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ABSTRACT
This paper examines the suitability and use of runtime verification
as means for monitoring security protocols and their properties.
In particular, we employ the runtime verification framework intro-
duced in [5] to monitor complex, history-based security-properties
of the SSL-protocol. We give a detailed account of the methodol-
ogy, compare its formal expressiveness to prior art, and describe
its application to an open-source Java-implementation of the SSL-
protocol. In particular, we show how one can make use of run-
time verification to dynamically enforce that assumptions on the
crypto-protocol implementations (that are commonly made when
statically verifying crypto-protocol specifications against security
requirements) are actually satisfied in a given protocol implemen-
tation at runtime. Our analysis of these properties shows that some
important runtime correctness properties of the SSL-protocol ex-
ceed the commonly used class of safety properties, and as such
also the expressiveness of other monitoring frameworks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
assertion checkers, formal methods, model checking, validation;
D.4.6 [Operating Systems]: Security and Protection—access con-
trols, cryptographic controls, verification

General Terms
Security

Keywords
Security protocols, monitoring history-based properties, security
automata, language-based security, runtime verification, temporal
logic

1. INTRODUCTION
With respect to crypto-based software (such as crypto-protocols),

a lot of successful work has been done to formally analyse abstract
specifications of these protocols for security design weaknesses.
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What is still largely missing is an approach which provides assur-
ance for implementations of crypto-based systems against security
weaknesses. This is necessitated by the fact that so far, crypto-
based software is usually not generated automatically from formal
specifications. So even where the corresponding specifications are
formally verified, the implementations may still contain vulnerabil-
ities related to the insecure use of crypto-algorithms.

In this paper, we show how this kind of assurance can be pro-
vided at runtime by making use of a methodology called runtime
verification for monitoring systems. We make use of a framework
for runtime verification which allows one to monitor both safety
and co-safety properties [5] (which goes beyond previous work on
monitoring security properties such as [24]). Being able to use co-
safety properties allows us to specify and monitor properties such
as that a certain security-providing action has been performed be-
fore another security-sensitive action is executed (for example, the
authentication has been successfully performed before the session
key is exchanged). By combining this runtime verification for the
protocol implementation with a static Dolev-Yao type verification
of the protocol specification (which can be given, e. g., as a UML
model which can be verified with tools such as [17, 28]), the com-
bination of the two approaches allows us to ensure that Dolev-Yao
type security properties will be enforced at runtime. We explain our
approach at the hand of JESSIE, an open-source implementation of
the Java Secure Socket Extension (JSSE).

Moreover, unlike other, more ad-hoc approaches on systems mon-
itoring and in particular on security monitoring, runtime verifica-
tion has a rigorous formal semantics, which is based upon temporal
logic. Many systems, especially protocols, are nowadays specified
using temporal logic to enable formal reasoning about their proper-
ties. For this purpose, the designer of a protocol specifies not only
a model of the protocol itself, but also parts of its intended func-
tionality and valid behaviour in terms of temporal logic formulae,
which can then be verified w. r. t. the protocol’s model. This proce-
dure is common practice today, and many successful examples can
be found in academia and industry alike (cf. [16, 8, 9, 7]). In par-
ticular, the linear-time temporal logic (LTL, [21]) has found wide
acceptance in industrial practice, and a derivation of it, called Prop-
erty Specification Language (PSL), has recently been standardised
by the IEEE under IEEE1850 [12]. Hence, by employing runtime
verification, temporal logic specifications become useful not only
to statically reason about a system, but also to directly check for
violations of properties at runtime, when the system operates in
nondeterministic environments, or with users in security and oth-
erwise mission critical environments. As such, expert knowledge
used to build systems can be reused also to verify them at runtime.
Even collections of formal patterns of LTL formulae nowadays ex-
ist [9] that further facilitate specification of frequently reoccurring
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system requirements, similar to security or security monitoring pat-
terns [27, 25].

Plan for this paper.
In the next section, we provide a brief overview over the fun-

damentals of runtime verification and on temporal logic as a for-
malism to specify system properties. In Sec. 3, we discuss how the
runtime verification framework we use to verify an open source im-
plementation of the SSL-protocol, exceeds other formal monitoring
approaches, and discuss its expressiveness, in general. As it turns
out, many of the properties we need to monitor in our application
are so-called co-safety properties, or an intersection of several dif-
ferent classes of properties, which previous approaches to security
monitoring (cf. [24]) did not cover. In Sec. 4, we discuss our ap-
plication in more detail, state some important properties about it,
and outline the realisation of runtime verification in this scenario.
The remaining two sections discuss related work and conclusions
of this paper.

2. RUNTIME VERIFICATION
Monitoring of systems is by no means a new technique, and

many applications in different domains exist. In practice, moni-
toring is often reduced to performing “sanity checks” at runtime
while a system executes, such as building residuals, check-sums,
or other single-state based assertions. That is, either some system
action leads to a “bad state”, or not, irregardless of the history of
actions.

One can consider a wide spectrum of approaches, ranging from
such simple predicate assertions stating properties about single
states at single system locations, to more complex, temporal, or
history-based assertions, stating properties about temporally sepa-
rated states or events at multiple program locations. From an im-
plementation point of view, the latter is clearly inspired by works of
model checking [8] temporal specifications and, at the same time,
the predominant approach to formal runtime verification as encoun-
tered in the literature (cf. [13, 15, 5, 6]).

In runtime verification, we are given a correctness property ϕ
about a system, and the system as a “black-box”, meaning that no
explicit system model is required. Then, from ϕ a so-called monitor
is automatically generated, which observes the executions of the
running system. If the observed system behaviour does not satisfy
ϕ, an alarm is raised, signalling to the operator or user of the system
that some undesired system state has been reached.

Examples of ϕ include properties stating that a certain series of
system operations is prohibited in a specific system mode (i. e., ac-
cess control), or that certain resources are available to certain users
(i. e., availability), and so forth.

In order to being able to generate monitors automatically from a
property, it needs to be defined formally. A predominant formalism
used in the literature is temporal logic, and for monitoring, linear-
time temporal logic (LTL) as originally introduced by Pnueli [21].

Hence, let us first briefly recall some basic definitions about LTL.
Let AP be a nonempty set of propositions, and Σ = 2AP be an
alphabet. Infinite words over Σ are elements from Σω and are ab-
breviated usually as w, w′, . . .. Finite words over Σ are elements
from Σ∗ and are usually abbreviated as u, u′, . . .. As is common,
we set Σ∞ = Σω ∪ Σ∗.

DEFINITION 1 (LTL SYNTAX AND SEMANTICS). The syntax
of LTL over Σ, written LTL(Σ), is inductively defined as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ, p ∈ AP.

Let ϕ ∈ LTL(Σ) be an LTL formula, and i ∈ N denote a po-

sition. The semantics of LTL formulae is then defined inductively
over infinite strings w ∈ Σω as follows:

w, i |= true
w, i |= ¬ϕ ⇔ w, i �|= ϕ
w, i |= p ∈ AP ⇔ p ∈ w(i)
w, i |= ϕ1 ∨ ϕ2 ⇔ w, i |= ϕ1 ∨ w, i |= ϕ2

w, i |= ϕ1Uϕ2 ⇔ ∃k ≥ i. w, k |= ϕ2∧
∀i ≤ l < k. w, l |= ϕ1

w, i |= Xϕ ⇔ w, i + 1 |= ϕ

We write w |= ϕ, if and only if w, 0 |= ϕ, and use w(i) to denote
the ith element in w.

Further, as is also common, we use Fϕ short for trueUϕ (“even-
tually ϕ”), Gϕ short for ¬F¬ϕ (“globally ϕ”), and ϕ1Wϕ2 short
for Gϕ1 ∨ (ϕ1Uϕ2) (weak-until). For brevity, whenever Σ is clear
from the context, we also use LTL instead of LTL(Σ). Moreover,
we make use of the standard Boolean operators ⇒,∧, . . . that can
easily be defined via the above.

EXAMPLE 1. Let us give some intuitive yet abstract examples
of LTL specifications, and let ϕi ∈ LTL, and p ∈ AP . For in-
stance, GFp asserts that always p will eventually occur. ϕ1Uϕ2

states that ϕ1 holds until ϕ2 holds, and ϕ2 will eventually hold.
On the other hand, Gp asserts that always p is true on a given
trace.

For each formula ϕ ∈ LTL, we can construct a so-called Büchi
automaton Aϕ, such that the accepted language of the automaton,
L(Aϕ), consists of all the models of ϕ, i. e., L(ϕ). This construc-
tion is known to be exponential in the size of the formula (cf. [14]).

Büchi automata are structurally equivalent to standard finite au-
tomata, but accept infinite words, which are also the models for
LTL formulae. Moreover, Büchi automata are at the heart of many
analyses that are peformed on LTL specifications, such as model
checking; that is, language-emptiness checks and language-inclu-
sion are well-understood and decidable problems. Notice, however,
that nondeterministic Büchi automata are strictly more expressive
than deterministic ones. Hence, we cannot, in general, convert the
nondeterministic ones into deterministic ones for all formulae in
LTL alike. This is one of the problems, which has to be addressed
in runtime verification of LTL formulae.

We can map a system’s behaviour to individual actions that are
formally captured by the alphabet Σ. A series of actions then cor-
responds to a string or word w of a formal language L ⊆ Σ∞,
written w ∈ L.

Moreover, given ϕ ∈ LTL, we can construct a monitor Mϕ

which reads a prefix of a possibly infinite word w ∈ Σω , writ-
ten u ≺ w, where u ∈ Σ∗, telling whether uv |= ϕ, uv �|= ϕ, or
neither. Notice, v ∈ Σω is an infinite extension to u, respectively.

The monitor device itself, which can also be specified in terms
of a function Mϕ : Σ∗ → {�,⊥, ?}, is derived from the Büchi
automaton of ϕ, but with additional modifications to its structure
and acceptance condition to cater for the finite-trace interpretation
of LTL. As such, a monitor is, but a finite state machine (FSM)
interpreting whether or not the finite prefixes of some infinite word
are sufficient to deduce the violation (⊥), or satisfaction of ϕ (�),
or neither (?).

In fact, closing, or at least narrowing the gap between temporal
logic models, which are infinite structures, and finite traces of sys-
tem observations is a major challenge that gets addressed in almost
all runtime verification approaches alike. We omit the technical de-
tails at this point, but refer the reader to [5, 6, 10] instead. What
is essential for our purpose is to know that there exist finite trace
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Figure 1: FSM ¬ClientKeyExchangeSUCertificateR.

intepretations for LTL, such that monitors can be built according to
the above sketched ideas. Moreover, many of the monitor construc-
tions known from the literature do, in fact, rely on the LTL-to-Büchi
conversion as a first step towards a getting a FSM, i. e., monitor.

EXAMPLE 2. In case of our SSL-application, one security prop-
erty to monitor is that the client will not send out the ClientKeyEx-
change message before it has received the Certificate message
from the server, has performed the validity check for the certificate
as specified in Fig. 3, and this check turned out to be positive (see
Sec. 4). Hence, we have a set of propositions

AP = {ClientKeyExchangeS , CertificateR},
a specification ϕ = ¬ClientKeyExchangeSUCertificateR, and
obtain indirectly via the Büchi automaton construction, the FSM
depicted in Fig. 1. (For brevity, the intermediate steps in the con-
struction are omitted at this point.) Each reachable state has an
output symbol associated, stating whether ϕ is satisfied, violated,
or neither. Labels on transitions indicate which symbols in the mon-
itor’s input trigger a transition. Σ on a loop means that any input
triggers the corresponding transition. For instance, an observed
trace u = ∅∅ . . . {CertificateR} would lead to satisfaction of ϕ,
whereas u′ = {ClientKeyExchangeS} would lead to violatation
of ϕ.

Although the property to be monitored is also rather “simple”,
the example highlights and summarises the general ideas behind
runtime verification. Notice that Schneider’s Security Automata
[24] are a special instance of runtime verification, and are discussed
in greater detail in the next section. As is the case in runtime veri-
fication, security automata are directly derived from the Büchi au-
tomaton of a temporal logic formula.

3. EXPRESSIVENESS
In his seminal paper [24], Schneider introduced the concept of

Execution Monitoring (EM) Enforceability and that of Security Au-
tomata for monitoring security policies. He also gives a classi-
fication of the properties that can be monitored using security au-
tomata, and puts forward the application areas of access control and
availability, which we briefly mentioned in the previous section.
The reason for Schneider’s choices lies in that properties describing
access control or availability violations correspond to, essentially,
safety languages, a concept which we are going to introduce and
review in this section from a temporal-logic point of view.

DEFINITION 2 (SAFETY, BAD PREFIX). Let L ⊆ Σω be a
language on infinite words over alphabet Σ. A prefix u ∈ Σ∗

is a bad prefix for L, if for every w′ ∈ Σω the following holds:
uw′ �∈ L.

If ∀w ∈ Σω\L. ∃u ∈ Σ∗ such that w = uw′ for some w′ ∈ Σω ,
and ∀w′′ ∈ Σω. uw′′ �∈ L, L is a safety language (also called a
safety property).

Clearly, L can be expressed, for instance, by any formula in LTL,
ϕ. In other words, if all models of ϕ, captured by the set L(ϕ),
span a safety language, then all infinite words that are not part of
the language, i. e., which violate ϕ, must have a finite bad prefix.
After reading this prefix, it is clear that any (infinite) extension to
this prefix must also violate ϕ. Hence, safety properties are usually
considered to being suitable for monitoring, where only finite pre-
fixes of system behaviour can be observed. Notice, we adopt the
notation u ≺ w to say that u is a prefix of w.

In [22], the notion of a monitorable property is introduced which,
basically, subsumes all properties that can be violated or satisfied
upon reading a finite prefix. Let us adopt this notion for our pur-
poses, and let us point out that a more detailed account of this con-
cept is also available in [6].

Moreover, since security automata can be understood as a special
kind of runtime verification (runtime verification subsumes other
types of languages, but safety as well), we are going to review
non-safety languages for their suitability to express properties of
security-critical applications (see also Lemma 1).

DEFINITION 3 (LIVENESS). Let L ⊆ Σω be called a liveness
language, if for all prefixes u ∈ Σ∗ the following holds: ∃w ∈ Σω :
uw ∈ L.

In an early work, Lamport pointed out that all “interesting prop-
erties” about systems could be expressed using safety and liveness
languages [20]. For static verification techniques, such as model
checking, this does not impose any problems, but for monitoring,
liveness properties can impose a problem: they may require that
both the models as well as the counterexamples of a property are
infinite structures without bad, respectively good (see also Defini-
tion 4), prefixes.

However, there are interesting language classes “in between” the
safety and liveness hierarchy, which either have finite models or
finite counterexamples, or even both. Arguably, the most important
class is that of a co-safety language.

DEFINITION 4 (CO-SAFETY, GOOD PREFIX). Let L ⊆ Σω .
A prefix u ∈ Σ∗ is a good prefix for L, if for all w′ ∈ Σω the
following holds: uw′ ∈ L.

If for all w ∈ L, there exists a good prefix u ∈ Σ∗, such that
w = uw′ with w′ ∈ Σω , then L is called a co-safety language.

Moreover, there exists a set-theoretic categorisation of languages
in the so-called Cantor space or topology (cf. [3]), which explains
the tight connection between safety and co-safety languages. In
a nutshell, in this topology, safety languages correspond to closed
sets. Consequently, the negation of a safety property corresponds
to an open set, which in turn, describes a co-safety property. Again,
in informal terms, if L is a safety language, then L, the complement
of L, is a co-safety language.

The practical implication of this is that although liveness lan-
guages are generally unsuitable for monitoring, there exist sub-
classes which are, indeed, monitorable as captured by the following
proposition.

PROPOSITION 1. There are liveness properties which have a
finite good prefix. These properties are co-safety properties. Not
all co-safety properties are liveness properties.

PROOF. (Sketch) Recall, liveness of L asserts ∀u ∈ Σ∗. ∃w ∈
Σω. uw ∈ L. Now, consider the property ϕ = Fp, and let Σ∗pΣω

be a regular expression denoting the set of all words that begin with
arbitrary but finitely many symbols from Σ, followed by p, and
then followed again by infinitely many symbols from Σ. Clearly,
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Figure 2: Different language classes

L(ϕ) = L(Σ∗pΣω). Moreover, the regular expression intersects
with the definitions of both liveness and co-safety: The ∀u ∈ Σ∗

in the liveness definition matches the initial Σ∗ of the regular ex-
pression, and pΣω matches the ∃w ∈ Σω. uw ∈ L. Co-safety is
covered, because all infinite words do, indeed, have a finite good
prefix expressed as Σ∗p, after which “anything” can be added.

For the second part of the proposition, let us consider a property
ϕ′ = aUb. Again, it is easy to see that this is a co-safety property
since all finite words containing a’s until a b occurs can be arbi-
trarily extended, similarly as above. However, ϕ′ is not a liveness
property. Consider the following trace: u′ = ∅, i. e., neither a nor b
hold. Clearly, u′ cannot be extended to anything satisfying ϕ′, thus
violating the definition of liveness.

Schneider called the safety languages, the enforcable properties,
which can be monitored/enforced using security automata as can
be seen from the following contraposition:

PROPOSITION 2 ([24]). If the set of executions for a security
policy ϕ is not a safety language, then an enforcement mechanism
from EM does not exist for ϕ.

Obviously, the rationale for this is that violations of safety prop-
erties can be detected after reading a finite stream of system events.
This, for example, is not possible when trying to enforce the live-
ness property GFp as is pointed out above—its models as well
as counterexamples are both infinite words without distinguishing
prefixes. We leave the substantiation of this claim as an excercise
to the reader.

The additional expressiveness as compared to Prop. 2 that we
gain from using runtime verification is captured in the following
lemma as well as in Fig. 2, which exemplifies our findings. No-
tice that in the figure, the area labelled “liveness” represents the
strict liveness properties, i. e., those not including co-safety, and
vice versa for “safety”.

LEMMA 1. Let EM be the enforceable properties, and MON
be the monitorable properties, then EM ⊂ MON .

PROOF. (Sketch) Above, we have set MON to be the properties
which can be either violated, satisfied, or both, using a finite prefix.
Clearly, the lemma holds, since EM corresponds to safety, and we
have seen, for example, that co-safety can be satisfied using a finite
prefix.

The security properties of the SSL-protocol that we are consid-
ering in the remainder are within the class MON of properties.

4. RUNTIME SECURITY PROPERTIES OF
THE SSL-PROTOCOL

We apply the approach sketched above to the implementation of
the Internet security protocol SSL in the project JESSIE, which is an

Message name Class of Message Type Message Type
ClientHello ClientHello CLIENT_HELLO
ServerHello ServerHello SERVER_HELLO
Certificate* Certificate CERTIFICATE
ClientKeyExchange ClientKeyExchange CLIENT_KEY_EXCHANGE
Finished Finished FINISHED

Figure 4: Data for the Handshake message

open-source implementation of the Java Secure Sockets Extension
(JSSE). The whole JESSIE project currently consists of about 5 MB
of code, but the part directly relevant to SSL consists of less than
700 KB in about 70 classes.

4.1 The SSL Protocol
SSL is the de facto standard for securing http connections, which

however has been the source of several significant security vulner-
abilities in the past [1] and is therefore an interesting target for a
security analysis. In this paper, we concentrate on the fragment
of SSL that uses RSA as the cryptographic algorithm and provides
server authentication (cf. Fig. 3).

As usual in the formal analysis of crypto-based software, the
crypto algorithms are viewed as abstract functions. In our appli-
cation, these abstract functions represent the implementations from
the Java Cryptography Architecture (JCA). The messages that can
be created from these algorithms are then as usual formally defined
as a term algebra generated from ground data such as variables,
keys, nonces, and other data using symbolic operations. These
symbolic operations are the abstract versions of the cryptographic
algorithms. Note that the cryptographic functions in the JCA are
implemented as several methods, including an object creation and
possibly initialisation. Relevant for our analysis are the actual cryp-
tographic computations performed by the digest(), sign(),
verify(), generatePublic(), generatePrivate(), nextBytes(), and
doFinal() methods (together with the arguments that are given be-
forehand, possibly using the update() method), so the others are
essentially abstracted away. Note also that the key and random gen-
eration methods generatePublic(), generatePrivate(), and
nextBytes() are not part of the crypto term algebra but are formal-
ized implicitly in the logical formula by introducing new constants
representing the keys and random values (and making use of the
inv(E) operation in the case of generateKeyPair()). In that term
algebra, one defines the equations dec(enc(E,K),inv(K))=E and
ver(sign(E,inv(K)),K,E)=true for all terms E,K, and the usual laws
regarding concatenation, head(), and tail().

In our particular protocol, setting up the connection is done by
two methods: doClientHandshake() on the client side and
doServerHandshake() on the server side, which are part of the
SSL socket class in jessie-1.0.1/org/metastatic/jessie/provider.
After some initialisations and parameter checking, both methods
perform the interaction between client and server that is specified in
Fig. 3. Each of the messages is implemented by a class, whose main
methods are called by the doClientHandshake() rp. doServer-
Handshake() methods. The associated data is given in Fig. 4.

We must now determine for the individual data how it is imple-
mented on the code level, to then be able to verify that this is done

Random(int gmtUnixTime, byte[] randomBytes)
{

this.gmtUnixTime = gmtUnixTime;
this.randomBytes = (byte[])randomBytes.clone();

}

Figure 5: Constructor for random
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Figure 3: The cryptographic protocol implemented in SSLSocket.java

Figure 6: Data in ClientHello message

correctly. We explain this exemplarily for the variable random-
Bytes written by the method ClientHello to the message buffer. By
inspecting the location at which the variable is written (the method
write(randomBytes) in the class Random), we can see that the
value of randomBytes is determined by the second parameter of
the constructor of this class (see Fig. 5).

Therefore the contents of the variable depends on the initiali-
sation of the current random object and thus also on the program
state. Thus we need to trace back the initialisation of the object.
In the current program state, the random object was passed on to

the ClientHello object by the constructor. This again was deliv-
ered at the initialisation of the Handshake object in SSLSocket.
doClientHandshake() to the constructor of Handshake. Here
(within doClientHandshake()), we can find the initialisation of
the Random object that was passed on. The second parameter is
generateSeed() of the class SecureRandom from the package
java.security. This call determines the value of randomBytes in
the current program state. Thus the value randomBytes is mapped
to the model element RC in the message ClientHello on the model
level. For this, java.security.SecureRandom.generateSeed()
must be correctly implemented. To increase our confidence in this
assumption of an agreement of the implementation with the model
(although a full formal verification is not the goal of this paper), all
data that is sent and received must be investigated. In Fig. 6, the
elements of the message ClientHello of the model are listed. Here
it is shown which data elements of the first message communica-
tion are assigned to which elements in the doClientHandshake()
method.

4.2 Monitoring security properties
A crypto-protocol like the one specified in Fig. 3 can then be ver-

ified at the specification level for the relevant security requirement
such as secrecy and authenticity. This can be done using one of
the tools available for this purpose, such as [17] which is based on
the well-known Dolev-Yao adversary model for security analysis.
The idea is here that an adversary can read messages sent over the
network and collect them in his knowledge set. The adversary can
merge and extract messages in the knowledge set and can delete
or insert messages on the communication links. The security re-
quirements can then be formalised using this adversary model. For
example, a data value remains secret from the adversary if it never
appears in the knowledge set of the adversary.

One can then use runtime verification to make sure that the im-
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plementation correctly and securely implements the specification,
and in particular implements the security properties previously
demonstrated at the specification level.

For this we first need to determine how important elements at the
model level are implemented at the implementation level. This can
be done in the following three steps:

• Step 1: Identification of the data transmitted in the sending
and receiving procedures at the implementation level.

• Step 2: Interpretation of the data that is transferred and com-
parison with the sequence diagram.

• Step 3: Identification and analysis of the cryptographic guards
at the implementation level.

In step 1, the communication at the implementation level is exam-
ined and it is determined how the data that is sent and received can
be identified in the source code. Afterwards, in step 2, a meaning is
assigned to this data. The interpreted data elements of the individ-
ual messages are then compared with the appropriate elements in
the model. In step 3, it is described how one can identify the guards
from the model in the source code.

To this aim, it first needs to be identified at which points in
the implementation messages are received and sent out, and which
messages exactly. To be able to do this, we exploit the fact that in
many implementations of crypto-protocols, message communica-
tion is implemented in a standardized way (which can be used to
recognise where messages are sent and received).

The common implementation of sending and receiving messages
in cryptographic protocols is through message buffers, by writing
the data into type-free streams (ordered byte sequences), which are
sent across the communication link, and which can be read at the
receiving end. The receiver is responsible for reading out the mes-
sages from the buffer in the correct order in storing it into vari-
ables of the appropriate types. This is done by using the meth-
ods write() from the class java.io.OutputStream to write the data
to be sent into the buffer and the method read() from the class
java.io.InputStream to read out the received data from the buffer.
Also, the messages themselves are usually represented by message
classes that offer write and read methods and in which the write
and read methods from the java.io are called.

According to the information that is contained in a sequence di-
agram specification of a crypto-protocol, the runtime verification
needs to keep track of the following information: 1. Which data is
sent out? and 2. Which data is received?

The runtime checks will enforce that the relevant part of the im-
plementation conforms to the specification in the following sense.
1. The code should only send out messages that are specified to be
sent out according to the specification and in the correct order, and
2. these messages should only be sent out if the conditions that have
to be checked first according to the specification are met.

Some examples for such properties in the case of the SSL-protocol
specified in Fig. 3 are given by the following requirements that arise
from the above discussion:

1. The client will not send out the ClientKeyExchange mes-
sage until it has received the Certificate message from the
server, has performed the validity check for the certificate as
specified in Fig. 3, and this check turned out to be positive.
If that is the case, the client will indeed send out the Clien-
tKeyExchange message eventually.

2. The server will not send the Finished message to the client
before the MD5 hash received from the client in the Finished

message has been checked to be equal to the MD5 created by
the server, and correspondingly for the SHA hash, but will
send it out eventually after that has been established.

3. The client will not send any transport data to the server be-
fore the MD5 hash received from the server in the Finished
message has been checked to be equal to the MD5 created by
the client, and correspondingly for the SHA hash.

In the concluding example of Sec. 2, we have already discussed a
formalisation of the first property, namely,

ϕ1 = ¬ClientKeyExchangeSUCertificateR

where {ClientKeyExchangeS , CertificateR} ⊆ AP is the set of
atomic propositions that match the sending and receiving events of
ClientKeyExchange and Certificate. Recall that the stream of
events processed by our monitor consists of elements from 2AP ;
that is, at each point in time, the application keeps track of both
events the sending of ClientKeyExchange and the receiving of
Certificate. If none of the events was observed, the according
propositions are interpreted as ⊥, otherwise as �. Moreover, ϕ1 is
a classical co-safety property. For the actual monitor of this prop-
erty as well as examples for violating as well as satisfying observed
system behaviour, see Sec. 2.

Let us examine the second property as given above. It involves
comparison of values and function calls. Since this cannot be mod-
elled using LTL directly, we instead adapt the set of atomic propo-
sitions as follows. Let

{FinishedS , (MD5(FinishedR) = MD5(FinishedS)),
(SHA(FinishedR) = SHA(FinishedS))} ⊆ AP.

In other words, we define two propositions that are interpreted as �,
if and only if the equality condition holds, which we have to check
in the code of our application in terms of comparing the MD5 and
SHA hash values. The corresponding property w. r. t. AP is then

ϕ2 = (¬FinishedSW(MD5(FinishedR) = MD5(FinishedS)))
∧(F(MD5(FinishedR) = MD5(FinishedS)) ⇒ FFinishedS),

and we assume some ϕ′
2 where all occurrences of the proposi-

tion (MD5(FinishedR) = . . .) are replaced by the proposition
(SHA(FinishedR) = . . .) from AP , respectively. Hence, we
create two monitors for this security requirement: one for ϕ2 and
another one for ϕ′

2. Notice, ϕ2 and ϕ′
2 are neither strictly safety

nor strictly co-safety properties. For instance, consider a trace
u = ∅{FinishedS}, which violates the first part of our conjunc-
tion since FinishedS = �, but (MD5(FinishedR) = . . .) = ⊥.
On the other hand, the trace v = ∅{(MD5(FinishedR) = . . .)}
is a model for ϕ, since our second observation in v shows that
the MD5 checksum was successfully compared, and until then,
FinishedS = ⊥ held. Recall ∅ means that all propositions are
interpreted as ⊥. ϕ2 is not co-safety since there exists the infi-
nite model v′ = ∅∅ . . . without a good prefix, i. e., FinishedS

never holds. Moreover, it is not safety since, there exists the in-
finite counterexample u′ = {(MD5(FinishedR) = . . .)}∅∅ . . .
without a bad prefix.

Finally, requirement 3. can be formalised as follows.

ϕ3 = ¬DataW((MD5(FinishedR) = MD5(FinishedS)),

where AP is as in the previous example, but additionally contains
an action, indicating the sending of data, Data. Now we have a
safety property since all traces of violating behaviour for ϕ3 are
finite, or in other words: there exist no infinite counterexamples
that cannot be recognised with a bad prefix. It is not co-safety since
the infinite trace w = ∅∅ . . . satisfies ϕ3, which would be the case
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if an intruder has intercepted and kept the Finished message, such
that it is never received at the server-side. Again, as in the previous
example, we create a second monitor to check the outcome of the
SHA-comparison.

Notice that monitoring strict safety properties, such as Gp, means
that the corresponding monitor would output ? as long as no vio-
lation occurred, but never �, since all models are infinite traces
without good prefixes. However, ϕ2 and ϕ3 are such that they do
have finite models, hence the corresponding monitor can output all
three values of {�,⊥, ?}, depending on the observed system be-
haviour. The same holds for ϕ1, although it is strictly a co-safety
property.

Code instrumentation & realisation.
Technically, our Java implementation of the SSL-protocol needs

to set or unset the atomic propositions as system events are created,
e. g., by the sending and receiving of messages, or by the outcomes
of comparing actual values with reference values, and so forth. Our
monitors then process the resulting stream of actions, in that the set-
ting or the unsetting of propositions creates a new action, each time
this occurs. As such, the notion of a next-state as asserted by the
LTL-operator X is somewhat misleading in our application, since
it does not operate synchronously to some global discrete clock.
Hence, we can actually chose the so-called “next-free” fragment of
LTL, and point out that our properties are then closed under “stut-
tering” (cf. [11]). But this is a minor technical detail.

Once the monitors are generated for all relevant specifications,
the only code that needs to be added to the main application is
the code to set or unset propositions, and the code for handling
communication between the monitors and the application itself.

Notice that other comprehensive Java programs are often devel-
oped in parallel using event logging libraries such as log4j, which
can then directly be used for capturing all relevant system events
that the monitors require. If no such library is used, as in our exam-
ple, then the set of relevant events needs to be identified first, and
all occurrences in the code be instrumented, accordingly.

5. FURTHER RELATED WORK
We have already pointed out the significance of security automata

as described in [24], and their relation to other works on formal ver-
ification and languages. In [19] Krukow et al. describe the use of
runtime verification for access control in reputation systems, such
as realised in parts by ebay.com. One of their main contributions
is a quantification extension to standard LTL, and to show means
to enforce properties expressed in this logic. However, unlike in
our framework, they employ a different fragment of LTL, which al-
lows one to “look into the past” rather than the future and present.
Although both logics are semantically equivalent, we would like
to point out that our fragment is much closer to already existing
and standardised temporal logic verification tools than the one by
Krukow et al. A similar although less technical approach to access
control is also described in [23]. Moreover, there exists a large
body of work in using runtime verification in combination with
aspect-oriented programming, and many such applications employ
the Java programming language as a means for implementation (cf.
[2]). Since our case study is at the moment at a prototypical stage,
we believe that our ad-hoc approach to code instrumentation could
well benefit from some of the ideas presented in this area. Work on
model-based runtime checking of security permissions is reported
in [18]. That work does not use LTL but uses UML sequence di-
agrams and statecharts as the specification notation (and the em-
phasis of that work is on security permissions rather than crypto-
protocols).

6. CONCLUSIONS
Runtime verification allows us to monitor even complex, history-

dependent specifications as they arise e.g. for security protocols.
We have seen, in particular, that some crucial runtime correctness
properties of our SSL-implementation could not be monitored us-
ing prior formal approaches to monitoring security-critical systems,
since they fall into the class MON of properties that can be mon-
itored by our approach but not, e.g., in the class EM of properties
that can be monitored using Schneider’s security automata.

However, as can also be seen by some of our properties, it is often
difficult to decide whether or not a formula is a safety property,
whether it is co-safety, or neither—even for the trained eye. In
fact, due to [4, 26] it is known that given some formula ϕ ∈ LTL,
deciding whether L(ϕ) is safety (co-safety) is a PSPACE-complete
problem. Hence, there are practical limitations to our approach,
whenever it is not clear to the designer of a system, whether or not
some imposed security property is monitorable at all. However,
due to the completeness result, we cannot hope to provide a more
efficient or convenient way for performing this check.

Once the monitors are generated, then the resulting overhead
from using monitors is minimal. The particular approach described
in [5], in fact, creates monitors with optimal space complexity w. r. t.
the property to be monitored. (It should be pointed out, however,
that the intermediate steps in generating a monitor involve a dou-
ble exponential “blow up” in the length of the specification, but this
does not affect runtime efficiency.) On the other hand, sophisticated
event logging libraries such as log4j can create a considerable space
and time overhead, which is another reason why we have chosen to
instrument our application manually in a lightweight fashion.
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