Monitoring Real Android Malware

Jan-Christoph Kiister"'? and Andreas Bauer®

INICTA*, ?Australian National University, >TU Miinchen

Abstract. In the most comprehensive study on Android attacks so far
(undertaken by the Android Malware Genome Project), the behaviour of
more than 1,200 malwares was analysed and categorised into common,
recurring groups of attacks. Based on this work (and the corresponding
actual malware files), we present an approach for specifying and identi-
fying these (and similar) attacks using runtime verification.

While formally, our approach is based on a first-order logic abstraction of
malware behaviour, it practically relies on our Android event interception
tool, MonitorMe, which lets us capture almost any system event that can
be triggered by apps on a user’s Android device.

This paper details on MonitorMe, our formal specification of malware
behaviour and practical experiments, undertaken with various different
Android devices and versions on a wide range of actual malware incar-
nations from the above study. In a nutshell, we were able to detect real
malwares from 46 out of 49 different malware families, which strengthen
the idea that runtime verification may, indeed, be a good choice for mo-
bile security in the future.

1 Introduction

The landmark work undertaken by the Android Malware Genome Project
(AMGP, [15]) is the first that comprehensively collected and systematically anal-
ysed more than 1,200 Android malware samples. Despite the high total amount
of unique samples, their study reveals that those can be divided into only 49 fam-
ilies and described by even fewer recurring attack patterns, which fall into the
following categories: information stealing, financial charges, privilege escalation
and malicious payload activation.

Inspired by those patterns, we formalise in this paper common malicious
behaviour in our own specification language (published prior in [2]) to dynam-
ically identify real malware on a user’s Android device; that is, by checking its
runtime footprint against our specifications. As our approach has access to the
actual executed behaviour of apps, it can complement static analysis techniques,
whose malware detection often faces difficulties in face of code obfuscation (cf.
[11]). Dynamic analysis techniques on the other hand, which are often used on an
emulator in order to detect malware, face difficulties with samples that employ
recent emulator-detection techniques (cf. [13]). Naturally, this is not a problem
either when working directly on the device.

We were able to detect suspicious behaviour of 46 out of 49 malware fam-
ilies from the AMGP, while generating 28% positive alerts when monitoring a
representative set of 61 benign apps with our specifications.

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

For conducting our experiments we have developed a standalone monitoring
app, called MonitorMe. Compared to other approaches, which are usually either
app- or platform-centric (see discussion in §5), its major advantage is that it com-
bines the strengths of both “worlds”, i.e., while it is easy to install on a user’s
off-the-shelf device, it is also capable of gathering all system events necessary for
our analysis, without requiring the modification of either the Android platform
or apps themselves (cf. [6,4, 1, 14]). Hence, for a future, stable version of our pro-
totype, we have the average phone user in mind, assuming that specifications are
centrally created by security experts and that the app receives regular updates
to them over the internet. Currently, MonitorMe runs on various devices of the
Google Nexus family (tested for Nexus S, 7 and 5), and is portable to older and
very recent Android versions (2.3.6, 4.3 and 5.0.1). However, we require devices
to be rooted to load a Linux kernel module. This may seem restrictive, but one
should keep in mind that it has become common practice by now and does not
disrupt the user experience by reinstalling the system on the device at hand.

Outline. In the next section, we give a technical overview of MonitorMe. Our
specification language and its use for monitoring malware is introduced in §3,
followed by experiments (§4.1) demonstrating that our policies help identify most
AMGP-families. The experiments further demonstrate (§4.2) that only few false
positives for benign apps are generated and that performance- and portability-
wise our approach does, indeed, lend itself to be executed on almost arbitrary
end-user Android devices.

2 Event Interception with MonitorMe

To enable our modular way of malware detection on a user’s device, we have
developed a monitoring app,’ which has two main components (depicted in
Fig. 1): a framework for collecting system events on the Android platform (grey
area, named DroidTracer?), and an analysis component (on top of DroidTracer),
which receives those events in chronologi-

cal order and incrementally “feeds” them MonitorMe App
. . 3 Scala/java : R Ltifo2mon
into monitors generated by Ltlfo2mon. Monitoring

We create a monitor for each of our policies | ' 4 . s

Java ! Android service
Unmarshalling

A

. . . i
that specifies a certain malware behaviour ‘
|
‘ T
|
|
|

and run a copy of them per app under in-
spection. Ltlfo2mon is written in Scala, but
is compatible to run as part of an Android
app in Java. In short, the monitoring algo- | e HH'H-P.:-
rithm creates an automaton for each LTL-

like subformula in a policy. These are then

spawned with concrete values based onob- ' DroidTracer

served system events at runtime (for de- Fig. 1: Architecture of MonitorMe.
tails of the algorithm see [2]). It is worth

C++ ! Native library

Netlink endpoint

c Kernel module
System call interception

! http://kuester.multics.org/MonitorMe/
2 http://kuester.multics.org/Droid Tracer/
3 https://github.com/jckuester /ltlfo2mon

pointing out that DroidTracer works without polling for events, i.e., a Java call-
back method is triggered whenever a new system event occurs. Furthermore,
DroidTracer is implemented as a standalone library so that it can be integrated
in third-party apps for other analyses.
DroidTracer. In the following we explain the inner workings of DroidTracer
(three sub-components marked as white inside the grey area); that is, the novel
way on how we intercept interactions between apps and the Android platform
without requiring platform or app modifications. As there is no public API for
this task, not even on a rooted device, nor any complete documentation about
Android’s internal communication mechanism, our approach is mainly based on
insights gained from reverse engineering.
System call interception. We exploit the fact of Android’s security design that
the control flow of all apps’ actions that require permission, such as requesting
sensitive information (GPS coordinates, device id, etc.) or connecting with the
outside world (via SMS, internet, etc.), must eventually pass one of the system
calls in the Linux kernel; for example, to be delegated to a more privileged system
process that handles the request. In other words, intercepting the control flow
at a central point in kernel space does not allow apps to bypass our approach.
Furthermore, system calls are unlikely to change so that hooking into them is
fairly robust against implementation details on different Android versions.
Hence, our idea is to use kprobes* (the kernel’s internal debugging mech-
anism) to intercept system calls in a non-intrusive way. More specifically, we
built a custom kernel module (bottom sub-component in Fig. 1), which contains
handler methods that get invoked by small bits of trampoline code (so called
probes). We add those with kprobes dynamically to the following system calls:

e sys_open(const char __user *filename, ...), opens files with filename for read/write.

e sys_connect(int sockfd, const struct sockaddr *addr, ...), where addr contains the
IPv4 or IPv6 address of an established internet connection.

e do_execve(char *filename, char __user *__user *argyv, ...), where filename is a program
or shell script being executed with the arguments argv.

e ioctl(...), is used to control kernel drivers, such as Android’s Binder driver.

From the function arguments of ioctl we cannot directly retrieve relevant infor-
mation (unlike for the other system calls shown above, which provide to us IP
addresses, opened files, or executed program names). The reason is that infor-
mation is compactly encoded (for efficiency reasons), when sent through ioctl by
Android’s own inter process communication (IPC) mechanism, called Binder.®
As Binder handles the majority of interesting interactions between apps and the
Android platform, its decoding is crucial for our analysis. Hence, for a deeper un-
derstanding of Binder’s control flow, we look at the following Java code snippet
of a method call that an app developer might write to send an SMS.

SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage("12345", null, "Hello!", null, null);

* https://www.kernel.org/doc/Documentation/kprobes.txt
® http://developer.android.com /reference/android /os/Binder.html

App System server
DalvikVM DalvikVM
classes.dex
(Location service) ~ (SMSsemvice) (..)
Android API Y Android API
SmsManager D)
v
(| IsmsProxy D) (. 'smsStub D)
i Binder Parcel
(»Bmder) (Parcel) ‘‘‘‘‘ (:) ()
i fibbinderso - ’”' libbinderso _}-

joctl() ioctl()
{ ,(Binder driver)

Fig.2: An app (left) requesting the Android platform (right) to send an SMS.

Figure 2 illustrates the control flow of the Binder communication when this code
is executed. All Java code of an app is compiled into a single Dalvik executable
classes.dex (upper left box), which runs on its own Dalvik VM. The called method
sendTextMessage() is part of the Android API (lower left box), which is linked
into every app as a JAR file. But instead of implementing the functionality
of sending an SMS itself, it rather hides away the technical details of a remote
procedure call (RPC); that is, a call of a Java method that lives in another Dalvik
VM (right box). What further happens is that SmsManager calls the method
sendText() of the class Proxy, which has been automatically generated for the
ISms interface. The Proxy then uses the class Parcel to marshall the method
arguments of sendText() into a byte stream, which is sent (together with other
method call details) via the Binder driver to the matching Stub of ISms (lower
right box). There, the arguments are unmarshalled and the final implementation
of sendText() in the SMS service is executed. As the SMS service is running on
a Dalvik VM privileged to talk to the radio hardware, it can send the SMS.
Unmarshalling. The main challenge in reconstructing method calls was to re-
verse engineer how Binder encodes them to send them through the kernel, such
that the task of unmarshalling for our analysis can be automated. Like for the
code snippet of sending an SMS, we aim at reconstructing every method call in
its original human readable format (including its Java method arguments and
types). In what follows, we describe how we achieved it and what the imple-
mentation of this feature looks like on a technical level. All we can intercept in
the kernel is the following C structure, which wraps the information copied by
Binder driver from the sender into the address space of the receiving process.

struct binder_transaction_data {

unsigned int code; // value 5 for our SMS example
uid_t sender_euid; // UID of the app initiating the request
const void *buffer; // Fig. 4 shows its content for our example
};

A comprehensive technical report contains more details on the implementation
[10] and shows how we intercept binder_transaction_data during a certain stage
of the Binder driver communication, which follows a strict protocol. The integer
sender_euid provides us with the UID to unambiguously identify the sender app
of a request. However, the method name the integer code translates to, and which

01: public void sendText(String destAddr, ..., 01: private ... String DESCRIPTOR =

02: String text, ...) ... 02: "com.android.internal.telephony.ISms";
03: { 03: ...

04: android.os.Parcel _data = 04: switch (code) { ...

05: android.os.Parcel.obtain(); 05: case TRANSACTION_sendText: {

06: ... 06: data.enforceInterface (DESCRIPTOR) ;
07: _data.writeInterfaceToken(DESCRIPTOR); 07: .

08: _data.writeString(destAddr); 08: _arg0 = data.readString();

09: ... 09 e

10: _data.writeString(text); 10: _arg2 = data.readString(); ...

11: ... 11: this.sendText(_arg0,..., _arg2,...);
12: mRemote.transact(Stub.TRANSACTION_sendText, 12: }}

13: _data, ...); 13: ...

14: ... 14: static final int TRANSACTION_sendText =
15: } 15: (IBinder.FIRST_CALL_TRANSACTION + 4);

Fig. 3: Auto-generated Proxy (left) and Stub class (right) for the ISms interface.

arguments are encoded in the byte stream of buffer, is not transmitted, mainly
for efficiency reasons. We have a closer look at some code of the Stub and Proxy
(shown in Fig. 3), which are automatically generated for the interface ISms, to
better understand why there is no need for Binder to send this information.

When the Proxy makes the actual RPC for sendText() via Binder (left, line
12), it includes the integer TRANSACTION_send Text defined in its corresponding
Stub (right, lines 14-15). We discovered that this is the value of code we find
in binder_transaction_data. The second argument _data is an instance of the class
Parcel and relates on a lower level to the buffer we intercept. More specifically,
the Proxy takes a Parcel object (reused from a pool for efficiency) and then
writes the DESCRIPTOR (left, line 7), which is the name of the interface 1Sms
(right, lines 1-2), followed by the method arguments into it (left, lines 8-10).
We can observe that this is done in the order of the arguments appearing in
the method signature. Furthermore, dedicated write methods are used provided
by Parcel, such as writeString(). When the Stub receives the call, it executes
the TRANSACTION_sendText part of a switch construct (right, line 5), which
reconstructs the arguments from the byte stream of the Parcel object; that is,
using the equivalent read methods in the exact same order as the write methods
have been used. Based on those key observations, we designed the following
(three-step) algorithm to automate unmarshalling for arbitrary method calls
with DroidTracer (top sub-component in Fig. 1):

1. Unmarshall interface name (e.g., ISms)

(a) Take a Parcel object and fill it with the byte stream buffer. This is possible, as
the class Parcel is public and provides an according method.

(b) Read the DESCRIPTOR from the Parcel object via readString(), as it is always
the first argument in buffer (see Fig. 4).

2. Unmarshall method name (e.g., sendText)

(a) Use Java reflection to find the variable name with prefix TRANSACTION_ and
code assigned to in the Stub of the unmarshalled interface name. This works,
as every app, and so MonitorMe, has access to the JAR of the Android API.

3. Unmarshall method arguments (e.g., “12345”, null, “Hello!”, null, null)

(a) Determine the order and types of method arguments by accessing the signature
of the unmarshalled method name via reflection.

(b) Apply Parcel’s read methods according to the type and order of arguments
appearing in the method signature. This works for Java primitives, but we also
reverse engineered how complex objects are composed into Java primitives.

‘ ‘35 "com.android.internal.telephony.ISms" | 5 ‘"12345" null ‘ 6 ‘ "Hello!" null | null ‘

|25525525525560007201010108010801110330000000000000I

Fig. 4: The buffer sent via Binder containing the arguments of sendTextMessage().

It is worth pointing out that our unmarshalling algorithm does not rely on

low-level Binder implementations, which might vary for different Android ver-
sions, as we are able to use the exact Java read methods of the class Parcel that
are also used by the Android framework itself on a specific device.
Netlink endpoint. As event interception takes place solely inside the kernel
space and unmarshalling relies on access to the Android API, we need a mecha-
nism that allows us to pass data from inside the kernel module up to DroidTracer
in user space. Moreover, we need to send data also in the other direction so that
the user can control the kernel module for even the most basic tasks, for ex-
ample, to switch event interception on and off. Android has no built-in way to
serve as a solution, but we were able to use netlink® (a socket based mechanism
of the Linux kernel) to bidirectionally communicate with user space. As only the
kernel but not the Android API offers netlink support, we had to build a cus-
tom endpoint for our app (middle sub-component in Fig. 1), using the Netlink
Protocol Library Suite (libnl”). Note that netlink implements a callback principle
so that rather than polling the kernel module for new occurring system events,
DroidTracer can push them all the way to our analysis component.

3 Specifying Malware Behaviour

Whenever an app causes a system event on the Android platform that we can
intercept with DroidTracer, we capture it as an action. We represent actions in
our internal, logical model by ground terms p(cq, ..., ¢,), where p is a predicate
symbol and ¢; is a constant. Typically, p denotes the method and interface name
of an intercepted method call, and ¢; (if any) its ith unmarshalled method argu-
ment. That is, we write sendT ext@QISms(“12345”, null, “Hello!” , null, null) for
a ground term representing the sending of an SMS, given as an example in §2,
where we conventionally delimit method and interface name by the @-symbol.
Let us refer to finite sets of actions as worlds. An app’s behaviour, observed over
time, is therefore a finite trace of worlds. Note that in the case of our analysis,
worlds contain only one action and are ordered by the position at which the
corresponding system event has been sent from our kernel module via netlink.
That is, there is no predefined delay between worlds as the trace is only extended
by one world whenever a new system event occurs. Table 1 shows a selection of
events collected for a sample of the malware family Walkinwat. Distinct malware
samples (i.e., with different hash values) are usually grouped under the same
family name if they share the same behaviour and manner in which they spread.

5 http://www.linuxfoundation.org/collaborate/workgroups/
networking/generic_netlink_howto
7 http://www.carisma.slowglass.com /~tgr/libnl/

Table 1: Trace of system events for malware Walkinwat collected by DroidTracer.

ID Interface Method Arguments

334 IPhoneSublnfo getDeviceld

386 IContentProvider QUERY content://contacts/phones, null, null, null, display_name ASC

392 syscall sys_connect wringe.ispgateway.de

397 ISms send Text 451-518-646, null, “Hey,just downlaoded a pirated App off the Internet, Walk and
Text for Android. Im stupid and cheap,it costed only 1 buck.Don't steal like | did!”,
null, null

407 |ActivityManager ~ getlntentSender 1, com.incorporateapps.walktext, null, null, 0, Intent { act=SMS_SENT }, null, 0

408 |ActivityManager ~ getlntentSender 1, com.incorporateapps.walktext, null, null, 0, Intent { act=SMS_DELIVERED },
null, 0

414 |SurfaceComposer N/A, code: 10

578 |ActivityManager startActivity null, Intent { act=android.intent.action.VIEW dat=market://details?id=
com.incorporateapps.walktext }, null, N/A, N/A, N/A, N/A, N/A, N/A, N/A

Each row contains a system event, where the ID indicates its position in the
trace and the remaining columns show the outcome of the three steps in our
unmarshalling algorithm (see §2). For all other system calls, our algorithm re-
turns “syscall” as the interface name, and beyond that the actual syscall function
name and its intercepted arguments in the kernel. For example, look at the third
row, which means an internet connection has been established via the system
call sys_connect to URL wringe.ispgateway.de. An action at position ¢ € N in
some trace means that at time ¢ this action holds (or, from a practical point of
view for the 397th world in Table 1 that Walkinwat has requested the Android
framework to send an SMS to number “451-518-646” with text “Hey, just ...”).

We specify undesired malware behaviour in terms of formulae (or policies)
in a first-order linear temporal logic, called LTLF®. From a formal point of view,
we merely used safety formulae and our tool to detect finite counterexamples.
For brevity, we recall here only the key concepts of LTL"® by explaining an
example policy, whereas the full syntax and semantics as well as our monitoring
algorithm can be found in [2]. LTL"® is an extension of propositional future LTL
with quantifiers that are restricted to reason over those actions that appear in a
trace, and not arbitrary elements from a (possibly infinite) domain (i.e., we can’t
express “for all numbers z of SMS messages that an app has not sent”). Let us
consider the example that apps must not send SMS messages to numbers not
in a user’s contact book. Assuming there exists a predicate sendText@ISms,
which is true (i.e., appears in the trace), whenever an app sends an SMS message
to phone number dest, we could formalise said behaviour in terms of of a policy
GY(dest,) : sendText@QISms. inContact Book(dest), shown as @15 in Table 2.
Note how in this formula the meaning of dest is given implicitly by the first
argument of sendT'ext@ISms and must match the definition of inContact Book
in each world. We use the “_”-symbol simply as placeholder for one or more
remaining program variables that are not used in the formula. Also note that we
call sendText@I Sms an uninterpreted predicate as it is interpreted indirectly via
its occurrence in the trace, whereas inContact Book never appears in the trace,
even if true. inContactBook can be thought of as interpreted via a program
that queries a user’s contact database, whose contents may change over time.
An interpreted predicate can also be rigid; that is, its truth value never changes
for the same arguments. For example, look at regex(uri, “.* calls.*”) in policy
16 in Table 3, which is true if uri (an identifier for Android’s content providers),

Table 2: Key characteristics of Android malware behaviour specified in LTL"®.

Information stealing

gt G (i) Gl —F)
lpicnaqgll G(s A =" — (—p’W(N/AQISurfaceComposer A —)'))) lpic,a)] Glwbs — —Fy")

Privilege escalation

Y15 G—3(args) : do_execv@syscall. regex(args, “*sulpm (un)?installlam start.*”)

Launching malicious payloads

Gienear G [pr7] G(hrr — —Fy) ([pr7]l G(prr = —Fy")
Financial charges

P18 GV(dest, -) : sendText@ISms. inContact Book(dest)

©19 G(¢Y17 — —F3(w, z,y, z, abort) : finishReceiver@IActivityManager. regex(abort, “true”))

Table 3: Auxiliary formulae for Table 2.

1 getDeviceld@IPhoneSublnfo Y6 (: QUERY@IContentProvider. regex(uri, “.*calls.*”)
Yo getSubscriberld@IPhoneSublnfo Yr (: QUERY@IContentProvider. regex(uri, “.*contacts.*”)
3 getlccSerialNumber@IPhoneSublInfo s 3(: QUERY@IContentProvider. regex(uri, “.*phones.*”)
N getLinel Number@IPhoneSubInfo 19 3(: QUERY@IContentProvider. regex(uri, “.*bookmarks.*”)
s getDeviceSvn@IPhoneSublnfo P10 I(uri,-) : QUERYQIContentProvider. regez(uri, “.*preferapn.*”)
c16 “*BOOT-COMPLETED.*” P11 I(uri,-) : QUERY@IContentProvider. regez(uri, “.*sms.*”)
cir “*SMS_RECEIVED.*” P13 I(args) : do_execv@syscall. regex(args, “.*logcat.*”)
P12 (3(2) : getInstalledPackages@IPackageManager. true)V

(3(2) : getInstalled Applications@IPackageManager. true)
P1a (3(2) : notifyCellLocation@ITelephonyRegistry. true)V

(3x : getLastLocation@ILocationManager. regex(z, “.*gps.*”)
Yicnear 3(intent,tat,) : system#scheduleReceiver@IApplicationThread. (regex(intent, ¢;) A regex(txt, “.*<pkg>.*”
[1
' (3(2) : sys-connect@syscall. true) V (3(-) : sendText@ISms. true)V
(3(z, intent, _) : startActivity@IActivityManager. regex(intent, “action.SEND”)
P (3(dest, x, msg, -) : sendText@ISms. regex(msg, “.*<sensitivelnfo>.*"))Vv
(3(z, intent, _) : startActivity@IActivityManager. regex(intent, “.*<sensitiveInfo>.*")

matches the regular expression “.* calls.*”. This way, we check whether the
database that stores the call history on a phone is accessed.

As we can’t anticipate when or if an app stops, a policy ¢ normally specifies
behaviour in terms of an infinite trace. But the monitor we build to check ¢
will only see a prefix (observed system events so far), denoted u, and therefore
return L if u is a bad prefix, and ? otherwise. This means that a monitor for ;g
when it processes the 397th event, will return | and terminate, as the number
“451-518-646” is not in the contact book. Furthermore, there exists a third case,
that the monitor returns T if u is a good prefix, but as we only monitor safety
formulae, this case is not relevant for our study. Our monitoring semantics is
akin to the 3-valued finite-trace semantics for LTL introduced in [3].

Based on the patterns from four different categories identified by the AMGP
[15], we have formally specified various key characteristics of malware behaviour
in LTLF®. The results are the policies listed in Table 2. For readability, we
write ;e[q,p], grouping policies of the same pattern together, where 1;, ¥’ or "
are auxiliary formulae listed in Table 3. We surround a policy ¢; with n square
brackets (calling it the nth refinement of ¢;), if its bad prefixes are a strict subset
of the bad prefixes of ¢; surrounded with n — 1 square brackets. For example a
bad prefix of [p1], the first refinement of ¢1, has to contain after accessing the
device id as well an event of establishing a connection to the internet, describing
from a practical point of view a more severe malware behaviour for the user.

Information stealing. The AMGP discovered that malware is often actively
harvesting various sensitive information on infected devices. Thus, our policies
¢icq1,11) specify that an app should neither request any permission secured sen-
sitive data, such as the device or subscriber id, SIM serial or telephone number,
or device software version, nor query any of the content providers that contain
the call history, contact list, phone numbers, browser bookmarks, carrier settings
or SMS messages. Policy @19 covers the harvesting of installed app or package
names on a device, and @13 the reading of system logs via the Android logging
system, called logcat. Note that before Android 4.1, an app could read other
apps’ logcat logs, which might contain sensitive messages. Policy (14 specifies
that neither the coarse grain location based on cell towers nor the more precise
GPS location should be accessed. The policies [@;¢[1,14]] refine the policies above
towards the more suspicious behaviour that an app should not, after requesting
the sensitive information, eventually connect to the internet, send an SMS or
exchange data with another app. Even though a detected bad prefix for those
polices does not guarantee that information has been leaked, the usage of above
sinks bears at least its potential. However, the data could have been encrypted
or in other ways obscured, which makes it hard to prove leakage in general based
on the trace we collect. Furthermore, [[p;c[1,14)]] expresses the absence of any
screen rendering (via N/A@ISurfaceComposer) in between information request
and potential leakage. This excludes the case that the sending of data was caused
by some user interaction with the app, but rather by some app’s malicious back-
ground service. Note that we represent with “N/A” methods which we could
not unmarshall. Also note that we used the well-known specification patterns
[5] to specify our policies, where the first and second refinements are based on
the “absence after”, and “exists between” patterns, respectively. [[p;c1,4)]]" are
further refinements as they only trigger if we find the device id, etc. cleartext
(represented by the placeholder “<sensitivelnfo>") in the trace.

Privilege escalation. The attack of exploiting bugs or design flaws in soft-
ware to gain elevated access to resources that are normally protected from an
application, is called privilege escalation. From the samples in [15], 36.7% ex-
ploit a version-specific known software vulnerability of either the Linux kernel
or some open-source libraries running on the Android platform, such as WebKit
or SQLite, to gain root access (e.g., to replace real banking apps with a fake one,
for phishing attacks). Therefore, policy @15 lets us detect when an app opens
a root shell, secretly starts, installs or removes other packages via the activity
manager (am) or the package manager (pm). Monitoring of this behaviour is
possible, because the do_execv() system call is exclusively used for the execution
of any binary, shell command or script on the underlying Linux OS.

Launching malicious payloads. Apps’ background services, which don’t have
any U, can’t only be actively started when clicking on an app’s launch icon,
but also by registering for Android system-wide events (called broadcasts). The
AMGP discovered that 29 of the 49 malware families contain a malicious service
that is launched after the system was booted, or for 21 families when an SMS was
received (i.e., they registered for the BOOT_COMPLETED or SMS_RECEIVED

broadcast, respectively). Therefore, we consider it as suspicious if services are ac-
tivated by the broadcasts mentioned above; which we specify in form of p;c(16,17),
where we replace “<pkg>" for each app specifically with its package name. Note
that, to monitor this behaviour, we need to intercept system events of the An-
droid system (UID 1000) as it starts the services that have registered for a
certain broadcast (via scheduleReceiver@IApplicationThread). We prefix those
predicates with “system#”; that is, to distinguish them from an app’s events
in a trace. Since malware, after registering for SMS_RECEIVED, gets access
to the sender and content of an incoming SMS, we check with the refinements
[p17] and [[p17]] for information stealing. This means, similar as specified by the
refinements of p;e1,14), the internet should not be accessed, and so on, after the
broadcast was received.

Financial charges. The AMGP discovered apps, such as the first Android mal-
ware FakePlayer, that secretly call or register for premium services via an SMS.
As this behaviour can result in high financial charges for the user, Google la-
bels the permissions that allow to call or send an SMS with “services that cost
you money”. Instead of defining policies that check outgoing messages against a
fixed list of potential premium numbers, 15 more generically specifies that an
SMS should not be sent to a number not in the user’s contact book. Since An-
droid 4.2, Google added a similar security check, where a notification is provided
to the user if an app attempts to send messages to short codes as those could
be premium numbers. Note that we could have specified that apps should not
make phone calls to numbers not in the phone book as well, but as we have not
observed this behaviour during our experiments, we neglect the policy for it.

Before Android 4.4, apps could block incoming SMS messages, which was
used by malware to suppress received confirmations from premium services or
mobile banking transaction authentication numbers (TANs). The latter were
then forwarded to a malicious user. Thus, policy 19 checks if apps abort a
broadcast after receiving SMS_RECEIVED, in which case the SMS would not
be delivered further to appear in the usual messaging app on a device.

4 Identifying Malware Behaviour

We installed MonitorMe, provided with the polices introduced in §3, on our
test device Nexus S running Android 2.3.6. We then monitored separately one
malware sample for each of the AMGP-families. That is, we first installed its
application package (APK), and before starting it (i.e., clicking on its launch
icon if it had any), test using and finally uninstalling it, we tried to activate
potential background services by sending the broadcast BOOT_COMPLETE
via the Android Debug Bridge (adb) and an SMS to our phone. Even though
MonitorMe performed online monitoring, which means that monitors processed
events incrementally when they occurred, we also persisted the trace for each
malware in an SQLite database on the phone;® both, for repeatability of our own
experiments, and to provide them to other researchers.

8 Traces are available at http://kuester.multics.org/Droid Tracer/malware/traces

10

4.1 Experiments’ Results

Table 4 summarises for which malware families (49 in total) and policies Mon-
itorMe detected bad prefixes during our experiments. The second column indi-
cates, whether a malware or one of its services crashed during our experiments;
e.g., due to incompatibility with the Android version on our test device. Thus,
we might have missed observing some critical behaviour. The third column tells
us if a malware had no launch icon, which is usually intended to stay hidden
and spy on the user. SMSReplicator, for example, is used by parents to secretly
forward all SMS messages received on their childrens’ phones. As we monitored
in general all UIDs above 10000,° apps without an icon could not bypass our
analysis unnoticed. The fourth column shows the number of system events we
have recorded for each malware. Between the double lines are the individual
monitor results, where the single lines separate results from the four categories
introduced in Table 2. The cell containing [[*?‘)’é;” in the row for Walkinwat de-
notes that the monitor for [[¢15]] found a bad prefix for the Walkinwat sample
after 397 worlds. As this implies that the same prefix is also a bad one for lower
refinements of 15, we neglect showing this information. The last column shows
the number of bad prefixes found in total per malware. In summary, for 46
(93.9%) out of 49 families, we detected suspicious behaviour. This is under the
assumption that we consider bad prefixes for 14 alone as not critical. Note that
our results take into account that, according to [15], we would have observed
additional malicious behaviours guarded by ¢15, @15 and @19 (indicated by an %
in Table 4). The reason for (15 is that the nine marked families targeted Android
versions below 2.3.6. Thus, their exploits were not attempted in the first place or
unsuccessful. We missed bad prefixes for 15 as malware often waited to receive
instructions from a remote server, which wasn’t active anymore. The servers are
needed for malware to send an SMS, as they provide premium numbers dynam-
ically. Regarding (19, we could rarely observe the blocking of incoming SMS
messages as most malware was designed to only suppress the received confir-
mation from specific premium numbers. Out of 46 detected families, 34 can be
associated with potential information stealing, as they use the internet or other
sinks after accessing sensitive information. For NickySpy and SMSReplicator we
discovered that the device id was leaked cleartext via an SMS, and an SMS re-
ceived was forwarded to a malicious user, respectively. To discuss limits of our
malware detection, which are by no means unique to our approach, consider the
FakeNetflix family. It uses a phishing attack for which is no observable behaviour
in the trace; that is, it shows a fake login screen to the user and then sends the
entered credentials to a malicious server.

False positives. Finally, we checked if our policies are suitable to distinguish
malware from benign apps. Therefore, we ran MonitorMe on a Nexus 5 with
Android 5.0.1 that had more than 60 apps from common app categories in-
stalled: social (Facebook, Twitter, LinkedIn, etc.), communication (Whatsapp,
etc.), transportation (Uber, etc.), travel & local (Yelp, TripAdvisor, etc.), and
games (Cut the rope, etc.) to name a few. We discovered suspicious behaviour

9 UIDs below 10000 are reserved for system apps with higher privileges.

11

Table 4: Monitor results for malware of the Android Malware Genome Project.

— ™~ ™ 0 o ~ o — M SNV WO LS A M O A NTOONNA T O~
©
k]
L
[ESCRTRTARN RN [N ENEERCARN g2 RN
R @ RN 2 @e @ ex
B R e B o o wRBTEsoo e RBe w0 e e 23
Ty = Te B B
5859 58 58 5858 5% 5% 33|
A o o 2228 %R S e EEEEENY oy o @
9= 9. 9= Rt At Sk il 9= ik Sl i S R —
o we
- s ef3e - KN 28 - «~
=5 o S =
58 38 53 58 M
Fe
S& -
gl T Te Tx Seeg
S| 8- 5% 38 SR38 ©
| —_ = = = —_
NES 28 e I8 2 = o5 Fe @
S8R S= §= 83 88 88 $BSB
ke I B N = L
S So S
2 58 56 58 ©
2 = B -
o =) o3
N 58 et o~
2 L - =
£ 33 = =g
5 58 SR 52 @™
= N . =,
R Rl =
58 SRST 59 ~
= ow
s 35 o
e
39 «
= Sz s S S] S5 0
92 98 5% S5 88 ERER &
= Be = Se) o
S92 = 58 S5 5833 —
Toam o [=e e =g Ae I [)
5858 89 88 5% 58§ S8 55 58 5@ =
ey =" e Fos, Daogaw ow)
5852 S8 5B 355 IBSHSE §% FRIssEsE |
Bl o cw® ~ o o ~ P © o~ o S|
Slogay woombovaNosrsSostxdogrsoor N, 0sR05 0 o4 8~ CoaHwo =0 lyo
HERE R LR R D - R R R T R - R R N =R R e i
L R A S R R S A R R R R S R
v
=
T N S S Y SS
<
]
e
(9} SO S SS N N N
o
k]
-]
=z 2
z t5= o i 4 D 55
- ;_
£ 8 6 ¢ g EWL L WL L IL L ‘g 3 2 5§32 %®
& [y] 0 X 5 g oobdod BB b0 X 5w E pnu 5 ga . =
4] s cp3=208ceccecc e >zln g o g o a2 > = Q@
o L T e e 2590 855553535 B a5 =< o > T o & seaay Y3
g g 0o £3s 38280 =20=2Los5S5H = g Sdn o9 —
s SogEd s OOOOXXXXXXDRRoERS L T DN uldPLaomz
Qgom i3 tooovsvs 55220 ELEO08H oo cES 498X o4 ecSVuc ool
S|l g3 9cgc8FP2BTTVVVUDBIDIT GG E R wo 23 a2 E0 8% 220l aX T v gc|w
SO E5 28 B5200 00000 PP R LT U L6 0f=2S3 0 a8 PPSTELTINSSGE
280090000090 P 0 Rxx £ ag S L. £
S| << 0000000000000 00WELES00TVVOUISNYSZZaaEehanks > WNN|F

for 17 (28%) out of 61 apps, using the same assumption as above that ;6 alone
is not critical. The false positive rate seems high at first glance, but a closer look
reveals that some benign apps bear unwanted behaviour for the user so that a
warning of MonitorMe seems reasonable. For example, eleven apps surprisingly
requested the device or subscriber id, which is explicitly not recommended by
the Google developer guidelines.'® Under those apps were a soccer news and
Yoga app, which in our opinion both do not require this data for its functional-
ity, but rather collect sensitive data from the user. Another app was the private
taxi app Uber, which has been criticised in the past due to collecting personal
data without the user’s permission.!! Only five apps started after boot, such as
dropbox, which we consider as necessary regarding its purpose, and only two
apps after an SMS was received, which were a secure SMS app and Twitter.

10 http://developer.android.com/training/articles/security-tips.html# UserData
' http://thehackernews.com/2014/11/ubers-android-app-is-literally-malware_28.html

12

Table 5: Execution of Android method calls (each up to 10,000 times) with and without
DroidTracer. The margin of error is given for the 95% confidence interval.

Interface Method Android Kprobes DroidTracer ~ Kprobes DroidTracer
(in ms) (in ms) (in ms) Overhead Overhead

IPhoneSublnfo getDeviceld 5309 £ 15 5517 £+ 18 5811 + 11 3.92% 9.46%

IPhoneSublnfo getlccSerialNumber 5346 + 16 5524 + 16 5817 £ 7 8.81%

LocationManager getLastKnownLocation 3516 + 13 3562 + 13 4126 £ 5 17.35%

1Sms send Text 9166 + 13 9396 + 13 10216 + 10 2.51% 11.46%

IPackageManager getlnstalledApplications 15730 + 204 15514 + 202 15422 + 172

IConnectivityManager getAllINetworkInfo 5769 + 53 5841 + 60 5671 £ 7

syscall sys_open 15360 £ 72 15531 £ 67 15455 + 38

4.2 Performance and Portability

We evaluated (1) the performance of DroidTracer and MonitorMe, i.e., the bare
system event interception including unmarshalling as well as when running our
monitors on top. Moreover, we (2) demonstrate that our automated approach
to unmarshalling is portable to different Android devices and versions.
Performance. We wrote seven test apps, where each was designed to generate
100 runs of up to 10,000 system events named by the interface and method
names in Table 5. When MonitorMe is being executed with the policies in §3
and monitors our test apps individually, the highest performance overhead is
38.6% for the system event sendT ext@Isms. This was determined on a Nexus 7
(quad-core CPU, 1 GB RAM) with Android 4.3. Note that the overhead involves
the monitor for 15 checking the contact book each time an SMS was sent.
Furthermore, as the results of these test runs are specific only to our im-
plementation of runtime verification, we also need to measure the performance
overhead of DroidTracer when no further analysis is undertaken. Table 5, shows
the execution time when intercepting the method calls of the above seven system
events in three different modes of operation: (1) without DroidTracer enabled to
get a reference execution time for the unmodified system, (2) with only the event
interception part of our kernel module enabled, and (3) with unmarshalling and
netlink communication added. During the experiments, we ran all four cores of
the Nexus 7 on a fixed frequency rate, which allowed us to reduce the mar-
gin of error dramatically. Note that we left cells empty, where overhead could
not significantly be determined wrt. the t-test. As the results show, the ac-
tual performance overhead of using just our kernel module with kprobes is only
2.51-3.92%, whereas the complete performance overhead of DroidTracer is 8.81—
17.35%. What is noteworthy is that getDeviceld() and getlccSerialNumber() have
significant lower overhead than getLastKnownLocation() and sendText(), as both
former method signatures have no arguments that require unmarshalling. The
call getLastKnownLocation() has the highest overhead, probably because its argu-
ments contain several complex objects, for example, one of type LocationRequest,
which unmarshalling involves additional reflection calls. As sendText() contains
only Java primitives as arguments, its unmarshalling overhead is slightly lower.

Portability. We ran DroidTracer on three different devices and Android versions,
including 5.0.1, which is, at the time of writing, the most recent one. Table 6
demonstrates the success of unmarshalling events we have intercepted. While we
could unmarshall the interface name of all method calls, we could unmarshall

13

Table 6: Unmarshable parts of observed system events.

Methods
Unique Unmarsh. Succ. rate

Device Android Events Interfaces
version Unique

Events with arguments
Total Unmarsh. (Totally / Partially) Succ. rate

Nexus S 2.3.6 102,545 58 804 368 45.77% | 54,596 43,318 / 47,923 79.34% / 87.78%
Nexus 7 4.3 107,977 89 378 236 62.43% | 70,746 67,866 / 69,474 95.93% / 98.20%
Nexus 5 5.0.1 449,429 108 474 326 68.78% |264,058 227,708 / 255,263 86.23% / 96.67%

45.77%-68.78% of unique method names; that is, we were able discover for an
integer code its according method name in the Android API via reflection. The
number of unmarshalled method names seem low, but missing ones are mainly
specific to Android internals, for example to render the screen. As such, they
have no Stub or Proxy in the Android API, but only in some native C library.
This is not accessible to the developer and therefore usually contain no relevant
events for our analysis. If method calls had arguments, we could unmarshall for
79.34%-95.93% all and for 87.78%-98.20% at least some arguments. Note that if
we failed to unmarshall one argument of a call, we also failed for all the remaining
of that call, as Parcel’s read methods have to be applied in the correct order.

5 Conclusions and Related Work

To the best of our knowledge, our work is the first runtime verification approach
to comprehensively monitor the collected malwares by the AMGP. Arguably,
detection rates are promising and help substantiate the claim that methods
developed in the area of runtime verification are, in fact, suitable not only for
safety-critical systems, but also when security is critical. Indeed, at the time of
writing, the samples of the AMGP are ca. three years old, which in the rapid
development of new attacks seems like a long time. However, the database has
grown over a number of years and the underlying patterns emerged as a result
of that. While there are always innovative, hard to detect malwares, it is not
unreasonable to expect the bulk of new malwares to also fall into the existing
categories, identified by the AMGP, and therefore detectable by our approach.
Validation of this hypothesis, however, must be subject to further work.
Besides MonitorMe, one corner stone of our approach is the ability to specify
policies over traces that contain parameters. Other runtime verification works
that haven’t been applied to Android, but also allow monitoring parametric
traces are, for example, Hallé and Villemaire’s [7], who use a logic with quantifi-
cation identical to ours, but without arbitrary computable predicates. Further-
more, JavaMOP [9] is by now a quasi-standard when dealing with parametric-
traces, although it is not based on first-order logic, but on “trace-slicing”.
Most monitoring approaches for Android can be divided into two categories.
App-centric ones (cf. [1,12,14]) intercept events inside the apps by rewriting
and repackaging them, so that neither root access nor modifying the Android
platform is necessary. As a consequence, they are portable to most phones and
Android versions, and are easy to install even for non-experts. Examples are
AppGuard [1] and Aurasium [14], which is even able to enforce security polices
for apps’ native code as it rewrites Android’s own libc.so that is natively linked
into every app. However, the ease in portability comes at the expense of inherent
vulnerabilities, namely that security controls run inside the apps under scrutiny

14

and thus could be bypassed; e.g., by dynamically loading code after rewriting.
Also, as apps have to be actively selected for rewriting, hidden malware, such as
the ones without launch icon that we came across in §4.1, might be overlooked.

Platform-centric approaches (cf. [6, 4, 8]) usually tie deep into the source code
of the Android platform and are therefore less portable. TaintDroid [6], a pio-
neering platform-centric tool for taint flow analysis, requires modifications from
the Linux kernel all the way up to the Dalvik VM. Although it is being actively
ported, users have to be sufficiently experienced to not only compile their own
version of Android, including the TaintDroid changes, but also to make it work
on a hardware of their choice. Our approach is, conceptually, a combination of
the advantages of app- and platform-centric monitoring; that is, MonitorMe can
be loaded even into a currently running Android system, yet is able to trace
app (even preinstalled Google apps that can’t be rewritten) and Android system
interactions all the way down to the OS kernel level.

References

1. M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-Rekowsky. App-
Guard - enforcing user requirements on Android apps. In TACAS, volume 7795 of
LNCS, pages 543-548. Springer, 2013.

2. A. Bauer, J.-C. Kiister, and G. Vegliach. The ins and outs of first-order runtime
verification. To appear in: Formal Methods in System Design (FMSD), 2015.

3. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology, 20(4):14, 2011.

4. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry.
Towards taming privilege-escalation attacks on Android. In NDSS, 2012.

5. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In ICSE, pages 411-420. IEEE, 1999.

6. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In OSDI. USENIX, 2010.

7. S. Halle and R. Villemaire. Runtime monitoring of message-based workflows with
data. In EDOC, pages 63-72. IEEE, 2008.

8. P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the
droids you’re looking for: retrofitting Android to protect data from imperious ap-
plications. In CCS, pages 639-652. ACM, 2011.

9. D. Jin, P. O. Meredith, C. Lee, and G. Rosu. JavaMOP: Efficient parametric
runtime monitoring framework. In ICSE, pages 1427-1430. IEEE, 2012.

10. J.-C. Kiister and A. Bauer. Platform-centric Android monitoring—modular and
efficient. Comp. Research Repository (CoRR) arXiv:1406.2041, ACM, June 2014.

11. A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In ACSAC, pages 421-430. IEEE, 2007.

12. S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden. DroidForce: Enforcing complex,
data-centric, system-wide policies in Android. In ARES, pages 40-49. IEEE, 2014.

13. T. Vidas and N. Christin. Evading Android runtime analysis via sandbox detection.
In ASIACCS, pages 447-458. ACM, 2014.

14. R. Xu, H. Saidi, and R. Anderson. Aurasium: practical policy enforcement for
Android applications. In USENIX Security Symp., pages 27-27. USENIX, 2012.

15. Y. Zhou and X. Jiang. Dissecting Android malware: Characterization and evolu-
tion. In S&P, pages 95-109. IEEE, 2012.

15

