an accepting state, if
and only if there exists at least one accepting state in the currently maintained set
of states (of the nondeterministic automaton).

Although we could follow the whole construction on-the-fly, i.e., build the NBAs
from the LTL-formulae and do the emptiness check per state during monitoring, we
experienced a huge and favourable difference in size between the pair of NBAs and
the resulting monitoring FSMs, as described in Section 2.5. For the same reason, it
seems infeasible to base our approach on more succinct alternating Büchi automata.
Checking emptiness (per state) of an alternating Büchi automaton is PSPACE-
complete and thus not affordable at runtime. Note that existing approaches for
monitoring LTL properties that use alternating automata [Finkbeiner and Sipma
2004; Stolz and Bodden 2006] in fact check LTL properties in a different manner.
As discussed in detail in Section 3.3, these procedures check for informative prefixes
rather than bad prefixes.

2.4 Example

Now we discuss a simple but comprehensive real-world example in more detail,
which also highlights most of the features described above. Note that other ap-
proaches, such as [Chen and Roşu 2007; Bodden 2004; Allan et al. 2005], are able
to deal with this example as well, yet, as we feel, in a less direct manner.

In a C++-program, all static objects of an executable are initialised before the
main method is entered, however, their order is undefined, and their initialisation
is thus performed in a nondeterministic order (cf. [Stroustrup 2000]). In conse-
quence, if threads get spawned before executing main, it is difficult to ensure that
all resources necessary to synchronise those threads are already initialised, such as
globally available and statically initialised mutex objects. This problem is generally
known as the static initialisation order fiasco (cf. [Dewhurst 2002]). The “fiasco”
is an especially complicated one when large applications are built from a number
of different frameworks which must remain independent from each other.

Using our monitor generator with a C++ logging layer such as the Apache
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Software Foundation’s library, log4cxx1, for gaining access to signals emitted
by the application’s threads, it is possible to construct a monitor over an alphabet
Σ = 2AP , where {spawn, init} ⊆ AP , for a property ϕ ≡ ¬spawn U init. In
other words, the monitor reports a violation, once a thread is spawned before the
application under scrutiny has properly finished its initialisation.
This example further illustrates the need for having three truth values, instead

of two when monitoring a running system:

—Intuitively, a monitor for ϕ should raise an alarm only if a thread was spawned
before init occurred.

—On the other hand, if init occurs before any spawn has occurred, the monitor
should report that ϕ is satisfied irrespective of the future.

—Finally, until either happens, it should return ?, indicating the necessity for
further observation.

Using the translation algorithm from formulae of LTL to Büchi automata as
proposed in [Fritz 2003], one obtains for ϕ, respectively ¬ϕ, the Büchi automata
depicted in Figure 2.

q0 q1

¬spawn true

init

(a) Büchi automaton Aϕ.

q0 q1

¬init true

spawn ∧ ¬init

(b) Büchi automaton A¬ϕ.

Fig. 2. The Büchi automata for ϕ ≡ ¬spawn U init

Then the two nondeterministic finite automata Âϕ = (Σ, Qϕ, Qϕ
0 , δ

ϕ, F̂ϕ) and

Â¬ϕ = (Σ, Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F̂¬ϕ) are defined with the accepting states F̂ϕ and F̂¬ϕ,

as described in the construction leading to Lemma 2.5.
In our particular case, all states in Âϕ and Â¬ϕ become accepting states, as

only those states and transitions are shown which contribute to the accepted lan-
guage. Also note that in this example, the two resulting finite automata are already
deterministic.
Following Definition 2.6, we construct an FSM as monitor for the static initial-

isation order fiasco. For this purpose, we first build the product of Ãϕ and Ã¬ϕ.
Then we minimise this product automaton to obtain the FSM Mϕ depicted in
Figure 3. The figure shows the respective output symbols of the FSM below the
corresponding state labels, e.g., for state q1 we have λ̄(q1) = ⊥. Note that the
minimisation removed one of the originally four states of the product automaton.
The FSM Mϕ corresponds with the original intuition, and yields ? while neither
event occurred, and either ⊤ or ⊥, otherwise.

1See http://www.apache.org/.
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q1
“⊥”

q0
“?”

q2
“⊤”

true

¬spawn ∧ ¬init

true

spawn ∧ ¬init init

Fig. 3. The deterministic FSM Mϕ for ϕ ≡ ¬spawn U init .

2.5 Evaluation

We have evaluated our approach on the basis of the frequently used software spec-
ification patterns introduced in [Dwyer et al. 1999]. They represent a collection of
patterns that occur commonly in the specification of concurrent and reactive sys-
tems, such as scoping (e.g., “some event P must hold in between two other events
Q1 and Q2”), precedence (e.g., “an event P must always be preceded by an event
Q”), or response (e.g., “an event P must always be followed by an event Q”). These
patterns were derived from a comprehensive survey undertaken by the authors of
that paper with the results being available online2, and at the time of writing con-
sisting of 447 temporal logic specifications of which 108 are labelled as being LTL
formulae.
Starting point of our evaluation were these 108 formulae labelled as LTL for-

mulae for which we then tried to generate monitors according to the procedure
given above. To this end, we developed a “monitor generator”, in the following
referred to as the LTL3 tools, which is available online under a public license.3 It
relies on version 1.1 of LTL2BA, which is Gastin’s and Oddoux’s translator for
converting LTL formulae into corresponding Büchi automata [Gastin and Oddoux
2001]. From the 108 formulae, however, only 97 were actually usable in a sense that
they were syntactically correct LTL formulae (as opposed to CTL or incomplete
specifications).
Generating a (minimized and deterministic) monitor for each of these 97 formulae

using the LTL3 tools, it turned out that for 43 formulae, the monitor consisted of
a single ?-state which had one universal self-loop. These are formulae which can
only be satisfied or violated by an infinite trace as compared to a finite one, hence
the resulting monitor did not contain ⊥ and ⊤ states in such cases. And as such,
obviously, they cannot be sensibly monitored. (For a more detailed discussion of
what constitutes a monitorable property, see also Section 3.)
For the remaining 54 LTL formulae, respectively referred to as ϕ, Figure 4 shows

the size of ϕ (measured in the standard way, i.e., nodes of the syntax tree), and
the size of ϕ’s monitor (measured in terms of the number of states) in comparison
with the cumulative size of the two NBAs generated for ϕ and ¬ϕ during monitor
construction. Although, in the worst case, the monitor is double exponentially
bigger than the size of the formula, the number of states of the resulting monitor is
in the same range as the length of the formula. This suggests that the worst-case

2See http://patterns.projects.cis.ksu.edu/.
3See http://LTL3tools.SourceForge.net/.
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upper bound is no limiting factor for practical applications. With no exception,
the resulting monitors are always smaller than the corresponding NBAs, and in
some cases significantly smaller. The diagram also shows that the monitors contain
only a seemingly small number of states in all of the cases, which is due to the
specific formulae chosen by [Dwyer et al. 1999], and not inherent to our method.
However, as the formulae are taken from real world applications of temporal logic
specification during systems design, we believe that this further emphasizes the
suitability of our approach for monitoring design specifications also at runtime.
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Fig. 4. Number of states of NBAs vs. number of states of monitors.

In practice, not only the states of a monitor have to be stored but also their
transitions. Therefore, Figure 5 shows the overall size of the monitors built, i.e., we
now count the number of states and transitions. Note that for this purpose we have
normalized the automata in the sense that all possible transitions for each state are
explicitly represented and counted. In fact, the number of states in the previous
diagram are now multiplied with the size of the alphabet underlying the formula.
From the measurements described in this subsection, we draw the following con-

clusions. Using deterministic monitors does not seem to be a limiting factor for
practically relevant specifications, despite the double exponential worst-case upper
bound. Nevertheless, generating the monitor on-the-fly directly from the underlying
NFA will typically reduce its memory requirements—but only if the corresponding
NFAs are minimized, as our measurements indicate.
While minimization is an expensive operation, in can be done off-line before

deploying the monitor. However, if one computes even the underlying NBA on-
the-fly (instead of precomputing the NBA and the NFA), it is necessary to perform
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Fig. 5. Total size of NBAs vs. total size of monitors.

emptyness-checks on-the-fly as well and to postpone the minimization of the (par-
tially) generated NFA to runtime. The best trade-off between precompuation and
on-the-fly computation has to be explored in the context of different application
scenarios.

3. LTL3 PUT INTO PERSPECTIVE

Let us compare the approach carried out in the previous section with some accom-
plishments in the literature. In Section 3.1, we compare LTL3’s semantics when
faced with so-called good and bad prefixes [Kupferman and Vardi 2001]. It turns out
that LTL3’s semantics identifies exactly good and bad prefixes. Bad prefixes may
be used to derive the notion of safety properties. Consequently, in Section 3.2, we
study monitoring for the subclass of (co)-safety properties [Lamport 1977; Alpern
and Schneider 1987; Kupferman and Vardi 2001]. Moreover, we recall Pnueli and
Zaks notion [Pnueli and Zaks 2006] of monitorable properties and show that mon-
itorable properties are more than just safety properties. A related notion, due to
Kupferman and Vardi [Kupferman and Vardi 2001], which is, in a sense, weaker
than that of bad prefixes, is the one of informative prefixes. In Section 3.3, we
explain the idea of informative prefixes and compare monitoring based on LTL3’s
semantics to monitoring approaches based on informative prefixes.
Let, as above, Σ = 2AP be an alphabet for the remainder of this section.

3.1 Good/Bad Prefixes

Let us first recall the notion of good and bad prefixes as introduced in [Kupferman
and Vardi 2001].
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Definition 3.1 (Good/bad prefixes [Kupferman and Vardi 2001]) Given
a language L ⊆ Σω of infinite words over Σ, we call a finite word u ∈ Σ∗

—a bad prefix for L, if for all w ∈ Σω, uw 6∈ L,

—a good prefix for L, if for all w ∈ Σω, uw ∈ L.

Note that every continuation uv of a bad (good) prefix u for L by a finite word
v ∈ Σ∗ is again a bad (good) prefix for L. A bad (good) prefix u is called minimal ,
if each strict prefix of u is not a bad (good) prefix anymore.
Using these terms, we can rephrase the semantics of LTL3 as:

Remark 3.2 (LTL3 identifies good/bad prefixes) Given an LTL-formula ϕ
and a finite word u ∈ Σ∗, then

[u |= ϕ] =







⊤ if u is a good prefix for L(ϕ)
⊥ if u is a bad prefix for L(ϕ)
? otherwise.

Thus, the monitor procedure given in the previous section determines for a finite
prefix of a potentially infinite word, whether it is good, bad, or neither good nor
bad. More specifically, when considering the finite prefixes of an infinite word by
increasing length, the monitor identifies its minimal good or bad prefix, if such a
prefix exists.
Note that one of the contributions of [d’Amorim and Rosu 2005] is to modify a

given Büchi automaton, typically arising from a given LTL property, into a monitor
which signals the occurrence of a minimal bad prefix. Thus, this construction yields
a monitor which distinguishes two cases, namely [u |= ϕ] = ⊥ and [u |= ϕ] 6= ⊥. At
the same time, [d’Amorim and Rosu 2005] does not discuss the semantics of the re-
sulting monitor in terms of a matching logical framework. LTL3 can be understood
as a logic which complements the constructions carried out in [d’Amorim and Rosu
2005] with a formal framework. Nevertheless, we feel that our constructions are
more direct and therefore easier to understand.
In practice, whenever a good or bad prefix is found, monitoring can be stopped,

as every finite or infinite continuation of the prefix yields the same semantics with
respect to LTL3. For the (minimal) monitor Mϕ (see Definition 2.6), a good or
bad prefix leads to a state, which either outputs ⊤ or ⊥, and which is only looping
back to itself. We call such a state a trap. For example, a monitor for Fp enters
a trap ⊤ once the first state satisfying p occurs. Analogously, a monitor for Gp
reaches a trap with ⊥ once p becomes false the first time.
Besides ⊤ and ⊥, there can be a further trap in the monitor, as there can be

a state, in which the output is ?, and from where no state with output ⊤ or ⊥ is
reachable anymore. Consider, for example, the language defined by GFp, stating
that there are infinitely many states satisfying p. Any finite word can be extended
to an infinite one satisfying the formula as well as to one falsifying the formula.
Thus, given any finite word, no finite continuation yields ⊤ or ⊥ with respect to
LTL3. For runtime verification, such a prefix is ugly, since after processing it,
monitoring can be stopped yet with an inconclusive result.
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“?”

bad
“⊥”

ugly
“?”

good
“⊤”

⊤ ⊤ ⊤

Fig. 6. The structure of the deterministic monitor

Definition 3.3 (Ugly prefix) Let L ⊆ Σω be a language of infinite words over
Σ. A finite word u ∈ Σ∗ is called an ugly prefix for L, if there is no v ∈ Σ∗ such
that uv is either bad or good.

We follow [Pnueli and Zaks 2006] in calling a formula ϕ non-monitorable with
respect to a prefix u, if no ⊥ or ⊤ verdict can be obtained. Using our terminology,
we define:

Definition 3.4 ((Non)-monitorable) Let ϕ be an LTL-formula and u ∈ Σ∗. We
call ϕ non-monitorable after u, if u is an ugly prefix of L(ϕ). We call ϕ monitorable,
if L(ϕ) has no ugly prefix.

In other words, we call ϕ monitorable, if there is no u ∈ Σ∗ such that ϕ is
non-monitorable after u.
The discussion above renders the structure of the deterministic monitor Mϕ for

an LTL3 formula ϕ as depicted in Figure 6. In general, a monitor has three traps,
corresponding to reading either a good, bad, or ugly prefix. As long as no trap is
reached, the monitor outputs ?, while reaching a trap also implies that monitoring
can be stopped (since the output will never change again).
In Section 2.5, we generated monitors for the LTL formulae of Dwyer et al.’s

specification patterns. As mentioned before, 44 out of 97 formulae consisted of a
single state emitting ?. Thus, the underlying properties are indeed non-monitorable.
For the remaining properties, it turns out that no trap outputting ? exists, so that
the underlying properties are monitorable.
In [d’Amorim and Rosu 2005], the notion of a never-violate state was introduced

for a state of a monitor, from which no bad state is reachable. Additionally, an
algorithm was outlined for merging all never-violate states of a given Büchi au-
tomaton into a single never-violate state. In terms of Figure 6, both ugly and good
are never-violate states, i.e., in [d’Amorim and Rosu 2005], both are collapsed into
a single never-violate state. Our monitor construction yields (at most) two such
never-violate states, good and ugly. However, we think that it is important to ac-
tually classify a prefix u ∈ Σ∗ as either good or ugly, as in the previous case the
property to be monitored has been satisfied while in the latter case, no satisfaction
or violation can be shown by monitoring continuations of u.
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Note that the notion of non-monitorable fits well to LTL3. In [Bauer et al. 2007],
however, we suggest a more precise semantics of LTL-formulae with respect to finite
words allowing to differentiate ugly prefixes. The idea is based on using a strong
as well as a weak version of the next-state operator, essentially giving rise to a
four-valued semantics. Then, monitoring of non-monitorable properties can still be
considered meaningful, but this discussion is beyond the scope of this paper.

3.2 Safety and Co-safety Properties

The notion of bad and good prefixes was introduced in [Kupferman and Vardi
2001] in the context of safety and co-safety languages as well as formulae, and
which follows the formal definitions as given in [Alpern and Schneider 1987]:

Definition 3.5 ((Co-)Safety languages [Kupferman and Vardi 2001]) A
language L ⊆ Σω is called

—a safety language, if for all w 6∈ L, there is a prefix u ∈ Σ∗ of w which is a bad
prefix for L.

—a co-safety language, if for all w ∈ L, there is a prefix u ∈ Σ∗ of w which is a
good prefix for L.

This notion is lifted to LTL formulae in the expected manner:

Definition 3.6 (Safety/Co-safety property) A formula ϕ ∈ LTL is called a
safety property ( co-safety property), if its set of models L(ϕ) is a safety language
(co-safety language, respectively).

Let us give some examples:

formula safety co-safety
Gp •
Fq •
Xp • •
GFp
Xp ∨GFp
pU q •

The definitions of safety and co-safety properties and languages immediately
yield:

Remark 3.7 (Safety/Co-safety properties are monitorable) Each LTL for-
mula that is safety or co-safety is also monitorable.

In other words, for a safety or a co-safety language L, there are no ugly prefixes and
for a safety or co-safety formula ϕ, the monitor Mϕ has no ugly trap. However,
this property also holds for some non safety/co-safety properties:

Lemma 3.8 (Monitorable is more than safety and co-safety) The class of
monitorable LTL3 properties is strictly larger than the union of safety and co-safety
properties.
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Proof. Consider, for example, ϕ = ((p ∨ q)U r) ∨Gp. Observe that the trace

—ppp . . . satisfies ϕ,

—qqqq . . . does not satisfy ϕ,

—. . . r is a good prefix for ϕ (provided that one of p or q holds in the positions
denoted by . . . , and

—. . . {¬p,¬q,¬r} is a bad prefix for ϕ.

As ppp . . . satisfies ϕ but none of its finite prefixes is good, ϕ is not a co-safety
property. As qqq . . . does not satisfy ϕ but none of its finite prefixes is bad, ϕ is
neither a safety property. Nevertheless, any finite prefix that is neither good or bad
can be extended to a good or a bad prefix: any letter containing r makes the prefix
good, while a continuation by the letter {¬p,¬q,¬r} makes the prefix bad. Thus,
the monitor Mϕ for ϕ does not have any ugly state.

The previous lemma contradicts the popular belief that monitoring is only suit-
able for safety properties. That said, there is something particular about safety
properties: By definition, any infinite word w not satisfying a safety property ϕ,
must have a bad prefix u. Hence, when we never reach the bad trap in an automaton
for a safety property ϕ, then we know that the word w satisfies ϕ. Thus, assuming
that one could predict the monitor output to be the infinite sequence ??? . . . , one
could classify the property as satisfied. This follows the intuition that, if nothing
has gone wrong for a “long time”, the property to be checked is indeed satisfied.
The proof of the previous lemma shows that such an understanding does not work
for all monitorable properties. For example, both ppp . . . and qqq . . . do not reach
a trap when monitoring ϕ = ((p ∨ q)U r) ∨Gp. Thus, the monitor Mϕ will output
the infinite sequence ??? . . . when monitoring either of these two words. However,
ppp . . . satisfies ϕ while qqq . . . does not satisfy ϕ. Thus, even assuming that one
could predict the monitor output to be ??? . . . , one cannot classify the property as
satisfied or violated, as both ppp . . . and qqq . . . yield the same output sequence
??? . . . .
To summarise this discussion, we note that

—violations of safety properties are reported by monitoring procedures which check
for finite prefixes of violating words, as well as

—successful validations of co-safety properties are reported by monitoring proce-
dures which consider finite prefixes of satisfying words, but additionally,

—there are monitorable properties which are neither characterised by finite violat-
ing or finite satisfying prefixes.

3.3 Informative prefixes

In [Kupferman and Vardi 2001], the authors have introduced the notion of informa-
tive prefixes. The idea is to consider prefixes of infinite words that “tell the whole
story” why a formula is (not) satisfied [Kupferman and Vardi 2001]. Consider, for
example, the formula X false. While clearly unsatisfiable, one might argue that this
becomes only “obvious” after considering a first letter of some word w: Xϕ holds
iff ϕ holds in the second position of w. For X false , this means that false should
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hold in the second position of w, which is obviously not the case. Thus, while the
empty prefix is not informative, every prefix of length one is.
Following the development of [Kupferman and Vardi 2001], we consider LTL

formulae in negation normal form, i. e. the set of formulae defined by the following
grammar:4

ϕ ::= true | false | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUϕ | ϕRϕ | Xϕ (p ∈ AP)

The semantics is defined as expected, e. g. the semantics of the release quantifier
is defined such that ϕ1Rϕ2 is equivalent to ¬(¬ϕ1U¬ϕ2). We use ¬ϕ as a short-
hand for its positive form, i. e. the formula obtained by negating ϕ and pushing all
negations down reaching either a Boolean constant or an atomic proposition. The
closure cl(ϕ) of ϕ is defined as its set of subformulae.

Definition 3.9 (Informative prefix [Kupferman and Vardi 2001]) For an
LTL formula ϕ and a finite word u = a0 . . . an with ai ∈ Σ, we say that u is
informative for ϕ, if there exists a mapping ℓ : {0, . . . n + 1} → 2cl(ϕ) such that
¬ϕ ∈ ℓ(0), ℓ(n + 1) = ∅, and for all 0 ≤ i ≤ n and ψ ∈ ℓ(i), we have, if ψ is an
atomic proposition, then ai satisfies ψ, if ψ = ψ1 ∨ ψ2, then ψ1 ∈ ℓ(i) or ψ2 ∈ ℓ(i),
if ψ = ψ1 ∧ ψ2, then ψ1 ∈ ℓ(i) and ψ2 ∈ ℓ(i), if ψ = Xψ1, then ψ1 ∈ ℓ(i + 1), if
ψ = ψ1Uψ2, then ψ2 ∈ ℓ(i), or, ψ1 ∈ ℓ(i) and ψ1Uψ2 ∈ ℓ(i + 1), if ψ = ψ1Rψ2,
then ψ2 ∈ ℓ(i) and, ψ1 ∈ ℓ(i) or ψ1Rψ2 ∈ ℓ(i+ 1).

If u is informative for ϕ, the existing mapping ℓ is called a witness for ¬ϕ in u.
Note that the emptiness of ℓ(n + 1) guarantees that all the requirements imposed
by ¬ϕ are fulfilled along u. The definition implies

Remark 3.10 (Informative implies bad) Let ϕ be an LTL formula. Every in-
formative prefix for ϕ is a bad prefix for ϕ.

Note that the converse is not true, i.e., there are formulae which have bad prefixes
but no informative ones, as shown in the examples below:

Example 3.11 (Informative prefixes)

—Consider ϕ = Gp and u = pq. Note that u is a bad prefix for Gp and that
¬Gp = F¬p. Recall also that ¬ϕ is a shorthand for the negation of ϕ in negation
normal form. Then, ℓ1 defined by ℓ1(0) = {F¬p}, ℓ1(1) = {F¬p,¬p}, ℓ1(2) = ∅
is a witness for ¬ϕ, showing that u is informative for ϕ.

—Consider ϕ2 = G(p ∨ X false) and u = pq as before. As ϕ2 is equivalent to Gp,
u is still a bad prefix for ϕ2. Note, ¬ϕ2 = F (¬p ∧ Xtrue). Thus, some witness
ℓ2 should satisfy F (¬p ∧Xtrue) ∈ ℓ2(0). As p is satisfied in the first position of
u, it has to hold that {F (¬p∧Xtrue),¬p∧Xtrue,Xtrue} ⊆ ℓ2(1). This implies
that true ∈ ℓ2(2) 6= ∅. Thus, there is no witness for ¬ϕ2 in u. However, adding
an arbitrary letter to u turns it into an informative prefix and allows ℓ2 to be
extended to a witness for ¬ϕ2.

4While the ideas presented below can also be developed in the version of LTL defined in Section 2
(as done for example in [Eisner et al. 2003]), we follow [Kupferman and Vardi 2001] to simplify
the presentation.
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—Consider ϕ3 = G(p ∨ F false) and u = pq. As ϕ3 is equivalent to Gp, u is still
a bad prefix for ϕ3. Note, ¬ϕ2 = F (¬p ∧ Gtrue). Now, having Gtrue as a
subformula in some possible witness ℓ3(i) requires Gtrue to be in any ℓ3(j) for
j ≥ i, as true cannot be falsified of any position of u. Thus, while u is a bad prefix
showing that ϕ3 does not hold for any continuation of u, there is no continuation
of u that is informative.

The example shows that the notion of informativeness for a property ϕ depends
on the syntactical representation of ϕ. The example further highlights that check-
ing for informative prefixes is closely related to the tableau-based [Lichtenstein and
Pnueli 1985] and alternating-automata-based approach to model checking LTL for-
mulae [Vardi 1996]: The witness ℓ for some formula ¬ϕ in u can be considered as
a finite accepting tableaux for ¬ϕ, in the sense of [Lichtenstein and Pnueli 1985].
In [Kupferman and Vardi 2001], the notion of informativeness is used to classify

safety properties into three distinct safety levels. A safety property ϕ ∈ LTL is
intentional safety, if all its bad prefixes are informative, it is accidental safety, if
every word that violates ϕ has an informative prefix, and pathological safety, if
there is a word that violates ϕ which has no informative prefix.
For example, Gp is intentional safety, G(p ∨ X false) is accidental safety, and

G(p ∨ F false) is pathological safety. All three formulae are equivalent, i.e., they
accept the same set of models. Interestingly, [Eisner et al. 2003] gives a semantical
characterisation of informative prefixes in terms of a weak semantics of LTL on finite
traces—however for the discussion to come, we stick to the syntactical presentation.
See [Bauer et al. 2008] for further details.
Obviously, the notions introduced before can be dualised towards the notion of

co-informative prefixes with mappings that are witnesses of why a property ϕ is
satisfied by considering informative prefixes of ¬ϕ. Thus, the discussion based on
bad and good prefixes can be reconsidered in terms informative and co-informative
prefixes.

Discussion. In the setting of safety properties, one might argue that the user of a
monitor generation tool should only be allowed to generate monitors for intentional
safety properties and not also for accidental or pathological safety properties. Then,
of course, monitors identifying only informative prefixes suffice to report all bad
prefixes. However, while [Kupferman and Vardi 2001] provides a decision procedure
for checking whether a formula is intentional safety, no conversion algorithm from
non-intentional to intentional safety formulae is given. For a user of a monitor
generation tool, it might be interesting to learn that the property to monitor is
not intentional safety. However, it might be too hard and cumbersome for the
user to carry out a translation manually—and not necessary when following our
construction. Then the only downside may be that when reporting a bad but not
informative prefix to a user, it could be harder to understand why the prefix is
indeed bad.
The monitor synthesis algorithms [Geilen 2001] and [H̊akansson et al. 2003] follow

a tableau-style approach for checking violations of LTL (safety) properties. More
specifically, these procedures will report informative bad prefixes (as stated explic-
itly in [Geilen 2001] and implicitly in [H̊akansson et al. 2003]). In [Kupferman and
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Vardi 2001], the authors suggest that one could search for an informative prefix for
ϕ as well as the negation of ϕ.
Because of Remark 3.10 (and its implicit dual), such a search procedure would

stop upon either some good or bad prefix—however, these prefixes have to be
informative at the same time. Hence, in all the above mentioned approaches, it
is possible that, for example, a bad prefix is examined, meaning the property to
monitor is not satisfied, yet the word is not reported because it is not informative.
This may be because it is not informative “so far” or because there is not even any
informative extension.
Monitors checking exclusively for informative bad prefixes, e.g. as in [d’Amorim

and Rosu 2005], are very useful in many practical settings. Such a monitor reports
the violation of a given property—and by using the negation of the property in
question, one can as well check for the satisfaction of the property. This is sufficient
in many application scenarios and might be the most efficient solution in these cases.
However, we believe that using bad prefixes instead of informative bad prefixes (and
their duals) is an advantage in its own right, since bad prefixes allow our monitors
to report—in contrast to informative bad prefixes—a property violation as early as
possible.
Likewise, using two monitors, one checking for a bad prefix (based on the prop-

erty) itself and another one for a good prefix (based on the formula’s negations), it
is possible to check for the satisfaction and violation of a given property as the same
time and report results as early as possible. However, we want to point out that
our combined monitors are smaller than the two underlying NFAs, as discussed in
Section 2.5, unless these are minimised by sophisticated and expensive algorithms.
Thus, our procedure provides an efficient alternative if satisfaction and violation
need to be monitored at the same time.

4. THREE-VALUED LTL IN THE REAL-TIME SETTING—TLTL

Especially for embedded, safety critical systems it is important to check real-time
properties. For such systems, one distinguishes between event-triggered and time-
triggered systems [Kopetz 1991]. In this section, we consider runtime verification for
event-triggered real-time systems emitting events at dedicated time points. Thus,
for monitoring, we may observe a sequence of events ranging over some alphabet
Σ paired together with a time stamp (a real value), identifying when exactly the
event happened. Thus, the behaviour of the system under scrutiny is described by
an (in)finite timed word over the alphabet Σ× R

≥0.
Note that in the discrete-time setting of LTL, we considered (sequences of) sys-

tem states defined by Boolean combinations of atomic propositions, while here, we
deal with systems emitting events at dedicated time points. We prefer this event-
based approach in the real-time case, since otherwise one would have to deal with
certain ambiguities: If one specifies that within 5 time units both propositions a
and b must evaluate to true, the question arises, whether a and b are required to
be true at the same point in time or not. If one is indeed interested in expressing
that a ∧ b must become true within 5 time units, then the semantics of the under-
lying logic must support the timed observation of such Boolean combinations of
propositions—requiring a more complicated logic as starting point. By following
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an event-based approach, we avoid these issues entirely. Moreover, one can still
express a proposition-based property within the event-based framework by intro-
ducing an event for each change of the relevant Boolean formulae. Therefore, we
do not consider the proposition-based approach in this section.5

A logic suitable for expressing properties of such timed words is timed lineartime
temporal logic (TLTL), which is a timed variant of LTL, originally introduced by
Raskin in [Raskin 1999]. TLTL, as argued by D’Souza [D’Souza 2003], can be
considered a natural counterpart of LTL in the timed setting. Consequently, our
developments in this section deal with TLTL specifications.
TLTL is very well suited for expressing simple yet typical time-bounded response

properties, such as requiring that an event a occurs in three time units.
In LTL, such a property is typically expressed as the formula ϕ ≡ XXXa.

However, this formulation presumes a direct correspondence of discrete time delays
with subsequent positions in the word. But in most cases, a specification such as
XXXa occurs if one would like to express that the event a should occur after three
time units regardless how many other events have occurred in between.
A main feature of TLTL is that it does not impose any mutual dependency

between the frequency of the occurring events on the one hand side and the corre-
sponding time stamps on the other hand. This renders TLTL especially suitable to
specify properties of asynchronous systems.
We follow again the three-valued semantics motivated in the LTL section: This

is the main difference to existing approaches of checking realtime properties as, for
example, for Metric-interval Temporal Logic in [Thati and Rosu 2005] or in RulerR
[Barringer et al. 2007] and Eagle [Barringer et al. 2004].
We give a detailed outline of this section:

—Preliminaries (Section 4.1). We start out with timed words (Definition 4.1, fol-
lowing [Alur and Dill 1994]) where each event is associated with a non-negative
and strictly monotone increasing time-stamp. Such timed words give rise to the
definition of recording and predicting clocks which report, respectively, the time
elapsed since the last occurrence of some event, and the time it will take un-
til some event occurs for the next time. The evaluation rules for these clocks
are given in terms of clock evaluation functions (Definition 4.2 [D’Souza 2003])
which determine the values of all clocks at the time of a corresponding event.
This definition plays a crucial role for the TLTL semantics, as introduced later
(Definition 4.12). But before we describe the TLTL semantics, we discuss the
clock valuation function and its consequences: Most notable, the clock evalua-
tion function associated with some event, does not depend on the current event
but only on the current time stamp and on past and future events—ignoring the
current event (Remark 4.3). In particular, if the current event is a, then the
recording as well as the predicting clock for a refer, respectively, to the last pre-
ceding and first subsequent occurrence of a. This appears to be a natural choice
in order to maximise the information available at each current time instant while

5In contrast to TLTL, we presented LTL with a proposition-based alphabet in order to follow in
both cases the most common form of presentation. Alternatively, we could have defined LTL in
terms of events as well, because—in case of LTL—choosing either events or propositions is mostly
a matter of notational convenience.
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it does not impose any further complications in case of infinite words. However,
as we will see, in case of finite words which are evaluated incrementally, this
choice bears a number of technical issues.
The constraints on the future expressed by predicting clocks make a symbolic
representation of clock valuation functions necessary. To support such a sym-
bolic representation, we first state the non-coincidence and continuity proper-
ties of clock valuation functions and describe some notation on clock valuation
functions (Proposition 4.4). By not enforcing the non-coincidence property on
clock valuation functions, one can relax the strict monotonicity of timed words
to monotonicity (Remark 4.5). Then we recall intervals suitable to represent
ranges of clock valuations (Definition 4.6 [D’Souza 2003]): These intervals can
be closed, half-open, open, or identical to ⊥—indicating that the corresponding
event never occurred in the past or will never occur in the future—whereas ∞
is indicating that the event will occur eventually. Using intervals, we introduce
clock constraints (Definitions 4.7 and 4.8) as foundation for symbolic evaluation
needed later. A clock constraint associates with each recording and predicting
clock an interval of possible evaluations. We state a number of further properties
of clock constraints which we will use in the subsequent proofs (Remark 4.9 and
Fact 4.10).
The material of Section 4.1 takes [Alur and Dill 1994] and [D’Souza 2003] as
starting point to develop suitable definitions of clock constraints (Definitions 4.7
and 4.8) and a number of immediate properties (Remark 4.3, Proposition 4.4,
Remark 4.9, and Fact 4.10) which are presumably all well-known, even if not
stated explicitly in the literature.

—Syntax and Semantics of TLTL3 (Section 4.2). We recall standard TLTL syntax
and semantics (Definitions 4.11 and 4.12) according to [D’Souza 2003] and present
some TLTL properties (Example 4.13). Following the same rationale as for LTL3,
we introduce a three-valued semantics TLTL3 for evaluating standard TLTL
formulae on finite timed words (Definition 4.14). We discuss the evaluation rules
of TLTL3 (Example 4.15) using the same properties as before in Example 4.13.

—Monitor Construction for TLTL3 (Sections 4.3 throughout 4.6). In Section 4.3,
we continue with a detailed overview on the now more involved monitor con-
struction, which includes symbolic runs for event-clock automata (Section 4.4),
emptiness check for symbolic states (Section 4.5), and the monitor procedure itself
(Section 4.6).

—Platform Adaption (Section 4.7). We conclude the real-time case on issues arising
in adapting our monitor construction to specific platforms.

4.1 Preliminaries

Let us fix an alphabet Σ of events for the rest of this section. In the timed setting,
the occurrence of every event a ∈ Σ is associated with a corresponding time stamp
and therefore a timed word is a sequence (a0, t0)(a1, t1) . . . of timed events (Σ ×
R

≥0):

Definition 4.1 (Timed Word [Alur and Dill 1994]) An (infinite) timed word
w over the alphabet Σ is an (infinite) sequence (a0, t0)(a1, t1) . . . of timed events
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(ai, ti) consisting of symbols ai ∈ Σ, and non-negative numbers ti ∈ R
≥0, such that

—for each i ∈ N, ti < ti+1 holds ( strict monotonicity), and such that,

—in case of infinite words, for all t ∈ R
≥0 there exists an i ∈ N with ti > t

(progress).

Please note, that strict monotonicity can be relaxed to monotonicity, as discussed
in Remark 4.5. But aside from this discussion on the difference in handling strictly
monotone and monotone timed words, we always refer to the strict case. The length
of a timed word is denoted by |w| where we set |w| = ∞ for an infinite word and
|w| = n for a finite word w = (a0, t0) . . . (an−1, tn−1).
To simplify notation, we abbreviate (Σ × R

≥0) by TΣ . Further, we define TΣ ∗

and TΣω as the set of finite and infinite timed words, respectively, i.e., every word
in TΣ ∗ satisfies strict monotonicity and every word in TΣω satisfies both, strict
monotonicity and progress.
We use finite and infinite continuations of finite timed words throughout the

section. Thereby, the strict monotonicity of timed words is required to hold, i.e.,
for a finite timed word u = (a0, t0) . . . (ai, ti) ∈ TΣ ∗, we consider only those timed
words as continuations which start with a timed event (ai+1, ti+1) such that ti+1 >
ti holds.
Furthermore, for w as above, we call its sequence of events the untimed word of

w, denoted by ut(w) = a0a1 . . . and we write ut(L) = {ut(w) | w ∈ L} for a finite
or infinite timed language with L ⊆ TΣ ∗ or L ⊆ TΣω, respectively.
Every event a ∈ Σ is associated with an event-recording clock, xa, and an event-

predicting clock, ya. Given an (infinite) timed word w, the value of the event-
recording clock variable xa at position i of w equals ti−tj , where j is the last position
preceding i such that aj = a. If no such position exists, then xa is assigned the
undefined value, denoted by ⊥. The event-predicting clock variable ya at position
i equals tk − ti, where k is the next position after i such that ak = a. If no such
position exists, again, the variable is assigned ⊥.
We compute the values of event-recording and event-predicting clocks with the

following two functions which take a timed word w = (a0, t0)(a1, t1) · · · ∈ TΣ ∗ ∪
TΣω, an event a ∈ Σ, and an index i as arguments:

last(w, a, i) = ti − tj iff aj = a and 0 ≤ j < i
and ak 6= a for all j < k < i

last(w, a, i) = ⊥ iff aj 6= a for all 0 ≤ j < i
next(w, a, i) = tj − ti iff aj = a and i < j < |w|

and ak 6= a for all i < k < j
next(w, a, i) = ⊥ iff aj 6= a for all i < j < |w|

For the set of all event-clocks CΣ = {xa, ya | a ∈ Σ}, we summarise these evaluation
rules with the next definition:

Definition 4.2 (Clock Valuation Function [D’Souza 2003]) The clock valu-
ation function γi over the timed word w = (a0, t0)(a1, t1) · · · ∈ TΣ ∗ ∪ TΣω is a
map CΣ → T⊥ with T⊥ = R

≥0 ∪ {⊥} which assigns—corresponding to position i
in w—a positive real or the undefined value ⊥ to each clock variable such that the
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following holds:

γi(xa) = last(w, a, i)
γi(ya) = next(w, a, i)

The set of clock valuation functions over the clocks CΣ is denoted by VΣ (i.e., each
γ ∈ VΣ is induced by some timed word).

Thus, γi describes the evaluation of the clocks in CΣ at time ti—but it ignores
the event ai: γi(xai

) = last(w, ai, i) does not evaluate to 0 but refers to the ultimate
occurrence of ai (if no such occurrence exists, then γi(xai

) = ⊥). Likewise γi(yai
) =

next(w, ai, i) does not evaluate to 0 but refers to the next future occurrence of ai
(analogously, if no such occurrence exists, then γi(yai

) = ⊥). Therefore, at the time
ti when the event ai occurs, we refer to the last past and the next future occurrence
of ai and ignore its current occurrence:

Remark 4.3 (Blind Spot of Clock Valuation Functions) For a timed word
w = (a0, t0)(a1, t1) · · · ∈ TΣ ∗ ∪ TΣω and a corresponding sequence of clock valua-
tion functions γ0, γ1, . . . , note that each γi describes the time distances to the last
preceding and next subsequent events relative to time instant ti—but it is indepen-
dent from the current event ai.

Definition 4.2 leads to the following initial clock valuation γ0 which holds before
the first timed event (a0, t0) has been processed:

—γ0(xa) = ⊥ for all xa, and

—γ0(ya) = next(w, a, 0).

Thus, even the initial clock valuation function γ0 (as well as every subsequent
clock valuation function γi) depends on the entire word w because γ0(ya) = ⊥ holds
iff a does not occur in w at all. In the context of runtime verification, this causes
a problem, since a monitor observing a running system is unable to access future
events—and consequently—it cannot evaluate the clock valuation function. To han-
dle this problem, we introduce in Section 4.4 symbolic timed runs (Definition 4.28).
While their technical definition is somewhat involved, the basic idea behind their
construction is straightforward: Instead of relying on precise information on the
timing of future events, symbolic timed runs use constraints on the permissible tim-
ing of these future events. The runtime monitor maintains these constraints by
advancing the time, incorporating transition guards, and adding information on
occurred events. If the constraints become infeasible, then some timing constraint
has been violated—while otherwise, there still exists a (time-wise) consistent con-
tinuation.
Clock valuation functions are defined with respect to a timed word and hence

the strict monotonicity property and the infinite length of timed words imply the
following two properties upon valid clock valuation functions:

Proposition 4.4 (Properties of Clock Valuation Functions) Let γ ∈ VΣ be
a clock valuation function over the clocks CΣ. Then the following two conditions
hold:
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(a) Non-Coincidence. For all clocks c ∈ CΣ and for all pairs of events a 6= a′ ∈ Σ,
γ(xa) 6= ⊥ implies γ(xa) 6= γ(xa′) and γ(ya) 6= ⊥ implies γ(ya) 6= γ(ya′).

(b) Continuity. If γ refers to an infinite timed word, then there exists at least one
clock ya ∈ CΣ such that γ(ya) 6= ⊥ holds.

Proof. Property (a), non-coincidence, holds since there exist no two events
(ai, ti)(ai+1, ti+1) with ti = ti+1 (given the strict monotonicity of the underlying
word). Property (b), continuity, holds since the corresponding infinite word has an
infinite supply of events (given the progress property of the underlying word).

Remark 4.5 (Relaxing Strict Monotonicity) In Definition 4.1, we imposed
strict monotonicity on timed words. However, it is possible to relax the strict mono-
tonicity requirement to monotonicity, i.e., to require ti ≤ ti+1 instead of ti < ti+1

for all i ∈ N. This holds true, since we do not rely on strict monotonicity but
only preserve it—by means of the non-coincidence property of clock valuations as
described in Proposition 4.4.
To shift our approach from strict monotonicity to monotonicity, one needs to

drop the non-coincidence requirement in all checks for some γ ∈ VΣ. Besides
frequent occurrences in our proofs, such a check only occurs once in the final con-
struction (we give the forward reference to avoid dispersing information on the issue
throughout the paper): In step 3 of the procedure symb step (Fig. 9 on page 43), we
check for γ ∈ VΣ with γ |= Γi and γ |= ψ. If one wants to preserve strict mono-
tonicity, one needs to check whether there exists a non-coincident and continuous γ
satisfying γ |= Γi and γ |= ψ—and if one wants to preserve simple monotonicity,
one needs to check only whether there exists a continuous solution γ satisfying the
same condition γ |= Γi and γ |= ψ.

We use the following notation to manipulate a clock valuation function γ ∈ VΣ:

—For a clock c ∈ CΣ and a value v ∈ T⊥ = R
≥0∪{⊥} we define γ[c = v] ∈ VΣ with

γ[c = v](c′) = γ(c′) iff c′ 6= c
γ[c = v](c′) = v iff c′ = c

—For δ ∈ R
≥0, we define

(γ ± δ)(xa) = γ(xa)± δ iff γ(xa) 6= ⊥
(γ ± δ)(xa) = ⊥ iff γ(xa) = ⊥
(γ ± δ)(ya) = γ(ya)∓ δ iff γ(ya) 6= ⊥
(γ ± δ)(ya) = ⊥ iff γ(ya) = ⊥

where we require γ(ya) ≥ δ for all event-predicting clocks ya in case of γ + δ and
γ(xa) ≥ δ for all event-recording clocks xa in case of γ − δ. Otherwise γ ± δ is
invalid.

To constrain the value of a clock at a certain point in time, i.e., to constrain the
valuations of a γi, we need to formulate constraints over T⊥. To do so, we define the
set I to encompass the intervals over the positive reals R≥0 with integral boundary
values and the singleton {⊥}.
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Definition 4.6 (Intervals [D’Souza 2003]) The set I of intervals contains all
intervals of the form [(l, r)] where [( and )] either be ( or [, respectively ) or ] and
with l, r ∈ N and l < r except for intervals of the form [l, r] where we require l ≤ r
instead. I also contains all intervals of the form [(l,∞) for l ∈ N. These intervals
are interpreted as subsets from R

≥0 in the usual way.
Furthermore, I contains the interval [⊥,⊥] with [⊥,⊥] = {⊥}.

For the sake of simplicity, we sometimes write the value t for an interval [t, t],
as below in the definition of clock constraints: Each clock constraint ΨΣ over the
clocks in CΣ requires a subset of clocks in CΣ to assume corresponding values in a
respective interval I ∈ I.

Definition 4.7 (Clock Constraint) Let Σ be a finite alphabet of events with the
associated set CΣ of clocks. Then a clock constraint is a partial function ψ : CΣ →
I. If ψ(c) is undefined, we write ψ(c) = undef.
A clock valuation function γ ∈ VΣ over the clocks CΣ satisfies a clock constraint

ψ, iff γ(c) ∈ ψ(c) holds for all c ∈ CΣ with ψ(c) 6= undef. Then we write γ |= ψ.

Thus, if ψ(c) = undef for a clock c ∈ CΣ, then ψ does not constrain the value
of c, i.e., the value γ(c) for the clock c of a clock valuation γ with γ |= ψ can be
chosen arbitrarily.
We define the set of constraints ΨΣ to contain only the satisfiable constraints

which meet Proposition 4.4: Every clock valuation function must satisfy non-
coincidence and continuity—and hence each clock constraint ψ ∈ ΨΣ must allow a
non-coincident and continuous clock valuation function as solution:

Definition 4.8 (Set of Clock Constraints) The set of clock constraints on the
clocks CΣ is denoted by ΨΣ and contains all clock constraints ψ which have a non-
coincident and continuous solution.

The reason for using intervals in the definition of the clock constraints is twofold:
First, we can use them for the definition of both, TLTL and the corresponding
automaton model, i.e., event-clock automata. And second, we use the fact that ΨΣ

is closed under conjunction for an efficient scheme to symbolically execute event-
clock automata:

Remark 4.9 (Conjunction of Clock Constraints) If the two clock constraints
ψ0, ψ1 ∈ ΨΣ are consistent, i.e., there exists a clock valuation function γ ∈ VΣ such
that γ |= ψi for i = 0, 1, then their conjunction ψ = ψ0 ∧ ψ1 is defined with

ψ(c) = ψ0(c) ∩ ψ1(c) iff ψi(c) 6= undef for i = 0, 1
ψ(c) = ψi(c) iff ψi(c) 6= undef

and ψ1−i(c) = undef
ψ(c) = undef iff ψi(c) = undef for i = 0, 1

Above, we require γ |= ψi for i = 0, 1 in order to ensure ψ0 ∧ ψ1 to be defined
and valid—since then γ |= (ψ0 ∧ψ1) holds and ψ0 ∧ψ1 has indeed a non-coincident
and continuous solution.
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We use the notation ψ[c = I] for ψ ∈ ΨΣ, c ∈ CΣ, and I ∈ I, to denote the clock
constraint which agrees with ψ for all clocks c′ 6= c and yields I for c. Hence we
have ψ[c = I](c′) = ψ(c′) for c′ 6= c and ψ[c = I](c) = I. Analogously, ψ[c = undef]
is undefined for c and agrees with ψ for all other clocks c′ 6= c. Finally, ψ + δ with
δ ∈ R

≥0 is defined as

(ψ + δ)(xa) = [(l + δ, r + δ)] iff ψ(xa) = [(l, r)]
(ψ + δ)(xa) = ψ(xa) iff ψ(xa) ∈ {[⊥,⊥] , undef}
(ψ + δ)(ya) = [(l−̇δ, r − δ)] iff ψ(ya) = [(l, r)]
(ψ + δ)(ya) = ψ(ya) iff ψ(ya) ∈ {[⊥,⊥] , undef}

where we use a−̇b = max{0, a − b} and where we require that no interval (ψ +
δ)(ya) = [(l−̇δ, r − δ)] becomes empty. Otherwise, if at least one interval becomes
empty, ψ + δ is invalid .
In what follows, we use some basic relationships between clock valuation function

and clock constraints:

Fact 4.10 (Clock Valuation Functions & Constraints) Let γ ∈ VΣ be a clock
valuation function and let ψ ∈ ΨΣ be a clock constraint such that γ |= ψ holds.

(a) If γ + δ is valid, then ψ + δ is valid as well and γ + δ |= ψ + δ holds.

(b) For a clock c ∈ CΣ and a value v ∈ T⊥ with v ∈ I for some interval I ∈ I,
γ[c = v] |= ψ[c = I] holds.

(c) For a clock c ∈ CΣ and an arbitrary value v ∈ T⊥ γ[c = v] |= ψ[c = undef]
holds.

4.2 Syntax and Semantics of TLTL3

For a finite set Σ of events, we introduce the formulae of TLTL by adding to LTL
two new forms of atomic formulae: First, �a ∈ I asserts that the time since a ∈ Σ
has occurred the last time lies within the interval I ∈ I. And second, �a ∈ I
analogously asserts that the time until a occurs again lies within I. The semantics
of �a ∈ I is that γ(xa) ∈ I must hold at the point of evaluation, and analogously,
in case of �a ∈ I, it is required that γ(ya) ∈ I holds. This timed variant of LTL is
taken from [D’Souza 2003] where it is called LTLec.

Definition 4.11 (TLTL Formulae [D’Souza 2003]) The set of formulae ϕ of
TLTL is defined by the grammar

ϕ ::= true | a | �a ∈ I | �a ∈ I | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ,

for a ∈ Σ and I ∈ I.

Again, as in the discrete-time case, we use three abbreviations in our notation:
ϕ∧ψ for ¬(¬ϕ∨¬ψ), Fϕ for true U ϕ, and Gϕ for ¬(true U ¬ϕ). Additionally, we
write �a /∈ I for ¬(�a ∈ I) and �a /∈ I for ¬(�a ∈ I) respectively. The semantics
of the untimed operators of TLTL formulae is defined as it is for (discrete time)
LTL. By adding the semantics for �a ∈ I and �a ∈ I, we obtain an inductive
definition of the semantics of TLTL over infinite timed words:
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Definition 4.12 (Semantics of TLTL [D’Souza 2003]) Let w ∈ TΣω be an
infinite timed word with w = (a0, t0)(a1, t1) . . . , and let i ∈ N

≥0. Then the following
holds:

w, i |= true
w, i |= ¬ϕ iff w, i 6|= ϕ
w, i |= a iff ai = a
w, i |= �a ∈ I iff γi(xa) ∈ I
w, i |= �a ∈ I iff γi(ya) ∈ I
w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2

w, i |= ϕ1Uϕ2 iff ∃k ≥ i with w, k |= ϕ2

and ∀l : (i ≤ l < k ∧ w, l |= ϕ1)
w, i |= Xϕ iff w, i + 1 |= ϕ

Finally, we set w |= ϕ iff w, 0 |= ϕ.

To illustrate the definition of the syntax and the semantics of TLTL, we give
some example properties.

Example 4.13 (TLTL properties)

—G(¬alive→ �alive ∈ [0, 5]) means that whenever some event different from alive
occurs, then the event alive must occur within 5 time units again. Note that this
example does allow a sequence . . . , (alive, ti)(alive, ti+1) . . . with ti+1 − ti > 5,
i.e., two adjacent occurrences of alive may be separated by an arbitrary period of
time. Note that we could substitute the interval [0, 5] by (0, 5] without affecting the
meaning of the formula, since no clock can measure a zero distance to a previous
or upcoming event.

—G(�alive ∈ [0, 5]) requires that from every given point in time, alive will occur
within the next 5 time units. In contrast to the preceding example, in this case
the subword . . . , (alive, ti)(alive, ti+1) . . . with ti+1 − ti > 5 is ruled out, since
γi(yalive) = ti+1 − ti is required to be within [0, 5].

—G(req → �ack ∈ [0, 5]) means that if a request event req arrives, then it must be
handled with an acknowledge event ack within 5 time units.

—�alive ∈ [0, 2]Udone states that the event done has to occur eventually and that
until then, the event alive must occur every 2 time units.

—G(req → �req /∈ [0, 5]) requires that two subsequent request events req are sepa-
rated by strictly more than 5 time units.

—G(actuator → �error ∈ [⊥,⊥]) states that if an actuator event occurs, then pre-
viously, no error has occurred (therefore, we could equivalently write G(error →
G¬actuator) in standard LTL).

—In our last example we consider a more involved property: Assume that a first
request r1 must be complemented by a second request r2, before it is acknowledged
with a reply ack. Assume moreover that the first request r1 has to be answered
within less than 2 time units and that the acknowledgement ack has to be sent
out more than 1 time unit after the second request r2. Allowing arbitrary and
inconsequential intermediate events w at any time, we arrive at the following
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property:

ϕ = G
(

r1 →
(

�ack ∈ [0, 2) ∧X
(

wU (r2 ∧�ack ∈ (1,∞) ∧X (wUack ))
)

))

Analogously to the discrete-time case, we now define a 3-valued semantics for
TLTL, yielding the logic TLTL3.

Definition 4.14 (Semantics of TLTL3) Let u ∈ TΣ∗ be a finite timed word.
The truth value of a TLTL3 formula ϕ with respect to u, denoted by [u |= ϕ], is an
element of B3 and defined as follows:

[u |= ϕ] =











⊤ if ∀σ such that uσ ∈ TΣω uσ |= ϕ

⊥ if ∀σ such that uσ ∈ TΣω uσ 6|= ϕ

? otherwise.

In the above definition, the truth value of every possible infinite continuation σ
of a given finite timed word u is evaluated according to TLTL-semantics. Since σ
is a continuation of u = (a0, t0) . . . (ai, ti), we only have to consider those infinite
words σ which start with a timed event (ai+1, ti+1) such that ti+1 > ti holds.

Example 4.15 (TLTL3 Evaluation) To illustrate the three-valued semantics, we
discuss the evaluation of several properties from Example 4.13:

—G(¬alive → �alive ∈ [0, 5]) evaluates always to ⊤ if Σ = {alive} holds. If Σ
contains any other element, then the TLTL3-semantics yields either ⊥ or ?: If
an event a 6= alive occurred and alive did not occur within 5 time units, then the
semantics evaluates to ⊥. Otherwise, the result is ?.

—G(�alive ∈ [0, 5]) evaluates either to ⊥ or ? again. If the evaluated finite prefix
u contains a period of time which is longer than 5 time units and which does not
contain a alive action, then the result is ⊥. Otherwise, it is ?.

—G(req → �ack ∈ [0, 5]) yields ⊥ if there occurs a req event which is not followed
by an ack event within 5 time units. Otherwise the result is ?.

—�alive ∈ [0, 2]Udone evaluates to ? if done has not occurred so far while two sub-
sequent occurrences of alive have never been separated by more than 2 time units.
If done occurred already and alive has been signalled on time beforehand, then
the formula evaluates to ⊤. Finally, if there are two subsequent occurrences of
alive which are separated by strictly more than 2 time units before done occurred,
then the formula evaluates to ⊥.

—Consider the property ϕ relating r1, r2, and ack with

ϕ = G
(

r1 →
(

�ack ∈ [0, 2) ∧X
(

wU (r2 ∧�ack ∈ (1,∞) ∧X (wUack ))
)

))

and observe that ϕ evaluates to ⊥ if there is a request r1 which is not answered
in time by a subsequent request r2 and an acknowledgement ack: In particular,
the timing fails, if (a) more than 1 time unit passes between r1 and r2, (b) at
least 2 time units pass between r1 and ack, or (c) not more than 1 time unit
passes between r2 and ack. The conditions (b) and (c) correspond directly to
the expressions �ack ∈ [0, 2) and �ack ∈ (1,∞) respectively. Condition (a) is a
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consequence of (b) and (c): If r2 occurs at least 1 time unit after r1, then every
ack respecting (b) must violate (c) and vice versa.

Importantly, the semantics of TLTL3 require that we detect a constraint violation
in case of (a) even before processing ack when the constraint violation becomes
obvious. Otherwise ϕ is evaluated to ?.

4.3 Overview on TLTL3 Monitoring

In this section, we outline our monitor construction for TLTL3 which we make
concrete in the subsequent sections. To build a monitor Mϕ for a given TLTL3-
property ϕ, we follow roughly the approach taken in the discrete-time case. Thus,
we look for a procedure to determine whether there exists an accepting and/or
rejecting infinite continuation of a given finite prefix. To obtain such a procedure
from a TLTL3-property ϕ, we generate for ϕ and its negation ¬ϕ the two event-
clock automata Aϕ

ec and A¬ϕ
ec [Raskin and Schobbens 1999]. These two automata

accept the timed words satisfying and respectively violating ϕ. Then, following the
concepts of the discrete-time case, we run both of them in parallel in order to check
whether there exist infinite continuations which let Aϕ

ec and/or A¬ϕ
ec accept.

However, in contrast to the discrete-time setting, this procedure has to deal with
predicting clocks and has to use a more complex emptiness check. Both issues are
addressed separately in Sections 4.4 and 4.5, respectively. Then in Section 4.6,
having suitable techniques at hand, we build the final monitor, following closely
the scheme used in the discrete-time setting.
Let us give a comprehensive outline of our construction:

—Symbolic Runs of Event-Clock Automata (Section 4.4). As starting point for the
monitoring procedure, we recall the Definition of event-clock automata and their
timed runs (Definitions 4.16 and 4.17, respectively, following [Alur et al. 1999])
over infinite words as suitable automaton model for TLTL (Theorem 4.18 [Raskin
and Schobbens 1999]). In these timed runs, predicting clocks anticipate the time
until some event occurs the next time in the future. Given a fixed infinite timed
word, such an approach does not impose a problem; however, having only access
to a finite prefix of a subsequently continued timed word, it is not possible to
evaluate predicting clocks directly. Instead, our monitor executes the event-clock
automaton symbolically by maintaining pairs of automaton states and symbolic
clock valuations (Definition 4.20) which describe the viable values for each pre-
dicting clock as clock constraint. Standard timed runs involve more than one
event in each transition, and therefore we cannot develop an incremental sym-
bolic execution directly upon timed runs. Consequently we introduce incremental
timed runs (Definition 4.24) as an equivalent alternative (Proposition 4.25).

Based on incremental timed runs, we develop a procedure to implement a transi-
tion symbolically (Figure 9) and prove that this procedure is indeed abstracting
all concrete transitions (Lemma 4.31). Next, we define symbolic timed runs
(Definition 4.28) of event-clock automata. These symbolic timed runs are not re-
quiring any information beyond the currently known finite prefix of the observed
timed word (Remark 4.30) and are therefore a suitable means for runtime veri-
fication. Then we prove that every timed run is abstracted by a corresponding
symbolic timed run (Lemma 4.31).
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It would remain to show the converse, i.e., that every symbolic timed run is con-
cretised by a corresponding timed run. However, this is not the case as there are
spurious symbolic timed runs which cannot be concretised (Proposition 4.32).
But we can use a backward simulation argument to show that every individual
symbolic transition has a corresponding concrete transition (Lemma 4.33). Ap-
plying such backward steps inductively, we can concretise a symbolic run to a
finite concrete timed run (Lemma 4.34).

At this point, we can prove that, given an infinite timed word, every symbolic
timed run over some finite prefix of the given word can be concretised and con-
tinued by an ordinary infinite timed run iff there exists a timed run over the
concatenated infinite word (Theorem 4.35). This leads directly to a criterion
for runtime verification (Corollary 4.36): Given a finite prefix of a timed word,
this prefix can be continued into an accepted word iff there exists a symbolic
timed run leading to a state and a symbolic clock valuation which gives rise to a
non-empty language.

—Emptiness Check for Symbolic States (Section 4.5). Thus, after reading a finite
timed word, we have a pair with a state of the original event-clock automaton
and a symbolic clock valuation describing the viable valuations of each predicting
clock. Now we have to check whether there exists an infinite timed word which
continues the given prefix and which leads the automaton to acceptance. Starting
with general quotient automata (Definition 4.37) which work with any time-
abstract bisimulation relation (Definition 4.38, [Tripakis and Yovine 2001]), and
the emptiness check based upon such automata (Theorem 4.39, [Alur and Dill
1994]), we obtain a look-up table which answers the question whether a pair
consisting of a state and a bisimulation equivalence class has an empty language
or not. To use this look-up table, we express symbolic clock valuations as the
union of a set of equivalence classes of the underlying time-abstract bisimulation
(following the condition given in Corollary 4.40). Finally, we recall the region
equivalence for event-clock automata [Alur et al. 1993; Alur and Dill 1994] as
one particular instance of a bisimulation relation and show how to compute a
set of regions which covers a given symbolic clock valuation. Note that the zone
equivalence as used in model checking tools for timed systems such as Uppaal
[Bengtsson et al. 1996; Behrmann et al. 2006] does not yield a bisimulation and
is thus inapplicable in our setting.

—A Monitor Procedure for TLTL3 (Section 4.6). As in the discrete-time setting,
given a property ϕ we run two automata in parallel, namely one for ϕ and another
one for ¬ϕ. We symbolically execute the event-clock automaton Aϕ

ec and check
the emptiness for each reached pair consisting of a state and a symbolic clock
valuation. In parallel, we do the same with the automaton A¬ϕ

ec corresponding to
the negated property ¬ϕ. Then we combine the results of these two evaluations
following directly the semantics of TLTL3 to obtain the final verdict.

4.4 Symbolic Runs of Event-Clock Automata

We first recall event-clock automata as the automata model suitable to match
TLTL-properties: For a given finite alphabet Σ and a corresponding set CΣ of
clocks, an event-clock automaton is a finite state automaton whose edges are anno-

ACM Transactions on Software Engineering and Methodology, Vol. x, No. y, mm 20yy.



Bauer et al.: RV for LTL and TLTL · 37

tated both with input symbols from Σ and with clock constraints from ΨΣ. Intu-
itively, such an edge is enabled after reading some timed word, if the corresponding
clock valuation function satisfies the clock constraint of the respective edge.

Definition 4.16 (Event-Clock Automaton [Alur et al. 1999]) Let Σ be a fi-
nite alphabet and CΣ the corresponding set of event-recording and event-predicting
clocks. Then an event-clock automaton is defined as Aec = (Σ, Q,Q0, E, F ) with
the following components:

—Q is a finite set of states,

—Q0 ⊆ Q is the set of initial states,

—F ⊆ 2Q is the set of accepting state sets following the generalised Büchi accep-
tance condition, as explained below, and

—E ⊆ Q× Σ×ΨΣ ×Q as the finite set of transitions.

An edge e = (q, a, ψ, q′) represents a transition from state q upon event a to
state q′, where the clock constraint ψ then specifies when e is enabled. A sequence
of pairs consisting of states and clock valuation functions which corresponds to a
sequence of respectively enabled transitions gives rise to a timed run.

Definition 4.17 (Timed Run, following [Alur et al. 1999]) Given an event-
clock automaton Aec = (Σ, Q,Q0, E, F ), a timed run θ of Aec over a timed word
w = (a0, t0)(a1, t1) · · · ∈ TΣω is an infinite sequence of state and clock valuation
pairs (q0, γ0)(q1, γ1) . . . such that

—q0 is an initial state, i.e., q0 ∈ Q0,

—each γi assumes values according to Definition 4.2 (thus γ0 must be initial), and

—there exists a transition (qi, ai, ψ, qi+1) ∈ E with γi |= ψ for all i ≥ 0.

A timed run θ of an automaton Aec over a timed word w ∈ TΣω is called
accepting, iff for each Fi ∈ F , a state q ∈ Fi exists such that q occurs infinitely
often in θ. Finally, a timed word w is accepted by Aec, i.e., w ∈ L(Aec), iff there
exists an accepting run θ of Aec over w. The use of extended Büchi acceptance
condition instead of the standard one is due to the construction given in [Raskin
and Schobbens 1999].

Theorem 4.18 (TLTL to E.-C. Automata [Raskin and Schobbens 1999])
For each TLTL-property ϕ, there exists a constructible event-clock automaton Aϕ

ec

such that L(Aϕ
ec) = {σ ∈ TΣω | σ |= ϕ} holds. In the worst case, Aϕ

ec has exponen-
tial size with respect to the length of ϕ.

Example 4.19 (Event-Clock Automaton) Recall property

ϕ = G
(

r1 →
(

�ack ∈ [0, 2) ∧X
(

wU (r2 ∧�ack ∈ (1,∞) ∧X (wUack ))
)

))

introduced and discussed in Examples 4.13 and 4.15. A corresponding event-clock
automaton Aϕ

ec is given in Figure 7.
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qa qb qc

r2, ack,w w

w

r1[yack < 2] r2[yack > 1]

ack

Fig. 7. Event clock automaton for ϕ from Example 4.19

Because of Theorem 4.18, the question whether—given a timed prefix u and a
TLTL-property ϕ—there exists an accepting infinite continuation σ, i.e., uσ |= ϕ
holds, translates into the question whether a finite run of the event-clock automaton
Aϕ

ec over u is possibly continued into an accepting run or not. Hence, from this
point onwards, we will consider the latter question in order to turn TLTL-properties
into executable monitoring procedures.
In case of runtime verification, transition guards which involve event-predicting

clock variables impose a problem, since the time to the next future occurrence of
an action a is predicted, while this information is not available yet—at least in the
online monitoring approach. We solve this problem by representing the valuation
of predicting clock variables symbolically.
When the automaton takes a transition (qi, ai, ψ, qi+1), then the clock constraint

ψ ∈ ΨΣ either leaves a variable c ∈ CΣ unconstrained (i.e., ψ(c) = undef) or
associates a variable c with an interval I ∈ I (i.e., ψ(c) = I) to require γi(c) ∈ I.
In the course of a symbolic run of an event-clock automaton, we do not know
the actual value of any event-predicting clock and therefore we cannot evaluate any
interval constraint γi(ya) ∈ I which involves an event-predicting clock ya. However,
we can assume that each such clock constraint will be satisfied in the future and add
it to a list of constraints to be checked later on. But instead of maintaining each
such constraint individually, we only maintain their conjunction—which is again a
single clock constraint (see Remark 4.9). Note that a transition is only enabled, if
all constraints on future events resulting from taking the transition are consistent
and satisfiable.
Thus, when we symbolically execute an automaton Aec = (Σ, Q,Q0, E, F ), we

use pairs (q,Γ) with Γ ∈ ΨΣ instead of pairs (q, γ) with γ ∈ VΣ. During such a
symbolic execution, we always know the values of event-recording clocks while we
do not know the values of event-predicting clocks. Hence, the clock constraint Γ
in such a pair (q,Γ) determines a single value for each event-recording clock using
Γ(xa) = [l, l] with l ∈ T⊥. In case of an event-predicting clock, Γ describes the
valid range of values which are consistent with the constraints that occurred so
far. Thus, Γ(ya) is either undefined or evaluates to an arbitrary interval from I.
For event-recording and event-predicting clocks, the interval [⊥,⊥] is allowed in
symbolic clock valuations: It means that the corresponding event either did not
occur in the past or will not occur in the future.

Definition 4.20 (Symbolic Clock Valuation) A symbolic clock valuation is a
clock constraint Γ ∈ ΨΣ where Γ(xa) = [l, l] with l ∈ T⊥ holds for all event-recoding
clocks.
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Intuitively, a clock valuation function γ satisfies a symbolic clock valuation Γ,
i.e., γ |= Γ, iff γ would have satisfied all guards subsumed by Γ during a symbolic
run of the corresponding automaton.
When we symbolically run an event-clock automaton, our algorithm has to main-

tain a set of pairs (q,Γ). This set contains the pairs which are reachable from the
initial set of pairs {(q0,Γ0) | q0 ∈ Q0}. Herein, Γ0 is the initial symbolic clock
valuation:

Definition 4.21 (Initial Symbolic Clock Valuation) A symbolic clock valua-
tion Γ0 over the clocks CΣ is called the initial symbolic clock valuation iff Γ0(xa) =
[⊥,⊥] for all event-recoding clocks xa ∈ CΣ and iff Γ0(ya) = undef for all event-
predicting clocks ya ∈ CΣ.

We want to use symbolic runs in online monitoring—and therefore they must be

computable incrementally, i.e., we need to make transitions of the form (qi,Γ)
(ai,δi)
→

(qi+1,Γ
′) on processing some event ai occurring δi = ti − ti−1 time units after the

preceding one. To support such symbolic transitions, we need a corresponding

notion of incremental concrete transitions (qi, γ)
(ai,δi)
→ (qi+1, γ

′). As we will show
below, the sequence of standard clock valuation functions γ0, γ1, . . . for a timed
word w = (a0, t0)(a1, t1) . . . cannot be used in such an incremental approach (using
γ = γi and γ

′ = γi+1) since γi+1 depends not only on γi and the current timed event
(ai, ti) but also on next subsequent event (ai+1, ti+1). Therefore, it is impossible to

define a transition of the form (qi, γ)
(ai,δi)
→ (qi+1, γ

′) with standard clock valuation
functions.
To overcome these difficulties, we introduce incremental clock valuation functions

(Definition 4.22) which rely—as required—on the current event ai and the time δi
elapsed after the last processed event. Henceforth, we use incremental clock valu-
ation functions as foundation for symbolic runs. To differentiate the incremental
variant of concrete and symbolic timed runs from conventional runs, we denote
them as γ̄ and Γ̄.
First, let us discuss sequences of standard clock valuation functions in detail. In

Figure 8, we show a prefix of a timed word over the alphabet Σ = {a, b}. Hence,
every clock valuation γi refers to four timed events, namely to the last respective
occurrence of a and b, as expressed by the values of xa and xb, and to the next
occurrence of these two events, described by ya and yb. Thereby, the arrows in
Figure 8 denote the events referred to by γ3 and γ4, respectively (we will explain
γ̄3 and γ̄4 in the very next paragraphs). More precisely, the solid arrows show the
events referred by xa and ya while the dashed ones correspond to xb and yb. So
for example, γ3(xa) = 5 since γ3 refers to (a, 2) while t3 = 7. In case of γ4, we
draw an arrow with a thick pen if the referred event changed from γ3 to γ4, e.g.,
xa refers in γ4 to (a, 7) while it did refer to (a, 2) in γ3. Furthermore, the left part
of the table in Figure 8 shows the clock valuations γi for i = 0, . . . , 4 where we also
typeset those values in boldface which are based on a newly referred event.
In general, to move from (qi, γi) to (qi+1, γi+1), the timed event (ai, ti) is pro-

cessed in following some enabled transition e = (qi, ai, ψ, qi+1). Thus, we attempt
to compute γi+1 from γi and (ai, ti). But Definition 4.2 of clock valuation functions

ACM Transactions on Software Engineering and Methodology, Vol. x, No. y, mm 20yy.



40 · TOSEM

(a, 2)(b, 4)(b, 5)(a, 7)(b, 8)(a, 9)(b, 11) . . .

γ3

γ̄3

(a, 2)(b, 4)(b, 5)(a, 7)(b, 8)(a, 9)(b, 11) . . .

γ4

γ̄4

i (ai, ti)
γi γ̄i

xa ya xb yb xa ya xb yb
-1 —- ⊥ 2 ⊥ 4

0 (a,2) ⊥ 5 ⊥ 2 0 5 ⊥ 2

1 (b,4) 2 3 ⊥ 1 2 3 0 1

2 (b,5) 3 2 1 3 3 2 0 3

3 (a,7) 5 2 2 1 0 2 2 1

4 (b,8) 1 1 3 3 1 1 0 3

Fig. 8. Incremental and Ordinary Clock Valuations

leads to the equation

γi+1 = (γi + δi+1)[xai
= δi+1][yai+1 = next(w, ai+1, i+ 1)] (1)

for i ≥ 0 where we use δi+1 = ti+1 − ti as abbreviation. This holds true, since
all recording clocks xa for a 6= ai and all predicting clocks ya for a 6= ai+1 only
observe δi+1 elapsing time units as we move from γi to γi+1—which amounts to the
expression (γi + δi+1) in Equation (1). To complete the transition from γi to γi+1,
we must move the blind spot (Remark 4.3) from (ai, ti) to (ai+1, ti+1). Hence, γi+1

must encounter ai again, requiring the reset of xai
, while we have to ignore ai+1,

requiring us to reset yai+1 to look beyond ai+1.
Following Equation (1), the incremental computation of γi+1 involves not only

the timed event (ai, ti) but also the next timed event (ai+1, ti+1):

—The reset [xai
= δi+1] uses the time stamp ti+1.

—The reset [yai+1 = next(w, ai+1, i+ 1)] refers to ai+1 and to ti+1.

This fact is reflected in the table of Figure 8: The values of xai
and of yai+1 with

respect to γi+1 are typeset in bold face, since they both refer to different events
than they did with respect to γi.

Therefore, we cannot define a relation (q, γ)
(a,δ)
−→ (q′, γ′) describing the transition

from a pair (q, γ) to a pair (q′, γ′) on the occurrence of an action a after a delay δ
without a reference to the next subsequently occurring event.
Since this problem persists at the symbolic level as well, i.e., we cannot define

a relation (q,Γ)
(a,δ)
−→ (q′,Γ′) without referring to the next subsequently occurring

event, we have to get rid of this look-ahead. To do so, we use a sequence of
incremental clock valuation functions, denoted by γ̄i. Since the original definition of
clock valuation functions is necessary to define the semantics of TLTL and TLTL3,
as well as to define timed runs, we could not use incremental valuation right from
the beginning. Instead, depending on the context, we have to switch between both
definitions.
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Definition 4.22 (Incremental Clock Valuation Function) For a finite alpha-
bet Σ and an associated set CΣ = {xa, ya | a ∈ Σ} of clocks, an incremental clock
valuation function γ̄i : CΣ → T⊥ over a timed word w = (a0, t0)(a1, t1) · · · ∈
TΣ ∗ ∪ TΣω assigns a positive real or the undefined value ⊥ to each clock variable
corresponding to position i such that the following holds:

γ̄i(xa) = last(w, a, i) iff ai 6= a
γ̄i(xa) = 0 iff ai = a
γ̄i(ya) = next(w, a, i)

Thus, γ̄i describes the values of the clocks from CΣ directly after the timed event
(ai, ti) occurred, i.e., γ̄i(xai

) = 0. In contrast, γi ignores the timed event (ai, ti),
i.e., γi(xai

) = last(w, ai, i) which evaluates either to ti − tj for the largest j < i
with aj = ai or to ⊥ if no such j exists.
Hence, in Figure 8, we show the clock valuation functions γ3 and γ4 as a cursor

which is placed upon some timed event, whereas the incremental clock valuation
functions γ̄3 and γ̄4 are shown as a cursor which is placed between two timed
events.
Since γ̄0 already depends on the event (a0, t0), we need an initial valuation func-

tion preceding γ̄0. We introduce the initial incremental clock valuation function
γ̄−1 and define it with respect to an infinite timed word w ∈ TΣω as follows:

—γ̄−1(xa) = ⊥ for all xa,

—γ̄−1(ya) = tj for j ≥ 0 and aj = a and where ak 6= a holds for all 0 ≤ k < j, and

—γ̄−1(ya) = ⊥ if a does not occur in w at all.

Figure 8 shows the valuations of the incremental clock valuation functions γ̄i in
comparison to the original and corresponding clock valuation functions γi. Note
that in case of γ̄i, either both, xa and ya, or xb together with yb, are changing their
referred events. This is always the case, since the incremental computation of γ̄i+1

only involves (ai+1, ti+1)—and does not refer to (ai, ti) anymore.
Assume that an automaton at (qi, γ̄i−1) is about to process the timed event (ai, ti)

from the timed word w with transition e = (qi, ai, ψ, qi+1). To check whether e is
enabled, i.e., γi |= ψ holds, it must first compute γi with the following rule:

γi = (γ̄i−1 + δi)[yai
= next(w, ai, i)] (2)

with δi = ti− ti−1 for i > 0 and δ0 = t0. To show that Equation (2) holds, we point
out that last(w, a, i) = last(w, a, i−1)+δi holds for a 6= ai−1 and last(w, ai−1, i) = δi
holds for the remaining case a = ai−1. Using Definitions 4.2 and 4.22, we obtain
γi(xa) = last(w, a, i) = γ̄i−1(xa)+δi. Similarly, we have next(w, a, i) = next(w, a, i−
1) − δi and hence γi(ya) = next(w, a, i) = γ̄i−1(ya) + δi for a 6= ai. The only
remaining case is resolved by the reset of yai

.
If γi |= ψ holds, the transition is enabled and we compute the next pair (qi+1, γ̄i)

with

γ̄i = γi[xai
= 0] (3)

which follows directly from Definitions 4.2 and 4.22. Thus, we obtain from Equa-
tion (3) by expanding γi following Equation (2)

γ̄i = (γ̄i−1 + δi)[yai
= next(w, ai, i)][xai

= 0] (4)
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for the incremental computation of γ̄i. Equation (4) refers to future events beyond
(ai, ti) only in terms of next(w, ai, i). Hence, based on Equations (2) and (4), we
define incremental transitions:

Definition 4.23 (Incremental Transition) For an event-clock automaton Aec=
(Σ, Q,Q0, E, F ), two states q, q′ ∈ Q, and two incremental clock valuation functions
γ̄, γ̄′ ∈ VΣ, we write for the incremental transition from (q, γ̄) to (q′, γ̄′)

(q, γ̄)
(a,δ)
−→ (q′, γ̄′)

iff there exits a transition e = (q, a, ψ, q′) ∈ E and a time value v ∈ T⊥ such that
γ̄ + δ is defined (see the discussion after Remark 4.9), and such that (γ̄ + δ)[ya =
v] |= ψ as well as γ̄′ = (γ̄ + δ)[ya = v][xa = 0] holds.

Since the sequence of incremental clock valuation functions starts with γ̄−1 the
indices in incremental clock valuation functions γ̄i are decremented by one as com-
pared to their standard counterpart γi. The reason for not harmonising the indices
is that γ0 already incorporates information from the fist timed event (a0, t0)—while
γ̄i−1 truly precedes the first timed event (a0, t0). Thus, Equation (1) describes the
transition from γi to γi+1 on processing (ai, ti) (involving knowledge on the future
event (ai+1, ti+1)) while Equation (4) describes the transition from γ̄i−1 to γ̄i on
processing the same event (and only referring to the past time stamp ti−1).
Timed runs pair each state qi with the clock valuation function γi. Correspond-

ing to each timed run, we define an incremental timed run which combines each
state qi with an incremental clock valuation function γ̄i−1. By using the delayed
valuation function γ̄i−1, each pair (qi, γ̄i−1) contains all information we can obtain
immediately before processing (ai, ti).

Definition 4.24 (Incremental Timed Run) An incremental timed run θ̄ of an
automaton Aec = (Σ, Q,Q0, E, F ) over a timed word w = (a0, t0)(a1, t1) · · · ∈ TΣω

is an infinite sequence (q0, γ̄−1)(q1, γ̄0) . . . of state and incremental clock valuation
pairs such that

—q0 is an initial state, i.e., q0 ∈ Q0,

—each γ̄i adheres Definition 4.22 for i ≥ 0 and γ̄−1 is initial, and

—(qi, γ̄i−1)
(ai,δi)
−→ (qi+1, γ̄i) for δ0 = t0 and δi = ti − ti−1 for i > 0.

Proposition 4.25 (Incremental versus Standard Timed Runs) Let Aec =
(Σ, Q,Q0, E, F ) be an automaton and w = (a0, t0)(a1, t1) · · · ∈ TΣω be a timed
word. Then there exists a timed run θ = (q0, γ0)(q1, γ1) . . . over w iff there exists
a corresponding incremental timed run θ̄ = (q0, γ̄−1)(q1, γ̄0) . . . over w.

Proof. The proof has two parts: We first assume that θ exists and show that
there exists a transition between each two subsequent pairs (qi, γ̄i−1) and (qi+1, γ̄i)
in θ̄. Since the initial pair (q0, γ̄−1) is fixed, this proves already that θ̄ exists. Then
we show the converse in the same manner, i.e., we show that for each two subsequent
pairs (qi, γi) and (qi+1, γ̄i+1) there exists a corresponding enabled transition.
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Assume that there exists a timed run θ = (q0, γ0)(q1, γ1) . . . over w and consider

a pair (qi, γ̄i−1). We show that (qi, γ̄i−1)
(ai,δi)
−→ (qi+1, γ̄i) must hold: By Defini-

tion 4.17, we know that there must exist a transition e = (qi, ai, ψ, qi+1) ∈ E with
γi |= ψ. Since γi = (γ̄i−1 + δi)[yai

= next(w, ai, i)] (Equation (2)), we find that
(γ̄i−1+δi)[yai

= v] |= ψ must hold for v = next(w, ai, i)]—matching Definition 4.23.
Furthermore, the same Definition requires γ̄i = (γ̄i−1 + δi)[yai

= v][xai
= 0] which

holds because of Equation (4).
Conversely, assume that there is an incremental timed run θ̄ = (q0, γ̄−1)(q1, γ̄0) . . .

over w and consider an arbitrary pair (qi, γi) from the timed run. We show that
there is an enabled transition e leading from (qi, γi) to (qi+1, γi+1): From Defi-
nition 4.23, we know that (γ̄i−1 + δi)[yai

= v] |= ψ must hold for some transi-
tion e = (qi, ai, ψ, qi+1) ∈ E and some time value v with γ̄i = (γ̄i−1 + δi)[yai

=
v][xai

= 0]. By Equation (4), we find that v = next(w, ai, i) must hold. But then
(γ̄i−1 + δi)[yai

= v] |= ψ and Equation (2) lead immediately to γi |= ψ. Hence the
transition is e is enabled in (q, γi).

To simplify notation, we expand the incremental transition relation to finite
and infinite timed words: (qi, γ̄i−1)

u
−→ (qi+k, γ̄i+k−1) holds for a finite word u =

(a0, t0) . . . (ak−1, tk−1) ∈ TΣ k if there exists an incremental timed run over u which
starts in (qi, γ̄i−1) (instead of (q0, γ̄−1)) and ends in (qi+k, γ̄i+k−1). Note that

for (qi, γ̄i−1)
u

−→ (qi+k, γ̄i+k−1) to hold, u must be compatible to γ̄i−1, i.e., the
evaluations of the event-predicting clocks must match the occurring events in u.
In case of an infinite word σ = (a0, t0) · · · ∈ TΣω, we write (qi, γ̄i−1)

σ
−→ if there

exists an incremental timed run over σ which starts in (qi, γ̄i−1). If the sequence of

states qi, qi+1 . . . is accepting, then we write (qi, γ̄i−1)
σ

−→↓. As in the finite case,

σ must be compatible to γ̄i−1 for (qi, γ̄i−1)
σ

−→ to hold.

Definition 4.26 (Continuation Language) Let Aec = (Σ, Q,Q0, E, F ) be an
event-clock automaton. Then we define for a pair (q, γ̄) with q ∈ Q and γ̄ ∈ VΣ the
continuation language L(Aec(q, γ̄)) of Aec with

L(Aec(q, γ̄)) =
{

σ ∈ TΣω | (q, γ̄)
σ

−→↓
}

We now raise incremental clock valuation functions and their transitions to the
symbolic level: In the definition of symbolic runs of event clock automata, we
use symbolic clock valuations that are abstractions of incremental clock valuation
functions. We denote these incremental symbolic clock valuations with Γ̄−1, Γ̄0, . . .
Given a pair (qi, Γ̄i−1), a transition e = (qi, ai, ψ, qi+1), and a single timed event

(ai, ti), we have to check whether the transition is enabled, and if so, we have
to compute the corresponding new pair (qi+1, Γ̄i). To check whether the transi-
tion is enabled and to compute the resulting symbolic state, we use the procedure
symb step((qi, Γ̄i−1), δ, e), shown in Figure 9. It takes the original pair (qi, Γ̄i−1), the
elapsed time δ, with δ = t0 for i = 0 and δ = ti − ti−1 for i > 0, and the transition
e. The procedure symbolically computes the transition according to Equation (4)
and either returns (qi+1, Γ̄i) if the transition e is enabled or reports a constraint
violation otherwise.
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procedure symb step((qi, Γ̄i−1), δ, e)
{ with e = (qi, ai, ψ, qi+1) }

begin

{ -------------------------------------------- }

{ step 1: elapse time }

if Γ̄i−1 + δ is invalid then

return constraint violation ;

Γ̄′
i−1 := Γ̄i−1 + δ ;

{ -------------------------------------------- }

{ step 2: reset yai
}

if Γ̄′
i−1(yai

) 6= undef and 0 /∈ Γ̄′
i−1(yai

) then

return constraint violation ;

Γi := Γ̄′
i−1[yai

= undef] ;

{ -------------------------------------------- }

{ step 3: process guard }

if not (∃γ ∈ VΣ with γ |= Γi and γ |= ψ) then

return constraint violation ;

Γ′
:= Γi ∧ ψ ;

{ -------------------------------------------- }

{ step 4: reset xai
}

Γ̄i := Γ′[xai
= [0, 0]] ;

return (qi+1, Γ̄i) ;

end

Fig. 9. Procedure symb step((qi, Γ̄i−1), δ, e)

Note that step 3) of symb step requires that there exists a γ ∈ VΣ with γ |= Γi∧ψ.
Since each γ ∈ VΣ must satisfy non-coincidence and continuity, see Proposition 4.4,
this condition ensures that Γi ∧ ψ satisfies these three properties as well. If one
requires timed words to satisfy monotonicity instead of strict monotonicity, then
non-coincidence can be dropped—requiring continuity only (see Remark 4.5).
In the following lemma, we show that each concrete transition from (qi, γ̄i−1) to

(qi+1, γ̄i) has a corresponding symbolic transition from (qi, Γ̄i−1) to (qi+1, Γ̄i) as
computed by symb step. Thus, we write

(qi, Γ̄i−1)
(ai,δ)
−→ (qi+1, Γ̄i)

iff (qi+1, Γ̄i) = symb step((qi, Γ̄i−1), δ, e) holds for some e = (qi, ai, ψ, qi+1).

Lemma 4.27 (Abstracting a Transition) Let w = (a0, t0)(a1, t1) · · · ∈ TΣω be
a timed word with the corresponding sequences of clock valuation functions γ0, γ1, . . .
and incremental clock valuation functions γ̄−1, γ̄0, . . . Fix some i ≥ 0 and set δ =
ti − ti−1 for i > 0 and δ = t0 for i = 0. Let e = (qi, ai, ψ, qi+1) be an enabled
transition, i.e., γi |= ψ.
Then for a pair (qi, Γ̄i−1) with γ̄i−1 |= Γ̄i−1, symb step((qi, Γ̄i−1), δ, e) yields

(qi+1, Γ̄i) with γ̄i |= Γ̄i.
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Proof. We follow the procedure symb step in a stepwise manner, where we first
show that step 1) leads to (γ̄i−1 + δ) |= Γ̄′

i−1. Then step 2) yields a Γi which
is an abstraction of γi, i.e., γi |= Γi, and consequently step 3) does not find any
inconsistency. Finally, we prove that step 4) must produce a Γ̄i such that γ̄i |= Γ̄i.
Below, we use the fact that either γ̄i−1(ya) = ⊥ or γ̄i−1(ya) ≥ δ must hold for

each event-predicting clock ya as at least δ time units pass by until the next event
occurs.

(1) Elapse Time: We have γ̄i−1 |= Γ̄i−1, and hence by Fact 4.10, if γ̄i−1 + δ is
indeed valid, then γ̄i−1 + δ |= Γ̄i−1 + δ = Γ̄′

i−1 must hold as well.
But γ̄i−1 + δ is valid since we have either γ̄i−1(ya) = ⊥ or γ̄i−1(ya) ≥ δ for all
ya—and henceforth γ̄i−1 + δ |= Γ̄′

i−1 holds.

(2) Reset yai
: From the preceding step, we know that γ̄i−1 + δ |= Γ̄′

i−1 holds.
(γ̄i−1 + δ)(yai

) = 0 must hold since ai is the event being currently processed.
Thus symb step does not report a constraint violation.
Then, by Fact 4.10, we obtain (γ̄i−1 + δ)[yai

= next(w, ai, i)] |= Γ̄′
i−1[yai

=
undef], i.e., γi |= Γi.

(3) Process the Guard: Since the transition e = (qi, ai, ψ, qi+1) is enabled, we
know γi |= ψ. From the preceding step, we also have γi |= Γi, and therefore, ψ
and Γi must be consistent with γi |= Γi ∧ ψ = Γ′.

(4) Reset xai
: γ̄i and γi differ only in the value for xai

which is reset to 0 in γ̄i
(see Equation (3)). From the preceding step, we have γi |= Γ′ and thus we
obtain, by Fact 4.10, γ̄i = γi[xai

= 0] |= Γ′[xai
= 0] = Γ̄i.

This concludes the proof, as symb step returns (qi+1, Γ̄i) with γ̄i |= Γ̄i.

Based upon symb step, and analogous to timed runs of an event-clock automaton
Aec = (Σ, Q,Q0, E, F ), we now define symbolic timed runs over a timed word w =
(a0, t0)(a1, t1) · · · ∈ TΣω as an infinite sequence of pairs Θ = (q0, Γ̄−1)(q1, Γ̄0) . . .
For these symbolic timed runs, we have to define the initial symbolic clock valuation
Γ̄−1. By inspecting γ̄−1, we find that we can use the initial symbolic clock valuation
as given by Definition 4.21 without modification, i.e., we set Γ̄−1 = Γ0. Thus, we
arrive at the following definition:

Definition 4.28 (Symbolic Timed Run) A symbolic timed run Θ of an event-
clock automaton Aec = (Σ, Q,Q0, E, F ) over a given infinite timed word w =
(a0, t0)(a1, t1) · · · ∈ TΣω is a sequence of pairs (q0, Γ̄−1)(q1, Γ̄0) . . . such that the
following conditions are met:

—qi ∈ Q holds for all i ≥ 0 and q0 ∈ Q0 holds for the starting state.

—Γ̄i ∈ ΨΣ is a symbolic clock valuation (Definition 4.20) for i ≥ 0 and Γ̄−1 is the
initial symbolic clock valuation (Γ̄−1 = Γ0 and following Definition 4.21).

—For all 0 ≤ i and with δ0 = t0 and δi = ti − ti−1, (qi, Γ̄i−1)
ai,δi
−→ (qi+1, Γ̄i) holds.

Example 4.29 (Symbolic Timed Run) Recall the property

ϕ = G
(

r1 →
(

�ack ∈ [0, 2) ∧X
(

wU (r2 ∧�ack ∈ (1,∞) ∧X (wUack ))
)

))
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we introduced in Examples 4.13 and discussed subsequently. Observe that [yack < 2]
and [yack > 1] are the only guards occurring in Aϕ

ec (Figure 7) and that yack is the
only clock evaluated therein. Thus, in the symbolic timed run Θ described below,
we only consider the clock constraints for yack.
Given the finite timed word

u = (ack, 1), (ack, 1.5), (r1, 2), (w, 2.1), (w, 3.2), (r2, 3.3)

we construct the corresponding symbolic timed run Θ = (q0, Γ̄−1), . . . (q6, Γ̄5). This
run Θ is uniquely identified since Aϕ

ec is deterministic: The initial state of Θ is
the pair (qa, Γ̄−1) with Γ̄−1(yack) = undef. On processing (ack, 1) and (ack, 1.5),
we remain in the same state, i.e., q2 = q1 = qa and Γ̄1(ya) = Γ̄0(ya) = Γ̄−1(ya) =
undef. When we receive (r1, 2), we reach q3 = qb. The transition to qb is guarded
with [yack < 2]. Hence we have to add the guard to the clock constraint and obtain
Γ̄2(ya) = [0, 2). The event (w, 2.1) does not change the state, i.e., q4 = qb, nor does
it require to incorporate another guard. However, time passes by with δ = t3 − t2 =
2.1 − 2 = 0.1 time units and hence we have Γ̄3(yack) = [0, 1.9). The same holds
true for the next event (w, 3.2), leading to q5 = qb and Γ̄4(yack) = [0, 0.8) after
δ = t4 − t3 = 1.1 time units.
Finally, an attempt to process (r2, 3.3) fails: In step 1) of symb step (Figure 9)

we obtain Γ̄′
4 = Γ̄4 + δ with δ = t5 − t4 = 0.1, i.e., Γ̄′

4(yack) = [0, 0.7). Step 2) goes
through as well, since Γ̄′

4(yr2) = undef, but step 3) causes a constraint violation:
The guard on the transition from qb to qc (which is the only alternative on processing
r2) is guarded with [yack > 1]. Because Γ5 is the conjunction of Γ̄′

4 and the current
guard, we obtain Γ5(yr2) = Γ̄′

4(yr2) ∩ (1,∞) = [0, 0.7) ∩ (1,∞) = ∅—which cannot
be satisfied anymore and is therefore a constraint violation.
Summarised, the symbolic timed run Θ is determined as

Θ = (qa, Γ̄−1), (qa, Γ̄−1), (qa, Γ̄−1), (qb, Γ̄2), (qb, Γ̄3), (qb, Γ̄4)

with Γ̄2(yack) = [0, 2), Γ̄3(yack) = [0, 1.9), and with Γ̄4(yack) = [0, 0.8) before abort-
ing with a constraint violation.

Since symb step does not receive any information beyond the currently processed
timed event (ai, ti), no information on future events beyond the already observed
prefix (a0, t0) . . . (ai, ti) is necessary to compute a prefix of a symbolic timed run.

Remark 4.30 (Symbolic Timed Runs are not Previsionary) To compute a
prefix (q0, Γ̄−1) . . . (qi+1, Γ̄i) of a symbolic timed run Θ = (q0, Γ̄−1)(q1, Γ̄0) . . . for
a prefix u = (a0, t0) . . . (ai, ti) of an infinite timed word w = (a0, t0)(a1, t1) . . . , no
information beyond u is necessary.

Hence, symbolic timed runs are feasible as a tool for (online) runtime verification
where we are provided with an incrementally expanded finite prefix of some system
trace. But beyond its feasibility as a technique, it remains to prove that symbolic
timed runs are semantically adequate as an abstraction of all possible concrete
behaviours.
Lemma 4.27 is the first step towards that goal, where we show that each concrete

transition can be abstracted into a corresponding symbolic transition. In the next
lemma, we expand this statement to entire timed runs.
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Lemma 4.31 (Abstracting Timed Runs) Let Aec be an event-clock automaton
with Aec = (Σ, Q,Q0, E, F ) and let w = (a0, t0)(a1, t1) · · · ∈ TΣω be an infinite
timed word with a timed run θ = (q0, γ0)(q1, γ1) . . .
Then there exists a symbolic timed run Θ = (q0, Γ̄−1)(q1, Γ̄0) . . . over w which is

based upon the same sequence of states q0, q1 . . . as θ.
Moreover γ̄i |= Γ̄i holds for the sequence γ̄−1, γ̄0, . . . of incremental clock valua-

tion functions as determined by w for all i ≥ −1.

Proof. The infinite timed word w determines a unique sequence γ0, γ1, . . . of
clock valuation functions (Definition 4.2) as well as a unique sequence γ̄−1, γ̄0, . . .
of incremental clock valuation functions (Definition 4.22).
To construct Θ, we first set Γ̄−1 = Γ0 following Definition 4.28 and obtain im-

mediately γ̄−1 |= Γ̄−1. Since there exists a timed run θ = (q0, γ0)(q1, γ1) . . . , there
exists for each i ≥ 0 an enabled transition ei = (qi, ai, ψ, qi+1) facilitating the transi-
tion from (qi, γi) to (qi+1, γi+1). But then, the condition to apply Lemma 4.27 is sat-
isfied: γ̄−1 |= Γ̄−1 holds and e0 is an enabled transition. Consequently, Lemma 4.27
yields the pair

(q1, Γ̄0) = symb step((q0, Γ̄−1), δ0, e0)

with γ̄0 |= Γ̄0. Then again, the condition to apply Lemma 4.27 is satisfied and we
obtain the the required symbolic timed run Θ = (q0, Γ̄−1)(q1, Γ̄0) . . . inductively.

At this point, we are tempted to show the converse of Lemma 4.31, i.e., that
each symbolic timed run gives rise a corresponding ordinary timed run. However,
this is not the case: If we take some transition with a guard ψ(ya) = [0,∞),
then it is required that the event a occurs eventually in the future (in fact, such a
guard is equivalent to Fa in standard LTL). But if a never occurs again, then this
misbehaviour remains undetected by symb step. On the other hand, at the concrete
level of ordinary timed runs, if a never occurs again, we have γi(ya) = ⊥ and the
transition with the guard ψ(ya) = [0,∞) is not enabled at the concrete level. Thus,
not every symbolic timed run has a corresponding ordinary timed run—leading to
the following proposition:

Proposition 4.32 There exists an event-clock automaton Aec = (Σ, Q,Q0, E, F )
and an infinite timed word w = (a0, t0)(a1, t1) · · · ∈ TΣω with a symbolic timed
run Θ = (q0, Γ̄−1)(q1, Γ̄0) . . . such that there exists no ordinary timed run θ =
(q0, γ0)(q1, γ1) . . . over w which is based upon the same sequence of states q0, q1 . . .
as Θ.

Nevertheless, we can show that each symbolic transition yields a corresponding
concrete transition. To show this, we need to resort to a backward simulation
argument, leading to Lemma 4.33. We finally prove in Lemma 4.34 that every
finite prefix of a symbolic timed run has a corresponding finite prefix of a timed
run: We choose a suitable clock valuation function for the last pair of the symbolic
timed run and concretise the run with a backward simulation. Then we show in
Theorem 4.35 how to expand this prefix of a timed run into a suitable infinite timed
run.
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Lemma 4.33 (Concretising a Symbolic Transition) If a symbolic transition

(qi, Γ̄i−1)
(ai,δ)
−→ (qi+1, Γ̄i) holds via a transition e = (qi, ai, ψ, qi+1), then for all

γ̄i |= Γ̄i and for all

γ̄i−1 = (γ̄i − δ)[yai
= δ][xai

= Γ̄i−1(xai
)]

the following two conditions hold:

—γ̄i−1 |= Γ̄i−1

—(qi, γ̄i−1)
(ai,δ)
−→ (qi+1, γ̄i) holds via the transition e (see Definition 4.23).

Proof. We show the first claim by contradiction and thereupon prove the second
claim using the first one.
For what follows, recall that all symbolic clock valuations Γ̄ (Definition 4.20)

evaluate all event-recording clocks xa to intervals of the form [l, l] for some value
l ∈ T⊥—precluding the cases Γ̄(xa) = undef and Γ̄(xa) = [l, r] with l < r.
Assume γ̄i−1 |= Γ̄i−1 does not hold. Then one of the following four cases must

arise—which we drive into a contradiction individually:

—γ̄i−1(xai
) /∈ Γ̄i−1(xai

): In the definition of γ̄i−1 in the lemma statement, we use
[xai

= Γ̄i−1(xai
)] and hence we always have γ̄i−1(xai

) ∈ Γ̄i−1(xai
).

—γ̄i−1(xa) /∈ Γ̄i−1(xa) for a 6= ai: Since a 6= ai holds, the constraints on xa are
only affected by the elapsing time. We distinguish two cases:
—If Γ̄i−1(xa) = [⊥,⊥], then Γ̄i(xa) = [⊥,⊥] as well and hence γ̄i(xa) = ⊥ must
hold. But then we have γ̄i−1(xa) = ⊥ and therefore we find γ̄i−1(xa) = ⊥ ∈
[⊥,⊥] = Γ̄i−1(xa).

—If Γ̄i−1(xa) = [l, l] with l 6= ⊥, then Γ̄i(xa) = [l + δ, l + δ] holds such that
γ̄i(xa) = l+δ must hold. Then we obtain γ̄i−1(xa) = l and arrive at γ̄i−1(xa) =
l ∈ [l, l] = Γ̄i−1(xa).

—γ̄i−1(yai
) /∈ Γ̄i−1(yai

): Because of the check in step 2) of symb step (see Figure 9)
0 ∈ (Γ̄i−1(yai

) + δ) must hold since otherwise, symb step would have reported
a constraint violation. Hence we have δ ∈ Γ̄i−1(yai

). On the other hand, the
definition of γ̄i−1 in the statement of the lemma resets yai

to δ and consequently,
γ̄i−1(yai

) ∈ Γ̄i−1(yai
).

—γ̄i−1(ya) /∈ Γ̄i−1(ya) for a 6= ai: In the case of a 6= ai, the constraints on ya are
only affected by the elapsing time leading to the following two cases:
—If Γ̄i−1(ya) = [⊥,⊥], then Γ̄i(ya) = [⊥,⊥] as well. Thus, γ̄i(ya) = ⊥ must hold
resulting in γ̄i−1(ya) = ⊥ such that γ̄i−1(ya) = ⊥ ∈ [⊥,⊥] = Γ̄i−1(ya) holds.

—If Γ̄i−1(ya) = [(l, r)], then Γ̄i(ya) = [(l−̇δ, r − δ)] holds and consequently γ̄i(ya)
must be chosen from [(l−̇δ, r − δ)]. But then we have γ̄i−1(ya) ∈ [(l−̇δ + δ, r −
δ + δ)] ⊆ [(l, r)] = Γ̄i−1(ya).

—If Γ̄i−1(ya) = undef, then ya remains unconstrained and cannot cause a con-
straint violation.

Since the constraints for each individual clock are satisfied, we know that γ̄i−1 |=
Γ̄i−1 holds.

Assume (qi, γ̄i−1)
(ai,δ)
−→ (qi+1, γ̄i) does not hold. This implies that the transition

e = (qi, ai, ψ, qi+1) is not enabled at (qi, γ̄i−1). Following Equation (2), we have
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γi = (γ̄i−1 + δ)[yai
= γ̄i(yai

)] (since yai
= next(w, ai, i) = γ̄i(yai

)). Since γi 6|= ψ,
one of the following two cases must arise:

—γi(xai
) /∈ ψ(xai

): Since γi(xai
) = Γ̄i−1(xai

) + δ, it follows that Γ̄i−1 + δ and ψ
are inconsistent. But then, symb step reports in step 3) a constraint violation.

—γi(c) /∈ ψ(c) for an event-recoding or event-predicting clock c 6= xai
: Since γ̄i =

γi[xai
= 0] we have γ̄i(c) = γi(c) and hence γ̄i(c) /∈ ψ(c), i.e., γ̄i 6|= ψ. Because of

step 3) in symb step, Γ̄i(c) ⊆ ψ(c) holds and we therefore arrive at γ̄i 6|= Γ̄i which
contradicts the lemma statement.

Recall Equation (2) on page 40 which allows to compute γi from γ̄i−1. Below we
need to compute γi−1 from γi. Thus, we invert Equation (2) by first subtracting δi
and then restoring the original value of yai

with next(w, ai, i− 1) = δi:

γ̄i−1 = (γi − δi)[yai
= δi] (5)

Lemma 4.34 (Concretising a Finite Symbolic Runs) Let u = (a0, t0) . . . (ai, ti) ∈
TΣ ∗ be a finite timed word and let Aec = (Σ, Q,Q0, E, F ) be an event-clock au-
tomaton.
Then for every finite symbolic timed run Θ = (q0, Γ̄−1) . . . (qi+1, Γ̄i) and for every

clock valuation function γi+1 (given together with the corresponding timed event
(ai+1, ti+1)) satisfying γ̄i |= Γ̄i, there is a finite timed run θ = (q0, γ0) . . . (qi+1, γi+1)
(adhering Definition 4.17) such that γ̄j |= Γ̄j (as determined by Equation (5)) holds
for all −1 ≤ j ≤ i.

Proof. From (ai+1, ti+1) and γi+1, we can compute with Equation (5) the in-
cremental clock valuation function γ̄i as starting point for a backward simulation.

Since γ̄i |= Γ̄i and (qi, Γ̄i−1)
(ai,δi)
−→ (qi+1, Γ̄i) hold, we apply Lemma 4.33 to

obtain γ̄i−1 such that (qi, γ̄i−1)
(ai,δi)
−→ (qi+1, γ̄i) with γ̄i−1 |= Γ̄i−1. By applying

Lemma 4.33 inductively, we obtain (q0, γ̄−1) . . . (qi+1, γ̄i).
The run θ̄ is an incremental timed run (Definition 4.24). Thus, we can use

Equation (2) to compute from θ̄ the timed run θ = (q0, γ0) . . . (qi+1, γi+1)—following
Proposition 4.25 to match Definition 4.17 as required.

Theorem 4.35 (Symbolic Simulation) Let u = (a0, t0) . . . (ai, ti) ∈ TΣ ∗ be a
finite timed word and let σ = (ai+1, ti+1)(ai+2, ti+2) . . . ∈ TΣω be an infinite con-
tinuation of u.
The infinite timed word uσ is accepted by an event-clock automaton Aec =

(Σ, Q,Q0, E, F ), i.e., uσ ∈ L(Aec), iff there exists

(a) a finite symbolic timed run Θ = (q0, Γ̄−1) . . . (qi+1, Γ̄i) over u,

(b) an infinite timed run θ = (qi+1, γi+1)(qi+2, γi+2) . . . starting at (qi+1, γi+1) and
accepting σ, and

(c) an incremental clock valuation function γ̄i ∈ VΣ with γ̄i |= Γ̄i such that γi+1 =
(γ̄i + δ)[yai+1 = v] holds for some δ ∈ R

≥0 and some v ∈ T⊥.
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Proof. Assume uσ ∈ L(Aec) holds. Then there exists an accepting timed
run θ′ = (q0, γ0)(q1, γ1) . . . over uσ. Thus, by Lemma 4.31, there exists a sym-
bolic timed run Θ′ = (q0, Γ̄−1)(q1, Γ̄1) . . . over uσ with γ̄i |= Γ̄i for all i > 0
as well. We take the prefix Θ = (q0, Γ̄−1) . . . (qi+1, Γ̄i) of Θ′ and the suffix θ =
(qi+1, γi+1)(qi+2, γi+2) . . . of θ

′ to meet conditions (a) and (b) of the lemma state-
ment, respectively. Condition (c) is satisfied since Lemma 4.31 ensures that γ̄i |= Γ̄i

holds and since γ̄i and γi+1 are being determined mutually consistently by uσ.
Assume Θ, θ, and γ̄i exist as required in conditions (a) to (c). Then we construct

an accepting infinite timed run θ′ = (q0, γ0)(q1, γ1) . . . over uσ to show uσ ∈ L(Aec).
To do so, we take the timed run θ = (qi+1, γi+1)(qi+2, γi+2) . . . over σ as suffix in
θ′. We complete θ′ with the prefix (q0, γ0) . . . (qi+1, γi+1) according to Lemma 4.34
using u, Θ, γi+1, and (ai+1, ti+1)—which completes the proof as well.

Rereading the statement of Theorem 4.35 in abstract terms, the theorem states
that a finite prefix u can be continued to an infinite word uσ, iff u has a symbolic
timed run Θ which ends in a pair (qi+1, Γ̄i) which is non-empty, i.e., which has a
concretisation (qi+1, γ̄i) with a non-empty continuation language. This is exactly
the statement of Corollary 4.36 below.

Corollary 4.36 (Runtime Verification Criterion) Let u = (a0, t0) . . . (ai, ti)∈
TΣ ∗ be a finite timed word and let Aec = (Σ, Q,Q0, E, F ) be an event-clock au-
tomaton.
Then there exists an infinite continuation σ ∈ TΣω of u with uσ ∈ L(Aec) iff

there exists a finite symbolic timed run Θ = (q0, Γ̄−1) . . . (qi+1, Γ̄i) over u and an in-
cremental clock valuation function γ̄i ∈ VΣ with γ̄i |= Γ̄i such that L(Aec(qi+1, γ̄i)) 6=
∅.

Proof. Assume σ with uσ ∈ L(Aec) exists. Then we apply Theorem 4.35 to
obtain Θ and γ̄i.
Assume Θ and γ̄i exist. Since the language accepted from (qi+1, γ̄i) is non-empty,

there must exist an infinite continuation σ ∈ TΣω with (qi+1, γ̄i)
σ

−→↓, i.e., there
exits a sequence (qi+1, γ̄i)(qi+2, γ̄i+1) . . . accepting σ. Using Equation (2), we obtain
a corresponding timed run θ = (qi+1, γ

′
i+1)(qi+2, γ

′
i+2) . . . and apply Theorem 4.35

to find uσ ∈ L(Aec).

In both, Theorem 4.35 and its Corollary 4.36, we need to find a suitable concrete
and suitable incremental clock valuation function γ̄i ∈ VΣ of some symbolic clock
constraint Γ̄i ∈ ΨΣ, i.e., γ̄i |= Γ̄i must hold and γ̄i must give rise to some infinite and
accepting continuation σ. We note that symb step ensures Γ̄i ∈ ΨΣ and therefore,
Γ̄i has a non-coincident and continuous solution (see Definition 4.8). To ensure
γ̄i ∈ VΣ, we need to make sure that γ̄i also satisfies these properties. Otherwise
γ̄i would prescribe a sequence of timed events, which is not a timed word, see
Proposition 4.4.
On the other hand, if one wants to relax the strict monotonicity requirement on

timed words to simple monotonicity, one needs to drop the non-coincidence check
on all checks for some γ̄i ∈ VΣ, cf. Remark 4.5.
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4.5 Emptiness Check for Symbolic States

Taking Corollary 4.36 as starting point, we discuss in this section how to determine
for a given event-clock automaton Aec = (Σ, Q,Q0, E, F ) and a corresponding pair
(q, Γ̄) whether there exists an incremental clock valuation function γ̄ ∈ VΣ with
γ̄ |= Γ̄ such that L(Aec(q, γ̄)) 6= ∅.

Thus, we develop in this section a procedure emptyAec
(q, Γ̄) which returns true

iff for all γ̄ ∈ VΣ with γ̄ |= Γ̄ it holds that L(Aec(q, γ̄)) = ∅.

0 1 2
a b[xa ≥ 2]

a[xa ≤ 1]

Fig. 10. Event-clock automaton

Looking at the scheme devel-
oped in the discrete-time setting,
we are now tempted to check for
every state q of the event-clock au-
tomaton, whether the language ac-
cepted from state q is empty. How-
ever, this would yield wrong conclusions, as exemplified by the automaton shown in
Figure 10. While the language accepted in state 2 is non-empty and, despite, state
2 is reachable, the automaton does not accept any word when starting in state 0.
The constraint when passing from state 1 to 2 requires the clock xa to evaluate to
at least 2. This, however, prevents the self-loop in state 2 from being enabled.

Thus, to implement the emptiness check, the event-clock automaton itself is too
coarse as an abstraction of the infinite statespace spawned by the states of the
automaton and the clock valuation functions.

The standard technique to determine the emptiness of an event-clock automaton
(and of timed automata in general) relies on the translation of event-clock automata
into region automata [Alur and Dill 1994]. A region automaton is an ordinary
(generalised) Büchi automaton whose states are pairs (q, [γ̄]≈R

) where q is a state
of the original event-clock automaton and [γ̄]≈R

is a clock region. A clock region
[γ̄]≈R

= {γ̄′ ∈ VΣ | γ̄′ ≈R γ̄} is an equivalence class of incremental clock valuation
functions in VΣ determined by the region equivalence ≈R.

However, the region equivalence is just one possible choice to implement the
emptiness check. Every other equivalence relation ≈ over VΣ meeting the following
three conditions is suitable for that purpose: (1) the relation has finite index, (2)
it is a bisimulation, and (3) each incremental symbolic clock valuation (as they
are used in symbolic timed runs) equals the union of a set of equivalence classes
[γ̄]≈. From these three conditions, only the third one is specific to our approach.
Note that the second condition renders zone-based approaches inapplicable in our
setting.

Below, we introduce the relevant definitions underlying these three conditions.
Then we formulate the emptiness check as used in this paper and prove its cor-
rectness. Finally, for the sake of completeness, we recall the region equivalence
for event-clock automata [Alur et al. 1999], as one possible choice for a suitable
equivalence relation.

We start with the definition of the quotient Büchi automaton of an event-clock
automaton according to an equivalence relation on incremental clock valuation func-
tions:
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Definition 4.37 (Quotient Automaton, following [Alur et al. 1999]) 6 For
an event-clock automaton Aec = (Σ, Q,Q0, E, F ) and an equivalence relation ≈ on
incremental clock valuation functions, we define the quotient automaton Aeq/≈ =
(Σ, Q/≈, Q0/≈, E/≈, F/≈) as a generalised Büchi automaton with

—Q/≈ as the set of states with Q/≈ = {(q, [γ̄]≈) | q ∈ Q and γ̄ ∈ VΣ},

—Q0/≈ as the set of initial states {(q, [γ̄−1]≈) | q ∈ Q0 and γ̄−1 ∈ VΣ being initial},

—E/≈ which is the set of transitions, where we define ((q, [γ̄]≈), (q
′, [γ̄′]≈), a) ∈

E/≈ iff there exist β̄ ∈ [γ̄]≈ and β̄′ ∈ [γ̄′]≈ such that (q, β̄)
a,δ
−→ (q′, β̄′) holds for

some δ ∈ R
≥0, and with

—F/≈ as the set of accepting state sets (generalised Büchi acceptance, recall Defi-
nition 2.3 and the subsequent discussion), where we use F/≈ = {Fi/≈ | Fi ∈ F}
for Fi/≈ = {(q, [γ̄]≈) | q ∈ Fi and γ̄ ∈ VΣ}.

Note that the automaton Aeq/≈ is an ordinary (generalised) Büchi automaton
and hence, we can check the emptiness of the language accepted from a particular
state (q, [γ̄]≈) ∈ Q/≈ ofAeq/≈ in the same way as in the discrete-time case [Schwoon
and Esparza 2005].
We thus need to show that such a check is sufficient in our setting. For this

purpose, the employed equivalence relation needs to satisfy the key property of
being a time-abstract bisimulation:

Definition 4.38 (Time-Abstract Bisimulation [Tripakis and Yovine 2001])
An equivalence relation ≈ is a time-abstract bisimulation for an automaton Aec =

(Σ, Q,Q0, E, F ), iff (q, γ̄1)
a,δ1
−→ (q′, γ̄′1) for two states q, q′ ∈ Q, two incremental

clock valuations γ̄1, γ̄
′
1 ∈ VΣ, an event a ∈ Σ, and a delay δ1 ∈ R

≥0 implies that
for every equivalent incremental clock valuation γ̄2 ≈ γ̄1, there exists another incre-

mental clock valuation γ̄′2 ≈ γ̄′1 and a delay δ2 ∈ R
≥0 such that (q, γ̄2)

a,δ2
−→ (q′, γ̄′2)

holds.

If an equivalence relation ≈ is a time-abstract bisimulation with finite index for
an automaton Aec = (Σ, Q,Q0, E, F ) which accepts the timed language L(Aec) ⊆
TΣω, then the corresponding quotient automaton Aec/≈ accepts the corresponding
untimed language ut(L(Aec)) [Alur et al. 1999; Tripakis and Yovine 2001]. Hence,
given a pair (q, γ̄), we can check whether the language L(Aec(q, γ̄)) accepted by Aec

continuing from (q, γ̄) is empty or not by performing the emptiness check on Aec/≈
for the state (q, [γ̄]≈), i.e., by checking L(Aec/≈(q, [γ̄]≈)) = ∅, where Aec/≈(q, [γ̄]≈)
is the automaton identical to Aec/≈ except for the set of initial states which is
changed to {(q, [γ̄]≈)}.

6The automata we define here as quotient automata are denoted by region automata Reg∼=(A)
in [Alur et al. 1999]. More precisely, in [Alur et al. 1999], region automata are not defined directly
but in terms of labelled transition systems. In the definition of these labelled transition systems,
the authors use incremental clock valuation functions—but without explicitly stating the change
from ordinary to incremental clock valuation functions. Nevertheless, the definition in [Alur et al.
1999] and our own definition yield the same automata.
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Theorem 4.39 (Emptiness Check with Bisimulation[Alur and Dill 1994])
Let Aec = (Σ, Q,Q0, E, F ) be an event-clock automaton and let the relation ≈ be
a time-abstract bisimulation for Aec. Then, for a state q ∈ Q and an incremental
clock valuation function γ̄ ∈ VΣ, L(Aec(q, γ̄)) = ∅ iff L(Aec/≈(q, [γ̄]≈)) = ∅.

Next, we describe a way to perform the emptiness check for a pair (q, Γ̄) as it
occurs in symbolic timed runs. To do so, we compute a (minimal) set cover≈(Γ̄) of
equivalence classes such that

{

γ̄ ∈ VΣ | γ̄ |= Γ̄
}

=
⋃

[γ̄]≈∈cover≈(Γ̄)

[γ̄]≈

holds. Then, the untimed language accepted from (q, Γ̄) (i.e.,
⋃

L(Aec(q, γ̄)) for
γ̄ |= Γ̄) is determined with

ut





⋃

γ̄|=Γ̄

L(Aec(q, γ̄))



 =
⋃

[γ̄]≈∈cover≈(Γ̄)

L(Aec/≈(q, [γ̄]≈)) ,

yielding a way to implement the procedure emptyAec
(q, Γ̄) which returns true iff for

all γ̄ ∈ VΣ with γ̄ |= Γ̄, L(Aec(q, γ̄)) = ∅ holds, as stated in the following corollary:

Corollary 4.40 (Emptiness Check for Symbolic Runs) Assume that Aec =
(Σ, Q,Q0, E, F ) is an event-clock automaton and let the relation ≈ be a time-
abstract bisimulation for Aec.
Then for a state q ∈ Q and a symbolic clock valuation Γ̄ ∈ ΨΣ, we have

emptyAec
(q, Γ̄) = true iff

⋃

[γ̄]≈∈cover≈(Γ̄)

L(Aec/≈(q, [γ̄]≈)) = ∅

holds.

This leads to the following procedure for the emptiness check for the event-clock
automaton Aec = (Σ, Q,Q0, E, F ) upon the equivalence relation ≈:

—Precomputation: Generate the quotient automaton Aec/≈ and determine for
each state (q, [γ̄]≈) of Aec/≈ whether L(Aec/≈(q, [γ̄]≈)) is empty or not. Store
the result in a look-up table T with T [q, [γ̄]≈] = true if L(Aec/≈(q, [γ̄]≈)) = ∅
and false otherwise.

—Emptiness Check: To answer the emptiness check for a pair (q, Γ̄), compute

emptyAec
(q, Γ̄) =

∧

[γ̄]≈∈cover≈(Γ̄)

T [q, [γ̄]≈] . (6)

Then the language accepted from (q, Γ̄) byAec is empty, iff emptyAec
(q, Γ̄) returns

true.

It remains to recall the region equivalence [Alur and Dill 1994]≈R which is a time-
abstract bisimulation with finite index and to show how to compute cover≈R

(Γ̄)
for ≈R.
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Below, we use the following abbreviation for the fractional period of time to
pass by until a clock value changes its integral part: For all event-recoding clocks
xa ∈ CΣ, we set 〈γ̄(xa)〉 = ⌈γ̄(xa)⌉ − γ̄(xa) (the time until γ̄(xa) reaches ⌈γ̄(xa)⌉)
and for all event-predicting clocks ya ∈ CΣ, we set 〈γ̄(ya)〉 = γ̄(ya) − ⌊γ̄(ya)⌋ (the
time until γ̄(ya) reaches ⌊γ̄(ya)⌋).
To construct cover≈R

(Γ̄), we use an equivalent description of the regions [γ̄]≈R

given as a set of constraints assembled according to the following rules [Alur and
Dill 1994]:

—For every clock c ∈ CΣ choose exactly one constraint from the set

choice(c) =
{γ̄(c) = v | v = ⊥, 0, 1, . . . ,Kc} type (1)

∪ {v − 1 < γ̄(c) < v | v = 1, . . . ,Kc} type (2)
∪ {γ̄(c) > Kc} type (3)

where Kc is the largest integer compared with the clock c,

—and for each pair of clocks c 6= c′ ∈ CΣ which are both restricted by a type (2)
constraint, choose additionally one constraint of the form

〈γ̄(c)〉 ⊲⊳ 〈γ̄(c′)〉 with ⊲⊳∈ {<,=, >} . type (4)

Hence, to compute cover≈R
(Γ̄), we have to find all constraint sets which obey

these two rules and which are consistent with Γ̄. First, we note that Γ̄ does not
impose any constraint between the values of two distinct clocks and therefore, Γ̄
does not restrict the choice of type (4) constraints in cover≈R

(Γ̄). Consequently, to
compute cover≈R

(Γ̄), we determine for each clock c the subset choiceΓ̄(c) ⊆ choice(c)
of constraints which are consistent with Γ̄. Then, cover≈R

(Γ̄) consists exactly of
those regions [γ̄]≈R

which are determined by constraints chosen from the restricted
set choiceΓ̄().
This concludes our algorithm to compute emptyAec

(q, Γ̄) which is based upon the
equivalence given in Corollary 4.40 and which uses the scheme described above for
computing cover≈(Γ̄).

Example 4.41 (Region Automaton) Reconsider the event-clock automaton Aϕ
ec

for the property

ϕ = G
(

r1 →
(

�ack ∈ [0, 2) ∧X
(

wU (r2 ∧�ack ∈ (1,∞) ∧X (wUack ))
)

))

shown in Figure 7 on page 37 and discussed in Example 4.19. We continue this
example and construct the corresponding region automaton Aϕ

ec/≈R
depicted in Fig-

ure 11. For the sake of brevity, we write below ≈ instead of ≈R.
As the event-clock automaton Aϕ

ec only deals with a single predicting clock yack, we
consider the region automaton likewise for regions determined only by yack, which
are ⊥, 0, (0, 1), 1, (1, 2), 2, > 2. Thus, the region automaton Aϕ

ec/≈ has 21 states,
namely one for each of these seven regions and for each of the individual states qa,
qb, and qc of the underlying event-clock automaton Aϕ

ec. In Figure 11, we show all
these states—leaving all unreachable states grayed out. The automaton shows for
example that reading request r1 and predicting the acknowledgement to be within 1
second will not allow to read a subsequent request r2 event.
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(qa,⊥) (qa, 0) (qa, (0, 1)) (qa, 1) (qa, (1, 2)) (qa, 2) (qa, > 2)

(qb,⊥) (qb, 0) (qb, (0, 1)) (qb, 1) (qb, (1, 2)) (qb, 2) (qb, > 2)

(qc,⊥) (qc, 0) (qc, (0, 1)) (qc, 1) (qc, (1, 2)) (qc, 2) (qc, > 2)

r2, w

ackack

w

w ack

r1

r2

Fig. 11. Region automaton for ϕ from Example 4.41.

Example 4.42 (Emptiness Check) We continue Example 4.41 and compute the
table T [q, [γ̄]≈R

] as preparation for the emptiness check according to Equation (6).
Observe that an accepting run must pass one of the qa-based states infinitely often.
This is only possible from (qa, [γ̄]≈R

) with [γ̄]≈R
6= ⊥, from (qb, (1, 2)), and from

(qc, 0), . . . , (qc, (1, 2)). For these cases, T [q, [γ̄]≈R
] evaluates to false (since the

continuation language is not empty) and to true otherwise.
Recall from Example 4.29 on page 45 the trace

u = (ack, 1), (ack, 1.5), (r1, 2), (w, 2.1), (w, 3.2), (r2, 3.3)

and the corresponding symbolic run

Θ = (qa, Γ̄−1), (qa, Γ̄−1), (qa, Γ̄−1), (qb, Γ̄2), (qb, Γ̄3), (qb, Γ̄4), constraint violation

with Γ̄2(yack) = [0, 2), Γ̄3(yack) = [0, 1.9), and with Γ̄4(yack) = [0, 0.8): After
reading the third event (r1, 2), we reach (qb, Γ̄2).
To perform the emptiness check at this state, we observe Γ̄2(yack) = [0, 2) and

compute cover≈(Γ̄2) = {0, (0, 1), 1, (1, 2)}, i.e., (qb, Γ̄2) represents all states in the
second row of Figure 11. While we have T [qb, [γ̄]≈] = true for [γ̄]≈ = {0, (0, 1), 1},
we find T [qb, (1, 2)] = false, and hence emptyAϕ

ec
(qb, Γ̄2) evaluates to false, i.e.,

the set of potential satisfying continuations is non-empty. The fourth event (w, 2.1)
brings us to (qb, Γ̄3) with Γ̄3(yack) = [0, 1.9) and cover≈(Γ̄3) = cover≈(Γ̄2). Note
that the region (1, 2) is not contained in [0, 1.9) but is still necessary to cover [0, 1.9).
Again, the so far read trace is potentially continued into an accepted word.
But upon reading the next event (w, 3.2), we reach (qb, Γ̄4) with Γ̄4(yack) =

[0, 0.8) and cover≈(Γ̄4) = {0, (0, 1)}. Since T [qb, 0] = T [qb, (0, 1)] = true we ob-
tain emptyAϕ

ec
(qb, Γ̄4) = true, i.e., the so far read trace cannot be continued into an

accepted word anymore.
This case demonstrates that the emptiness check anticipates indirect constraint

violations before symb step is able to detect these violations—recall Example 4.29,
where the constraint violation became only obvious one event later.

4.6 A Monitor Procedure for TLTL3

We are now ready to present a monitor procedure for checking TLTL properties
according to the three-valued semantics.
We symbolically execute the event-clock automaton Aϕ

ec and check the emptiness
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procedure monitorAec(a, δ)
begin

{ ---------------------------------------- }

{ step 1: initialisation (first call only) }

if first time then

P :=
{

(q, Γ̄) | q ∈ Q0 ∧ Γ̄ is initial
}

;

{ ---------------------------------------- }

{ step 2: symbolic step }

P ′
:=

{

(q′, Γ̄′) | (q, Γ̄) ∈ P
∧ e = (q, a, ψ, q′) ∈ E
∧ (q′, Γ̄′) = symb step((q, Γ̄), δ, e) } ;

P := P ′
;

{ ---------------------------------------- }

{ step 3: emptiness check }

if
∧

(q,Γ̄)∈P
emptyAec

(q, Γ̄) then

return ⊥
else

return ?

end

Fig. 12. Procedure monitorAec
(a, δ)

for each reached pair consisting of a state and a symbolic clock valuation. In
Figure 12, we show the procedure monitorAec

(a, δ) used to process a timed word
w = (a0, t0)(a1, t1) . . . event-wise. After reading an event (ai, ti) (given as an event
a = ai and a delay δ = ti − ti−1 for i > 0 and δ = 0 for i = 0), monitorAec

(a, δ)
returns ⊥ if the prefix u = (a0, t0) . . . (ai, ti) cannot be continued infinitely with
a σ ∈ TΣω such that the underlying event-clock automaton Aec would accept
uσ. Note that P is a global variable keeping track of the currently reached set of
symbolic states.

In the implementation of monitorAec
, we combine the results of Sections 4.4

and 4.5: monitorAec
executes in parallel all symbolic timed runs which match the

observed prefix and checks for the existence of possible continuations—according to
the runtime verification criterion, as stated in Corollary 4.36 taken from Section 4.4.
The runtime verification criterion involves an emptiness check for symbolic timed
runs, which is in turn implemented according to Corollary 4.40 taken from Sec-
tion 4.5.

Similar as in the discrete-time setting, given a property ϕ we run two versions of
this monitor procedure in parallel, namely one for ϕ and another one for ¬ϕ. Then
we combine the results of these two evaluations following directly the semantics of
TLTL3 to obtain the final verdict.

In Figure 13, we show the monitor proceduremonitorϕ(a, δ) for a TLTL3-property
ϕ. monitorϕ(a, δ) also reads a finite prefix event-wise in terms of an event a and a
delay δ and returns either ⊥,⊤, or ?, as determined by the semantics of TLTL3.
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procedure monitorϕ(a, δ)
begin

{ ---------------------------------------- }

{ step 1: symbolic step }

rϕ := monitorAϕ
ec
(a, δ) ;

r¬ϕ := monitorA¬ϕ
ec

(a, δ) ;

{ ---------------------------------------- }

{ step 2: compute verdict }

if rϕ = ⊥ then return ⊥ ;

if r¬ϕ = ⊥ then return ⊤ ;

return ? { note: rϕ = r¬ϕ = ? }

end

Fig. 13. Procedure monitorϕ(a, δ)

Example 4.43 We briefly consider the monitor for

ϕ = G
(

r1 →
(

�ack ∈ [0, 2) ∧X
(

wU (r2 ∧�ack ∈ (1,∞) ∧X (wUack ))
)

))

As discussed in Example 4.15, ϕ may always be violated at some future point in
time. Hence, the monitoring result for ϕ will always be either ⊥ or ?. The corre-
sponding construction of monitorA¬ϕ

ec
(·, ·) will always return ?—and there is no need

to actually call it in procedure monitorϕ(a, δ). On the other hand, monitorAϕ
ec
(a, δ)

is built from the event-clock automaton discussed in Example 4.19 and the table for
the emptiness check as given in Example 4.42.

So far, we cannot provide measurements for timed monitors as in the discrete-
time case. However, we tend to generalise the previous examples as follows:

—Similar as for LTL (as witnessed by Dwyer’s collection of properties), we expect
practically relevant TLTL formulae to be short and range over a small set of
clocks.

—Similar as for LTL, we expect the resulting event-clock automata only rarely to
be exponentially larger than the underlying formula.

—Regarding the emptiness check, note that it is only of interest, whenever time-
constraints are potentially overlapping. For the formulae given in Example 4.13,
this is only the case for the last one. Moreover, we expect, as in Example 4.42,
the region automata to have a simple structure. Thus, using representations like
difference bound matrices (DBMs, [Dill 1989]) or discrete representations as for
example the ones introduced in [Gollu et al. 1994; Grinchtein and Leucker 2008]
together with BDDs [Bryant 1985] should allow for compact representations.

Thus, while practical experience has still to be gained for the continuous-time case,
we expect our method to work well for typical examples.

4.7 Platform Adaption

In this section we discuss two practical issues arising in an implementation of the
scheme laid out in the preceding sections, namely the representation of time values
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and the detection of deadline expirations. The problem of representing time values
arises as we use real values for time values throughout the construction whereas we
cannot represent reals with infinite precision. The problem of deadline expiration
detection originates in the fact that our monitoring procedure is only reacting to
incoming events, i.e., if an event is overdue, this is not detected until another event
is processed. Below we discuss both issues.

Representing Time Values. We based our construction on timed words involving
non-negative real numbers as time stamps. But in any practical case, the occurring
time stamps will be rational numbers, mostly expressed as counters with respect
to a fixed denominator determined by some clock frequency. The correctness of
our approach in such a setting relies on the following two properties of our monitor
construction:

—Monitor computations are precision independent. Our monitor construction ma-
nipulates time values only in terms of additions, subtractions, comparisons, and
assignments of integers. Since any rational- or integer-based time representation
is closed under these operations, the system-wide used type for time values is
sufficient for monitor-internal use as well.

—Monitor generation is precision independent. The generated monitor itself re-
mains unaffected by the required precision for processing time stamps—only the
type for representing time stamps must be chosen appropriately. If the region
equivalence is used for the emptiness check, then the precomputed table T [q, [γ̄]≈]
following Corollary 4.40 remains unaffected as well.

Summarised, to adapt our approach for a given system, it is only necessary to use
the system’s type for time values throughout the generated monitor.

Detection of Deadline Expirations. Our construction ensures that if a finite prefix
u cannot be continued into an infinite word uσ satisfying some TLTL-property ϕ,
then the monitor monitorϕ will detect this fact immediately, i.e., for u of minimal
length. However, in case of timed words, the lack of events is an input in itself. For
example, if an event a is required by ϕ to occur within 4 seconds, then a quiescence
of 6 seconds is meaningful with respect to our property ϕ which cannot be satisfied
anymore. But monitorϕ will only detect the expired deadline, once the next event
is being processed by monitorϕ. There are three principal choices for dealing with
this issue:

—No further precaution. In some cases, the behaviour as provided by monitorϕ is
sufficient and hence no further provisions are necessary.

—Statically scheduled interrupts. If it is enough to detect an expired deadline within
a certain period of time, then one can use an interrupt to send a special event to
monitorϕ at a fixed rate, which is only used for checking deadline violations.

—Dynamically scheduled interrupts. Alternatively, we can compute in symb step
the very next deadline to occur in monitoring ϕ and ¬ϕ. Then one can dynami-
cally set a timeout interrupt for this minimal period of time and send an special
event to monitorϕ.

In any case, it is a simple matter to implement the desired detection of deadline
expirations for the timed monitor, given that the corresponding interrupt types are

ACM Transactions on Software Engineering and Methodology, Vol. x, No. y, mm 20yy.



Bauer et al.: RV for LTL and TLTL · 59

provided by the target platform.

5. CONCLUSIONS

In this paper, we presented a runtime verification approach for properties ex-
pressed either in lineartime temporal logic (LTL) or timed lineartime temporal logic
(TLTL), suitable for monitoring discrete-time and real-time systems, respectively.
Before introducing our technical approach, we discussed the relationship of run-

time verification with model checking and testing in depth, thereby identifying its
distinguishing features.
Runtime verification deals with finite runs and asks a suitable LTL semantics

on finite traces: In our understanding of runtime verification, we consider a finite
trace as an incrementally observed finite prefix of an unknown infinite trace. The
uncertainty of continuation of the trace may then cause a correctness property to
evaluate to either true, false or inconclusive, depending on the observered prefix and
the verified property. We proposed the three-valued logic LTL3, whose semantics
is designed correspondingly.
For formulae of this logic, a conceptually simple monitor generation procedure is

given, which is optimal in two respects: First, the size of the generated deterministic
monitor is minimal, and, second, the monitor identifies a continuously monitored
trace as either satisfying or falsifying a property as early as possible. Subsequently,
we related our approach with existing techniques. Thereby, we identified the mon-
itorable properties as strictly containing safety and co-safety properties.
We examplified our methodolgy using Dwyer’s specification patterns, for which

we run through the monitor generation. As the resulting deterministic monitors
are of reasonable sizes (mostly less than 100 states and transitions), our approach
proves to be practically feasible.
For the real-time logic TLTL, we started with an analogous definition of a three-

valued semantics. The resulting monitor construction, however, is technically much
more involved. Automata for TLTL employ so-called event recording and event
predicting clocks. Since in runtime verification the future of a trace is not known,
such predicting clocks are difficult to handle. Using specifically constructed sym-
bolic clock valuations, we were able to mimic the general approach as taken in the
discrete-time case for constructing real-time monitors.
In this paper, we laid out the foundation for discrete-time and real-time monitor-

ing of LTL and respectively TLTL properties. For the discrete-time case, we have
already implemented a prototype showing the feasibility of our approach, while an
implementation for the real-time case remains to be done as part of future work.

A. EVALUATION DATA

This appendix provides further details and the exact data we used in our evaluation
of the synthesized monitors presented in Section 2.5. The following table lists
108 formulae taken from Dwyer et al.’s comprehensive collection of temporal logic
specifications that were tagged as LTL, and from which 97 corresponded to well-
formed LTL formulae. For each formula ϕ, we generated a deterministic monitor
Mϕ via first constructing a Büchi automaton for ϕ, i.e., Aϕ, and for ¬ϕ, i.e., A¬ϕ.
The following table lists each such formula ϕ, its size, and the sizes of Aϕ and

ACM Transactions on Software Engineering and Methodology, Vol. x, No. y, mm 20yy.



60 · TOSEM

A¬ϕ. For Mϕ, we list the number of states emitting ⊤, ⊥, and ?, denoted by #⊤,
#⊥, and, respectively, #?. Moreover, we list the size of the resulting monitor.
The number of states of an automaton M is listed as |M|s, while the number of
states plus transitions is denoted by |M|. The monitorable properties are numbered
N1–N54 and depicted in Figures 4 and 5.

|ϕ| |Aϕ|s |Aϕ| |A¬ϕ|s |A¬ϕ| |Aϕ|+|A¬ϕ| #⊤ #⊥ #? |Mϕ|s |Mϕ| monitorable?

PATTERN: Constrained Response-chain 2-1
LTL: [](call Enqueue(d1) & (!return Dequeue(d1) U call Top Down) ->

<>(call Top Down & <>call P(d1,*)))

13 9 153 4 68 221 0 0 1 1 17 non monitorable
PATTERN: Constrained 3-2 Response Chain
LTL: [](call Enqueue(d1) & (!return Dequeue(d1) U call Bottom Up) ->

<>(call Bottom Up & <>call P(d1,*)))

13 9 153 4 68 221 0 0 1 1 17 non monitorable
PATTERN: Constrained 3-2 Response Chain
LTL: []((call Enqueue(d1) &

(!return Dequeue(d1) U (call Enqueue(d2) &

(!return Dequeue(d1) & !return Dequeue(d2) U call Top Down)))) ->
<>(call Top Down & <>(call P(d1) & <>call P(d2))))

24 44 5676 9 1161 6837 0 0 1 1 129 non monitorable
PATTERN: Constrained 2-1 Response Chain
LTL: [](call Enqueue & (!return Dequeue U call Empty) ->

<>(call Empty & <>return Empty(false)))

13 9 153 4 68 221 0 0 1 1 17 non monitorable
PATTERN: Existence
LTL: []((call Enqueue(d1) & <>return Empty(true)) ->

(!return Empty(true) U return Dequeue(d1)))

10 4 36 3 27 63 0 1 2 3 27 monitorable—N1

PATTERN: 2 Bounded Existence
LTL: []((call & <>open) -> ((!atfloor & !open) U

(open | ((atfloor & !open) U (open | ((!atfloor & !open) U

(open | ((atfloor & !open) U (open | (!atfloor U open))))))))))

40 16 144 8 72 216 0 0 1 1 9 non monitorable
PATTERN: Response
LTL: [](OpenNetworkConnection -> [](NetworkError -> <>ErrorMessage))

8 3 27 3 27 54 0 0 1 1 9 non monitorable
PATTERN: Existence
LTL: []((PopServerConnected & <>PlacedinMailboxes) ->

(!PlacedinMailboxes U MessagesTransfered))

10 4 36 3 27 63 0 1 2 3 27 monitorable—N2

PATTERN: Existence
LTL: <>QueuedMailSent -> (!QueuedMailSent U SMTPServerConnected)

7 4 20 2 10 30 1 1 1 3 15 monitorable—N3

PATTERN: Existence
LTL: [](!MailboxSelected) | <>(MailboxSelected & <>MailboxWindowOpen))

9 5 25 2 10 35 0 0 1 1 5 non monitorable
PATTERN: Existence
LTL: [](!MessageReady) | <>(MessageReady & <>MessageinOutbox))

9 5 25 2 10 35 0 0 1 1 5 non monitorable
PATTERN: Existence
LTL: [](!MessageDragged) | <>(MessageDragged & <>MessageMoved))

9 5 25 2 10 35 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [](Error -> [](ErrorPopup -> <>ResponsetoPopup))

8 3 27 3 27 54 0 0 1 1 9 non monitorable
PATTERN: Response
LTL: [](MessageTransferred -> [](PlacedinMailboxes -> <>MarkasUnread))

8 3 27 3 27 54 0 0 1 1 9 non monitorable
PATTERN: Existence
LTL: [](!POPServerMessageDelete) | <>(POPServerMessageDelete & <>PlacedinMailboxes)

9 5 25 3 15 40 1 0 2 3 15 monitorable—N4

PATTERN: Absence
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LTL: (<>call Execute) -> ((!call doWork) U call Execute)

7 4 20 3 15 35 1 1 2 4 20 monitorable—N5

PATTERN: Absence
LTL: []((return Execute && (<>call Execute)) -> ((!call doWork) U call Execute))

10 4 36 4 36 72 0 1 3 4 36 monitorable—N6

PATTERN: Absence
LTL: [](call doResults:i ->

((!call doResults:j) U (return doResults:i || [](!call doResults:j))))

11 3 27 3 27 54 0 1 2 3 27 monitorable—N7

PATTERN: Absence
LTL: []((call doResults:i && <>return doResults:i) ->

((!call doResults:j) U return doResults:i))

10 4 36 4 36 72 0 1 3 4 36 monitorable—N8

PATTERN: Response
LTL: [](return resultlock.wait:i -> <>call resultlock.signal:i)

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [](call doWork:i -> <>return doWork:i)

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Filter=GlobalResponse-¿GlobalResponse
LTL: [](call doResult:i -> <>return doResult:i) ->

[](return resultlock.wait:i -> <>call resultlock.signal:i)

11 5 85 4 68 153 0 0 1 1 17 non monitorable
PATTERN: Absence
LTL: [](call Execute -> ((!return Execute) U (return doWork(done==true):i || ... ||

return doResult(done==true):i || ... || workCountEQzero || [](!return Execute))))

not well formed LTL

PATTERN: Precedence
LTL: ((! return Execute ) U ( return pool.Complete || [] (!return Execute)))

8 3 15 2 10 25 1 1 1 3 15 monitorable—N9

PATTERN: Precedence
LTL: (!return pool.Finished) U (return doWork(done==true):i || ... ||

return doResult(done==true):i || ... || [] (!return pool.Finished))

not well formed LTL

PATTERN: Absence
LTL: []!(call Create:i || call Destroy:i || call Input:i ||

call Execute:i || call GetResults:i)

11 1 33 2 66 99 0 1 1 2 66 monitorable—N10

PATTERN: Filter=GlobalAbsence+GlobalPrecedence
LTL: ([]!(call Create:i || call Destroy:i || call Input:i ||

call Execute:i || call GetResults:i)) ->

((!return pool.Finished) U (return doWork(done==true):i || ... ||
return doResult(done==true):i || ... || [] (!return pool.Finished)))

not well formed LTL

PATTERN: Response
LTL: [](txB1==0 -> <>txB1==1);

[](rxBufferSem1==0 -> <>rxBufferSem1==1);
[](rxBCS1==0 -> <>rxBCS1==1);

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Universal
LTL: []((state0 & !state1 & !state2 & !state3) | (!state0 & state1 & !state2 & !state3) |

(!state0 & !state1 & state2 & !state3) | (!state0 & !state1 & !state2 & state3) )

44 1 17 2 34 51 0 1 1 2 34 monitorable—N11

PATTERN: Absence
LTL: []((state0 & <>state1) -> !(state2 || state3) U state1)

[]((state3 & <>state2) -> !(state0 || state1) U state2)

12 4 68 4 68 136 0 1 3 4 68 monitorable—N12

PATTERN: Absence
LTL: []((state1 & <>(state0 || state2)) -> !state3 U (state0 || state2))

14 4 68 4 68 136 0 1 3 4 68 monitorable—N13

PATTERN: Absence
LTL: <>connect -> (!(disconnect || poke || send || blockingSend

|| receive || blockingReceive) U connect)

17 4 516 3 387 903 1 1 2 4 516 monitorable—N14

PATTERN: Absence
LTL: []((connect && <>disconnect) -> !connect U disconnect)
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10 2 10 3 15 25 0 1 2 3 15 monitorable—N15

PATTERN: Absence
LTL: []((disconnect && <>connect) -> !(disconnect || poke || send || blockingSend ||

receive || blockingReceive) U connect)

20 2 258 3 387 645 0 1 2 3 387 monitorable—N16

PATTERN: Universal
LTL: [](blockingSendBeforeSendPlace -> !Connected)

5 1 5 2 10 15 0 1 1 2 10 monitorable—N17

PATTERN: Response
LTL: []((register a1 e1 && <> unregister a1 e1) -> (after notify artists e1 ->

((!(notify artists e1 || notify artists e2) && !unregister a1 e1) U
notify client event a1 e1)) U unregister a1 e1)

19 8 520 5 325 845 0 1 4 5 325 monitorable—N18

PATTERN: Precedence
LTL: !(notify client event a1 e1 || notify client event a2 e1) U (notify artists e1 ||

[]!(notify client event a1 e1 || notify client event a2 e1))

12 3 27 2 18 45 1 1 1 3 27 monitorable—N19

PATTERN: Absence
LTL: [](notify artists e1 -> (!(notify client event a1 e2 || notify client event a2 e2) U

(notify artists e2 || []!(notify client event a1 e2 || notify client event a2 e2))))

15 3 51 3 51 102 0 1 2 3 51 monitorable—N20

PATTERN: Absence
LTL: [](e1 szEQ0 -> (!(notify client event a1 e1 || notify client event a2 e1) U

(e1 szGT0 || []!(notify client event a1 e1 || notify client event a2 e1))))

15 3 51 3 51 102 0 1 2 3 51 monitorable—N21

PATTERN: Absence
LTL: <>register a1 e1 -> (!notify event a1 e1 U register a1 e1)

7 4 20 3 15 35 1 1 2 4 20 monitorable—N22

PATTERN: Absence
LTL: [](unregister a1 e1 -> (!notify client event a1 e1 U

(register a1 e1 || []!notify client event a1 e1)))

11 3 27 3 27 54 0 1 2 3 27 monitorable—N23

PATTERN: Constrained Response-Chain (3-1)
LTL: <>term -> []((register a1 e1 && (!unregister a1 e1 U (register a2 e1 &&

(!unregister a1 e1 && !unregister a2 e1) U notify artists e1))) ->
<>(notify artist e1 & (!notify client event a2 e1 U notify client event a1 e1)))

26 16 4112 19 4883 8995 0 0 1 1 257 non monitorable
PATTERN: Absence
LTL: [](e1 szEQ2 & (after register a1 e1 | after register a2 e1) ->

(!(register a2 e1 || register a1 e1)) U
(e1 szLT2 || []!(register a2 e1 || register a1 e1)))

19 3 387 6 774 1161 0 1 3 4 516 monitorable—N24

PATTERN: Absence
LTL: <>register a1 e1 -> (!unregister a1 e1 U register a1 e1)

7 4 20 3 15 35 1 1 2 4 20 monitorable—N25

PATTERN: Absence
LTL: [](after unregister a1 e1 -> (!unregister a1 e1 U (register a1 e1 || []!unregister a1 e1)))

11 3 27 3 27 54 0 1 2 3 27 monitorable—N26

PATTERN: Universal
LTL: []( term -> (e1 szEQ0 && e2 szEQ0))

6 1 9 2 18 27 0 1 1 2 18 monitorable—N27

PATTERN: Response
LTL: (register a1 e1 -> (!term U unregister a1 e1)) U (term | [](!term))

12 7 63 3 27 90 1 1 2 4 36 monitorable—N28

PATTERN: Response
LTL: AG(landingButi.pressed -> AF(lift.floor=i & lift.door=open))

7 2 18 2 18 36 0 0 1 1 9 non monitorable
PATTERN: Response
LTL: AG(landingButi.pressed -> AF(lift.floor=i & lift.door=open & lift.direction=down))

9 2 34 2 34 68 0 0 1 1 17 non monitorable
PATTERN: Response
LTL: AG(liftButi.pressed -> AF(floor=i & door=open))

7 2 18 2 18 36 0 0 1 1 9 non monitorable
PATTERN: Unknown
LTL: AG(floor=3 & idle & door=closed -> EG(floor=3 & door=closed))

not well formed LTL
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PATTERN: Response (constrained variation)
LTL: AG(floor=2 & direction=up & liftBut5.pressed -> A[direction=up U floor=5])

not well formed LTL

PATTERN: Response
LTL: AG(liftBut3.pressed & !lift.empty -> AF((floor=3 & dor=open) | lift.empty))

12 2 34 2 34 68 0 0 1 1 17 non monitorable
PATTERN: Unknown
LTL: AG(floor=4 & idle -> E[idle U floor=1])

not well formed LTL

PATTERN: Response (constrained variation)
LTL: AG(up & liftBut2.pressed & !liftBut3.pressed ->

A[!(floor=3 & doors=open) U ((floor=2 & door=open) | !up)])

not well formed LTL

PATTERN: Response (constrained variation)
LTL: AG(floor=3 & overloaded -> A[floor=3 U !overloaded])

not well formed LTL

PATTERN: Unknown
LTL: AG(door=open & !overloaded -> E[!overloaded U door=closed])

not well formed LTL

PATTERN: Absence
LTL: AG(!(overloaded & door=closed))

5 1 5 2 10 15 0 1 1 2 10 monitorable—N29

PATTERN: Constrained Response
LTL: [] (p -> q U r)

6 2 18 3 27 45 0 1 2 3 27 monitorable—N30

PATTERN: Absence
LTL: [] !(cr1 && cr2)

5 1 5 2 10 15 0 1 1 2 10 monitorable—N31

PATTERN: Response
LTL: [] (up -> (<> down))

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [] (p -> <>q)

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Unknown
LTL: [] (b -> ([] !np && <>r))

9 3 27 4 36 63 0 1 2 3 27 monitorable—N32

PATTERN: Existence
LTL: <> bp

2 2 6 1 3 9 1 0 1 2 6 monitorable—N33

PATTERN: Unknown
LTL: []<> (a -> (c U d))

7 4 36 2 18 54 0 0 1 1 9 non monitorable
PATTERN: Unknown
LTL: []<> (a -> <> d))

6 4 20 2 10 30 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [] ((p1 -> <>p2) && (p3 -> <>p4)) -> [](p5 -> <>p6)

16 6 390 10 650 1040 0 0 1 1 65 non monitorable
PATTERN: Unknown
LTL: (p && X q) || (q && X p)

9 4 20 5 25 45 1 1 4 6 30 monitorable—N34

PATTERN: Unknown
LTL: <> ((a && b) && b U c)

8 3 27 2 18 45 1 0 2 3 27 monitorable—N35

PATTERN: Existence
LTL: <> (p U q)

4 2 10 1 5 15 1 0 1 2 10 monitorable—N36

PATTERN: Existence
LTL: <>[] p

3 2 6 2 6 12 0 0 1 1 3 non monitorable
PATTERN: Always
LTL: [] (p U !p)

5 2 6 2 6 12 0 0 1 1 3 non monitorable
PATTERN: Universal
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LTL: []<>f

3 2 6 2 6 12 0 0 1 1 3 non monitorable
PATTERN: Universal
LTL: [](f -> []f)

5 2 6 3 9 15 0 1 2 3 9 monitorable—N37

PATTERN: Universal
LTL: []<>aftsCC

3 2 6 2 6 12 0 0 1 1 3 non monitorable
PATTERN: Existence
LTL: <>aftsCC

2 2 6 1 3 9 1 0 1 2 6 monitorable—N38

PATTERN: Absence
LTL: [](aftsCC -> !<>aftsDR)

6 2 10 3 15 25 0 1 2 3 15 monitorable—N39

PATTERN: Response
LTL: [](aftsCR -> <>aftsCC)

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Existence
LTL: aftsCR -> <>(aftsCC || aftsDR)

6 3 27 2 18 45 1 0 2 3 27 monitorable—N40

PATTERN: Filter=GlobalUniversal+GlobalAbsence
LTL: ([]<>aftsDR) -> !<>aftsCC

7 4 20 3 15 35 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [](p -> <>[]q)

6 3 15 4 20 35 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [](P(0) -> <>Q(0)) && ... && [](P(m) -> <>Q(m))

not well formed LTL

PATTERN: Universal
LTL: [](pressing -> (!arm1 in press && !arm2 in press))

8 1 9 2 18 27 0 1 1 2 18 monitorable—N41

PATTERN: Universal
LTL: []((P(0) -> Q(0)) && ... && (P(m) -> Q(m)))

not well formed LTL

PATTERN: Response
LTL: []((State=INIT && request) -> <>(State=WORK))

7 2 18 2 18 36 0 0 1 1 9 non monitorable
PATTERN: Response
LTL: [](State=WORK -> <>(State=INIT))

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Response Chain 1-2
LTL: []((State=INIT && request) -> <>(!State=INIT && (!State=INIT -> <>(State=INIT))))

14 5 25 3 15 40 0 0 1 1 5 non monitorable
PATTERN: Universal
LTL: [](EndOfCommunication -> BufferEmpty)

4 1 5 2 10 15 0 1 1 2 10 monitorable—N42

PATTERN: Absence
LTL: [](Synch(to medium) -> !Synch(to medium) U (Broadcast | []!Synch(to medium)))

11 1 5 2 10 15 0 1 1 2 10 monitorable—N43

PATTERN: Absence
LTL: []!data==id

3 1 3 2 6 9 0 1 1 2 9 monitorable—N44

PATTERN: Universal
LTL: [](safe -> one top)

4 1 5 2 10 15 0 1 1 2 10 monitorable—N45

PATTERN: Universal
LTL: [](safe -> bounded height)

4 1 5 2 10 15 0 1 1 2 10 monitorable—N46

PATTERN: Universal
LTL: [](safe -> unique ids)

4 1 5 2 10 15 0 1 1 2 10 monitorable—N47

PATTERN: Response
LTL: [](merging -> <>safe)

5 2 10 2 10 20 0 0 1 1 5 non monitorable
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PATTERN: Absence
LTL: [](merging -> !(new id U safe))

7 2 18 3 27 45 0 1 2 3 27 monitorable—N48

PATTERN: Universal
LTL: [](SignalFreeWay && !LevelCrossingClosed)

5 1 5 2 10 15 0 1 1 2 10 monitorable—N49

PATTERN: Absence
LTL: []((PDcontrolX && <>EndCycle) -> !PDcontrolContraX U EndCycle)

10 4 36 4 36 72 0 1 3 4 36 monitorable—N50

PATTERN: Response
LTL: []((SignalFreeWay && LevelCrossingClosed) ->

<>(complete RESTORE-AUTOMATICMODE && LevelCrossingClosed))

9 2 18 2 18 36 0 0 1 1 9 non monitorable
PATTERN: Universal
LTL: [](return Achieving Task -> not subscriber(this,p.memory property))

4 1 5 2 10 15 0 1 1 2 10 monitorable—N51

PATTERN: Response
LTL: [](task1 property broken -> <>task1 terminated)

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [](task1 property broken -> <>(task1 terminated || task1 property repaired))

7 2 18 2 18 36 0 0 1 1 9 non monitorable
PATTERN: Response
LTL: [](RequestedRegisterImpl[i] -> <>ServerRegistered[i])

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Existence
LTL: [](RequestGetIOR[i]=j -> (ServerRegistered[j] U GetIOR(i)))

6 2 18 3 27 45 0 1 2 3 27 monitorable—N52

PATTERN: Response
LTL: [](ClientSend[i] -> <>ClientRecv[i])

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [](ClientSend[i] -> <>ServerRecv[i])

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Response
LTL: [](ClientAskResult[i] -> <>ClientGetResult[i])

5 2 10 2 10 20 0 0 1 1 5 non monitorable
PATTERN: Unknown
LTL: [](TestImplKey[j]=ReceivedKey W !ServerRegistered[j])

8 4 20 3 15 35 0 1 1 2 10 monitorable—N53

PATTERN: Universal
LTL: [](ReceivedInteger = (SentInteger + 1))

2 1 3 2 6 9 0 1 1 2 6 monitorable—N54
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