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Abstract. When monitoring a system wrt. a property defined in some
temporal logic, e. g., LTL, a major concern is to settle with an adequate
interpretation of observable system events; that is, models of temporal
logic formulae are usually infinite streams of events, whereas at runtime
only prefixes are available.
This work defines a four-valued semantics for LTL over finite traces,
which extends the classical semantics, and allows to infer whether a sys-
tem behaves (1) according to the monitored property, (2) violates the
property, (3) will possibly violate the property in the future, or (4) will
possibly conform to the property in the future, once the system has sta-
bilised. Notably, (1) and (2) correspond to the classical semantics of LTL,
whereas (3) and (4) are chosen whenever an observed system behaviour
has not yet lead to a violation or acceptance of the monitored property.
Moreover, we present a monitor construction for RV-LTL properties in
terms of a Moore machine signalising the semantics of the so far obtained
execution trace.

1 Introduction

Runtime verification of a given correctness property ϕ formulated in linear tem-
poral logic LTL [Pnu77] aims at determining the semantics of ϕ while executing
the system under scrutiny. However, one is faced with the following obstacle: The
semantics of LTL is defined over infinite (behavioural) traces whereas monitoring
a running system allows an at most finite view.

While the syntax and semantics of LTL on infinite traces is well accepted in
the literature, there is no consensus on defining LTL over finite strings. Several
versions of a two-valued semantics for LTL on finite strings have been proposed
[GH01a,HR01b,HR02,HR01a,SB05,dR05], see Eisner et al. for a comprehensive
survey on this topic [EFH+03]. Alternatively, it has also been proposed to restrict
the syntax of LTL for runtime verification, such that formulae which may contain
certain future obligations cannot be specified at all [GH01b].

In monitoring a property, there can at least arise three different situations:
Firstly, the property can be already satisfied for sure after a finite number of
steps; secondly, the property can be shown to evaluate to false for every possible
continuation, or thirdly, the finite, already observed prefix allows different con-
tinuations leading to either satisfaction or falsification. Thus, every two-valued
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logic must evaluate to true or false prematurely since it cannot reflect the third
case properly.

To overcome these obstacles, we propose in [ABLS05,BLS06], a three-valued
semantics which extends the classical semantics over finite traces. There, a prop-
erty evaluates to true (false), wrt. a finite observation, iff the observation is either
a satisfying (violating) prefix. In all other cases, the observation is said to be
inconclusive, and the property assigned a ?.

This scheme coincides well with the notion of safety (e. g., Gp—always p)
and co-safety (e. g., Fp—eventually p) properties, since these are either finitely
refutable or satisfiable. However, when monitoring a true liveness property, that
is one that is not safety nor a co-safety property, then neither the violation
nor the satisfaction of the property can be determined using a finite stream of
observations, and not much is said about the possible future. Actually, in [PZ06]
it is suggested to call these properties non-monitorable.

A typical example for a liveness property is G(request → F grant) saying that
every request should eventually be granted. In practice, however, one is often
faced with such properties and therefore it is impractical to preclude correspond-
ing monitoring procedures.

In this work, we follow the idea that an inconclusive result of a monitor should
be more detailed. To this end, we propose a four-valued semantics for LTL that
not only results in either true, false, or ?, but yields possibly true and possibly
false whenever the system’s behaviour so far is inconclusive in the three-valued
sense. We call the resulting logic Runtime Verification Linear Temporal Logic
(RV-LTL).

Further, we have defined a translation from a formula in RV-LTL to a monitor
(Moore machine) of minimal size, which then forms a suitable foundation for
runtime verification, in that the output alphabet of the automaton corresponds
to the four truth values sketched above.

Our logic RV-LTL seems to correspond with the semantics realised by the
Temporal Rover [Dru00] and has, to the best of our knowledge, not been formally
captured elsewhere.

In [dR05], a monitor construction and simplification is given. By combining
two of their monitors, as briefly described in their implementation section, this
approach can be used to implement the three-valued semantics as presented
independently in [ABLS05,BLS06].

Outline. We briefly recall the standard infinite trace semantics of LTL in the
next section. In Section 3, we first elaborate four maxims which we require to
be satisfied by a temporal logic suitable for runtime verification. Then, we recall
two preexisting logics for finite traces and show why they do not satisfy our
maxims. However, we show how to combine the two logics towards RV-LTL and
argue that RV-LTL adheres to our maxims. Finally, in Section 4, we describe a
construction of a monitor procedure for RV-LTL.

Acknowledgement. We thank the anonymous reviewers for their valuable and
detailed comments.
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2 LTL on infinite traces

For the remainder of this paper, let AP be a finite set of atomic propositions
and Σ = 2AP a finite alphabet . We write ai for any single element of Σ, i.e., ai

is a possibly empty set of propositions taken from AP.

Finite traces over Σ are elements of Σ∗, usually denoted by u, u′, u1, u2, . . . ,
whereas infinite traces are elements of Σω, usually denoted by w,w′, w1, w2, . . . .
For some trace w = a0a1 . . . , we denote by wi the suffix aiai+1 . . . .

The set of LTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (p ∈ AP) (1)

Let i ∈ N be a position. The semantics of LTL formulae is defined inductively
over infinite sequences w = a0a1 . . . ∈ Σω as follows:

w, i |= true
w, i |= ¬ϕ iff w, i 6|= ϕ
w, i |= p iff p ∈ ai

w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2

w, i |= ϕ1Uϕ2 iff there is a k ≥ i : w, k |= ϕ2 and
for all l with i ≤ l < k : w, l |= ϕ1

w, i |= Xϕ iff w, i+ 1 |= ϕ

Further, let w |= ϕ be an abbreviation for w, 0 |= ϕ. We call w a model of ϕ
iff w |= ϕ. For every LTL formula ϕ, its set of models, denoted by L(ϕ), is
a regular set of infinite traces and can be described by a corresponding Büchi
automaton [VW86,Var96]. For ϕ, ψ ∈ LTL, we say that ϕ is equivalent to ψ,
denoted by ϕ ≡ ψ, iff for all w ∈ Σω, we have

w |= ϕ iff w |= ψ

For reasons to become clear in Section 3, note that, in LTL

¬Xϕ ≡ X¬ϕ (2)

holds, which matches the intuition that something does not hold in the next
position if, in the next position, it does not hold.

3 LTL on finite traces

While the syntax and semantics of LTL on infinite traces is well-accepted in
the literature, there is no consensus on defining LTL on finite strings. Several
versions of a two-valued semantics for LTL on finite strings have been proposed.
However, as we argue below, for runtime verification, a four-valued semantics is
preferable.
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As discussed in [MP95], the difficulty for an LTL semantics on finite strings
lies in the next-state operator X . Given a finite string u = a0, . . . , an−1 of length
n, the question is which semantics to choose for Xϕ in the last position of u:

u, n− 1
?

|= Xϕ (3)

We follow the approach of [MP95] in understanding the next-state operator as
an operator firstly assuring that there exists a next state which secondly satisfies
ϕ. We use this assumption as the first of our four maxims, which we consider
essential for a semantics for LTL on finite traces, in particular in the context of
runtime verification:

– Xϕ means there exists a next state and this state satisfies ϕ. (∃X)

Consequently, equation 3 yields false, as there is no next state. Our second maxim
states that a negated formula indeed yields the complemented truth value of the
original formula, i. e.,

– a formula and its negation yield complementary truth values. (¬=C)

Then, however, a negated next-state formula should be true. This, however,
conflicts equation 2 (¬Xϕ ≡ X¬ϕ), which therefore can no longer hold on finite
traces (unless true equals false). It is therefore helpful to distinguish a strong
(denoted by X ) and a weak version (denoted by X̄ ) of the next-state operator.

We call the strong next-state operator X also existential next-state operator,
as it requires a next-state to exist, and the weak next-state operator X̄ also
universal next-state operator.

The introduction of a strong and a weak version of a next-state operator ad-
ditionally allows to cope with the intuitive meaning of LTL’s finally and globally
operators:

Intuitively, the finally operator F is of existential nature [HR02], as some
property should eventually be shown, while the globally operatorG is of universal
character as something should hold in every position of a word. Accordingly, Fϕ
should evaluate to false if ϕ does not hold in the current state and nothing is
known about the future, while Gϕ should become true, if ϕ holds in the current
state and nothing is known about the successor states.

In LTL, we have that Fϕ ≡ ϕ ∨ XFϕ, as well as, Gϕ ≡ ϕ ∧ XGϕ. Conse-
quently, XFϕ should be false, if no subsequent state exists, while XGϕ should
be true in the same situation. This contradiction can be resolved with the addi-
tion of the universal next-state operator X̄ . Using this notation, we can rewrite
the above LTL equivalences as Fϕ ≡ ϕ ∨ XFϕ and as Gϕ ≡ ϕ ∧ X̄Gϕ.

The so far developed view is meaningful in a setting which is only concerned
with completed or terminated paths. In runtime verification, however, we are
given a finite prefix of a continuously expanding trace. Therefore, it is clear that
there will be a next state—this continuation is just not known yet. To reflect
this situation, we postulate two further maxims for logic suitable for runtime
verification. The first one says that
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– the semantics never evaluates to true or false prematurely. (Sound)

The string a (of length 1) clearly satisfies the proposition p iff p ∈ a. While,
understanding a as a prefix of an infinite string, the value of Xϕ is of less
certainty, as the successor state of a is not known. Choosing either true or false
(depending on whether to understand X strongly or weakly) would diminish
the qualitative difference of the knowledge on p and Xϕ based on the string a.
Therefore, we require a semantics to yield four values: true, possibly true, possibly
false, and false.

When considering Xϕ in the last state of a finite string u, there is no reason
to evaluate Xϕ to false, possibly false, or possibly true, if every possible con-
tinuation of u satisfies ϕ. A trivial example would be Xtrue. While every single
letter extension of u would make Xtrue true in u’s last position, the semantics
discussed so far evaluate Xtrue to false or possibly false. We therefore postulate

– the semantics is as anticipatory as possible. (Precise)

In the remainder of the section, we recall two preexisting logics for finite
traces, namely FLTL and LTL3, and show that they do not satisfy all our postu-
lated maxims (∃X), (¬=C), (Sound), and (Precise). Then, we combine the
two logics towards RV-LTL and argue that RV-LTL adheres to our maxims.

3.1 Existing Semantics for Finite Traces

We start by recalling two existing definitions of LTL for finite traces, namely
FLTL [LPZ85] and LTL3 [BLS06]. Both variants provide complementary prop-
erties for runtime verification but neither of them satisfies all four maxims as
postulated above.

The set of FLTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ | X̄ϕ (p ∈ AP) (4)

In this definition, we use two versions of the next-state operator to overcome
the difficulty of deciding whether a formula Xϕ holds in the last position of a
finite string—thus FLTL satisfies (∃X): The strong (and standard) X operator
is used to express with Xϕ that a next state must exist and that this next state
has to satisfy property ϕ. In contrast, the weak X̄ operator in X̄ϕ says that if
there is a next state, then this next state has to satisfy the property ϕ.

The semantics function [u, i |= ϕ]F of FLTL is constructed like the one for
standard LTL with one modification: If a strong next-state operator in some
subformula Xϕ is referring to a state beyond the known finite prefix u, then this
subformula Xϕ is evaluated to ⊥, regardless of ϕ. Likewise, a subformula X̄ϕ,
based on the weak next-state operator, always evaluates to ⊤ if it refers to a
state beyond u. This concept is explicated in the following definition:

Definition 1 (Semantics of FLTL [LPZ85]). Let u = a0 . . . an−1 ∈ Σ∗

denote a finite trace of length n. The truth value of an FLTL formula ϕ wrt. u
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at position i < n, denoted by [u, i |= ϕ]F , is an element of B and is defined as
follows:

[u, i |= true]F = ⊤

[u, i |= p]F =

{

⊤ if p ∈ ai

⊥ if p /∈ ai

[u, i |= ¬ϕ]F = [u, i |= ϕ]F
[u, i |= ϕ ∨ ψ]F = [u, i |= ϕ]F ⊔ [u, i |= ψ]F

[u, i |= Xϕ]F =

{

[u, i+ 1 |= ϕ]F if i+ 1 < n

⊥ otherwise

[u, i |= X̄ϕ]F =

{

[u, i+ 1 |= ϕ]F if i+ 1 < n

⊤ otherwise

[u, i |= ϕ U ψ]F = [u, i |= ψ]F ⊔ ([u, i |= ϕ]F ⊓ [u, i |= X U ψ]F

Therefore, FLTL can satisfy the maxim (∃X) as well as (¬=C) since negated
formulae always yield complementary truth values. However, FLTL does not
satisfy the maxim (Precise) because the truth value of [u, n− 1 |= Xϕ]F for
|u| = n does not depend on ϕ at all. For example, [u, n− 1 |= X true]F = ⊥
although X true will evaluate to ⊤ in every possible continuation. Furthermore,
FLTL cannot satisfy maxim (Sound) since FLTL only uses a two-valued se-
mantic domain and thus every prefix must be evaluated (possibly prematurely)
to either ⊤ or ⊥.

In[BLS06,ABLS05], we proposed LTL3 as an LTL logic with a semantics
for finite traces, which caters the view that a finite trace is a prefix of an so-
far unknown infinite trace. More specifically, LTL3 uses the standard syntax of
LTL as defined in Equation (1) but employs a semantics function [u, i |= ϕ]3
which evaluates for a formula ϕ each finite trace u of length n and each position
0 ≤ i < n to a value out of B3 = {⊤,⊥, ?}. If every infinite trace with prefix
u evaluates to same truth value ⊤ or ⊥, then [u, i |= ϕ]3 also evaluates to this
truth value. Otherwise [u, i |= ϕ]3 evaluates to ?, i. e., we have [u, i |= ϕ]3 =? if
different continuations of u yield different truth values. This discussion leads to
the following definition:

Definition 2 (Semantics of LTL3). Let u = a0 . . . an−1 ∈ Σ∗ denote a finite
trace of length n. The truth value of a LTL3 formula ϕ wrt. u at position i < n,
denoted by [u, i |= ϕ]3, is an element of B3 and defined as follows:

[u, i |= ϕ]3 =











⊤ if ∀σ ∈ Σω : uσ, i |= ϕ

⊥ if ∀σ ∈ Σω : uσ, i 6|= ϕ

? otherwise.

Note that LTL3 satisfies three of our four maxims: A formula and its negation
yield the complementary truth values (¬=C), the semantics never evaluates
to true or false prematurely (Sound), and the semantics are as anticipatory
as possible (Precise). Since LTL3 uses the standard LTL syntax, it does not
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distinguish between a strong and weak next-state operator and consequently,
the maxim (∃X) cannot be satisfied.

Note that ideas leading to the definition of LTL3 have been formulated inde-
pendently in [dR05]. The notion of a (minimal) bad prefix u is introduced and
defined as a prefix that does not have any continuation satisfying a formula ϕ.
Thus, [u |= ϕ]3 would evaluate to ⊥ for every bad prefix u for ϕ. By adding a dual
monitor for ¬ϕ, as proposed in the implementation section of [dR05], the notion
of a good prefix is obtained and the semantics of LTL3 can be implemented.

3.2 RV-LTL

We now define RV-LTL which is a version of LTL on finite strings tailored for
runtime verification. RV-LTL is designed to incorporate and resolve the require-
ments as stated afore. The set of RV-LTL formulae is inductively defined by the
following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ | X̄ϕ (p ∈ AP) (5)

As in FLTL, we use two versions of the next-state operator to overcome the
difficulty of deciding whether a formula Xϕ holds in the last position of a finite
string—thus RV-LTL satisfies (∃X). Like in FLTL, the strong (and standard)
X operator is used to express with Xϕ that a next state must exist and that his
next state has to satisfy some property ϕ. Dually, the weak X̄ operator in X̄ϕ
says that if there is a next state, then this next state must satisfy the property
ϕ.

To accommodate maxim (Sound) and in contrast to FLTL, we use a four
valued semantics for RV-LTL with B4 = {⊥,⊥p,⊤p,⊤} as the set of truth
values. B4 can be extended to a complete lattice by ordering ⊥ ≤ ⊥p ≤ ⊤p ≤ ⊤.
⊓ and ⊔ are then defined as expected. To match maxim (¬=C), ⊥ and ⊤
are defined to be complementary to each other as well as ⊥p and ⊤p, where
complementation is denoted by .̄ Note that B4 is not a Boolean lattice, as, for
example, ⊥p ⊔⊥p = ⊥p ⊔⊤p 6= ⊤. However, the distributive laws hold:

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)

Definition 3 (Semantics of RV-LTL). Let u = a0 . . . an−1 ∈ Σ∗ denote a
finite trace of length n = |u|. The truth value of an RV-LTL formula ϕ wrt. u
at position i < n, denoted by [u, i |= ϕ]RV , is an element of B4 and is defined as
follows:

[u, i |= ϕ]RV =



















⊤ if [u, i |= ϕ′]3 = ⊤

⊥ if [u, i |= ϕ′]3 = ⊥

⊤p if [u, i |= ϕ′]3 =? and [u, i |= ϕ]F = ⊤

⊥p if [u, i |= ϕ′]3 =? and [u, i |= ϕ]F = ⊥
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where ϕ′ is obtained from ϕ by replacing each weak next-state operator X̄ with
a strong next-state operator X .

Note that, in the last position of a word u, both Xϕ and X̄ϕ evaluate to ⊤ (⊥)
if the outcome is predetermined for all possible continuations. Therefore, the
semantics of RV-LTL also satisfy maxim (Precise).

Note that the semantics of RV-LTL as given in Definition 3 directly provides
an efficient way to construct a monitor procedure for RV-LTL: By running a
monitor for LTL3 and for FLTL simultaneously and by combining their respec-
tive results following Definition 3, we obtain a monitor procedure for RV-LTL.
We will exploit this fact in the next section where we discuss the monitor con-
struction for RV-LTL in detail.

For two formulae ϕ and ψ, we say that ϕ is equivalent to ψ w.r.t. RV-LTL,
denoted by ϕ ≡RV ψ, iff for all u ∈ Σ∗ and 0 ≤ i < |u|, we have [u, i |= ϕ]RV =
[u, i |= ψ]RV .

To demonstrate the semantics of RV-LTL, we discuss in the following a num-
ber of examples. In the motivating discussion of this section, we referred to the
equivalence

¬Xϕ ≡ X¬ϕ

which is true w.r.t. LTL. On the other hand, in RV-LTL, this equivalence does
not hold, as ¬Xϕ is ⊤p in the last position of a word u (if ϕ cannot be evaluated
for possible continuations), while X¬ϕ is ⊥p. However, we have

¬Xϕ ≡RV X̄¬ϕ.

Using the equivalence

ϕ U ψ ≡RV ψ ∨ (ϕ ∧ X (ϕ U ψ))

which holds for RV-LTL as well as for standard LTL, we can define the finally
operator F and globally operator G as abbreviations Fϕ := true U ϕ and
Gϕ := ¬F¬ϕ and evaluate them as follows:

Fϕ ≡RV true U ϕ
≡RV ϕ ∨ (true ∧ X (true U ϕ))
≡RV ϕ ∨ XFϕ

and
Gϕ ≡RV ¬F¬ϕ

≡RV ¬(true U ¬ϕ)
≡RV ¬(¬ϕ ∨ (true ∧X (true U ¬ϕ))
≡RV ¬¬ϕ ∧ ¬(true ∧ X (true U ¬ϕ))
≡RV ϕ ∧ ¬(X (true U ¬ϕ))
≡RV ϕ ∧ X̄¬(true U ¬ϕ))
≡RV ϕ ∧ X̄Gϕ

yield the two equivalences Fϕ ≡RV ϕ ∨ XFϕ and Gϕ ≡RV ϕ ∧ X̄Gϕ which we
discussed to motivate our four maxims. Note that in the previous calculation we
used the distributive law and the equivalence ¬Xϕ ≡RV X̄¬ϕ.
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Fϕ ≡RV ϕ ∨ XFϕ reflects that ϕ must be satisfied in the future: If ϕ is not
satisfied immediately, then there must be a satisfying future state. If no such
future state exists, the formula evaluates to ⊥p. Similarly, Gϕ ≡ ϕ∧X̄ Gϕ shows
that ϕ must be satisfied in the current state and in all observable future states.
If we do not know the future, the formula evaluates to ⊤p.

As a final example, we evaluate the property that some request must be
answered by a corresponding answer:

G(p→ Fq) ≡RV (p→ Fq) ∧ X̄ (G(p → Fq))
≡RV (¬p ∨ q ∨ XFq) ∧ X̄ (G(p → Fq))

This formula evaluates to ⊥p under RV-LTL if the trace contains a p but ends
before q occurs and evaluates to ⊤p in all other cases. This behaviour is intuitive,
since the first case corresponds to a request which has not been answered yet,
while the second case means that all requests so far have been answered properly.

Let us close this section by recalling that RV-LTL’s semantics can be un-
derstood as refinement of LTL3’s semantics. Consequently, we can obtain the
semantics of LTL3 by mapping a ⊤p/⊥p value to ?:

Remark 1. Let u = a0 . . . an−1 ∈ Σ∗ denote a finite trace of length n and let ϕ
be an LTL3 formula. Then the following holds

[u, i |= ϕ]3 =











⊤ if [u, i |= ϕ]RV = ⊤

⊥ if [u, i |= ϕ]RV = ⊥

? if [u, i |= ϕ]RV ∈ {⊤p,⊥p}

where the X of LTL3 is interpreted as strong next-state operator in RV-LTL.

4 Monitors for RV-LTL

A monitor is a device that consumes the input letter by letter and outputs the
semantics of the string read so far with respect to the formula the monitor was
built for.

In our setting, we use a Moore machine, also called finite-state machine
(FSM), which is a finite state automaton enriched with output. Formally, an
FSM is a tuple A = (Σ,Q,Q0, δ,∆, λ), where

– Σ is a finite alphabet ,
– Q is a finite non-empty set of states ,
– q0 ∈ Q is the initial state,
– δ : Q×Σ → Q is the transition function,
– ∆ is the output alphabet , and
– λ : Q→ ∆ is the output function.

The output of a Moore machine, defined by the function λ, is thus determined
by the current state q ∈ Q alone, rather than by input symbols.
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We extend the transition function δ : Q×Σ → Q, as usual, to δ′ : Q×Σ∗ → Q
by δ′(q, ǫ) = q where q ∈ Q and δ′(q, ua) = δ(δ′(q, u), a). To simplify notation,
we use δ for both δ and δ′. Similarly, we extend the output function λ : Q→ ∆
to λ′ : Q × Σ∗ → ∆ by λ′(q, u) = λ(δ(q, u)), for q ∈ Q and u ∈ Σ∗. Thus,
function λ′ yields for a given word u the output in the state reached by u rather
than the sequence of outputs. To simplify notation, we use λ for both λ and λ′.
We also say that A computes the function λ : Σ∗ → ∆.

Following the characterisation of RV-LTL in terms of LTL3 and FLTL de-
veloped in the previous section, we base the monitor construction for RV-LTL
on the monitor constructions for the respective logics.

Monitors for LTL3. In [BLS06], a monitor construction for a given formula ϕ
with respect to the three-valued semantics was elaborated:

Theorem 1 ([BLS06]). Let ϕ be an LTL3 formula. Then there is an effective
procedure constructing an FSM Aϕ

3 = (Σ,Q, q0, δ,B3, λ) such that for all u ∈ Σ∗

the following holds:
[u |= ϕ]3 = λ(δ(q0, u)).

Moreover, the size of Aϕ
3 is at most double exponential in the size of ϕ.

Monitors for FLTL. Following [MP95], it is easy to come up with a non-
deterministic automaton accepting precisely the words satisfying a given LTL
formula ϕ with respect to the FLTL semantics. Such an automaton can be made
deterministic as usual. Moreover, a deterministic automaton can be understood
as an FSM by outputting ⊤ in each accepting state and ⊥ in the remaining
states. This gives:

Theorem 2 ([MP95]). Let ϕ be an FLTL formula. Then there is an effective
procedure constructing an FSM Aϕ

F = (Σ,Q, q0, δ,B, λ) such that for all u ∈ Σ∗

the following holds:
[u |= ϕ]F = λ(δ(q0, u)).

Moreover, the size of Aϕ
F is at most double exponential in the size of ϕ.

Monitors for RV-LTL. We are now ready to define a monitor computing the
RV-LTL semantics.

Definition 4 (Monitor Āϕ
RV for a RV-LTL-formula ϕ). Let ϕ be an RV-

LTL formula. Let Aϕ
3 = (Σ,Q, q0, δ,B3, λ) be the monitor that computes the

3-valued semantics for ϕ (cf. Theorem 1) where weak next has been replaced
with the standard next-state operator.

Moreover, let Aϕ
F = (Σ,Q′, q′0, δ

′,B, λ′) be the monitor that computes the
(two-valued) FLTL semantics of ϕ (cf. Theorem 2). Then we define the monitor
Āϕ

RV as the FSM (Σ, Q̄, q̄0, δ̄,B4, λ̄), where

– Q̄ = Q×Q′,
– q̄0 = (q0, q

′

0),
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– δ̄((q, q′), a) = (δ(q, a), δ′(q′, a)), and
– λ̄ : Q̄→ B4 is defined by

λ̄((q, q′)) =















⊤ if λ(q) = ⊤
⊥ if λ(q) = ⊥
⊤p if λ(q) =? and λ′(q′) = ⊤
⊥p if λ(q) =? and λ′(q′) = ⊥

Thus, we simultaneously compute the three-valued as well as the FLTL se-
mantics by taking the Cartesian product of the corresponding monitors. How-
ever, we keep ⊤ and ⊥ from the three-valued semantics and go for possibly
true (⊤p) or possibly false (⊥p) whenever the three-valued semantics gives don’t
know (?) and FLTL semantics yields ⊤ or ⊥, respectively. This gives:

Theorem 3. Let ϕ be an RV-LTL formula and let Āϕ
RV = (Σ, Q̄, q̄0, δ̄,B4, λ̄) be

the monitor according to Definition 4. Then for all u ∈ Σ∗ the following holds:

[u |= ϕ]RV = λ̄(δ̄(q̄0, u)).

Moreover, the size of Āϕ
RV is at most double exponential in the size of ϕ.

While the size of the final FSM is in O(22
n

) which sounds a lot, standard
minimisation algorithms for FSMs can be used to derive an optimal deterministic
monitor wrt. the number of states. Optimality implies that any other method,
in the worst case, has the same complexity. Better complexity results in other
approaches are either due to using a restricted fragment of LTL or otherwise
imply that the chosen temporal operators might not limit the expressive power
of LTL but sometimes impose long formulas for encoding the desired behaviour.

In practice, however, one might trade a precomputed deterministic mon-
itor towards an on-the-fly determinisation on a non-deterministic monitor as
described in [BLS06].

5 Conclusion

In this paper we introduced RV-LTL which is a new variant of LTL defined
over finite traces. We developed RV-LTL in order to match four maxims which
are motivated by runtime verification applications: A suitable semantics for run-
time verification should evaluate each formula and its negation to complementary
truth values (¬=C), the semantics should never evaluate to true or false prema-
turely (Sound), the semantics should be as anticipatory as possible (Precise),
and finally, the logic should provide a strong and weak next-state operator (∃X).
While preexisting logics can satisfy these maxims partially, none of them does
satisfy all four properties simultaneously.

This gap is closed by RV-LTL which matches all four maxims. To turn RV-
LTL in a practically applicable device for runtime verification, we first showed
how to define the semantics of RV-LTL in terms of two other variants of LTL,
namely LTL3 and FLTL, and second we translated this relationship into an
efficient monitor construction.
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