
The Theory and Practice of SALT

Andreas Bauer1 and Martin Leucker2

1NICTA Canberra Research Lab and The Australian National University
2Institut für Softwaretechnik und Programmiersprachen,

University of Lübeck, Germany

Abstract. Salt is a general purpose specification and assertion lan-
guage developed for creating concise temporal specifications to be used
in industrial verification environments. It incorporates ideas of existing
approaches, such as PSL or Specification Patterns, in that it provides
operators to express scopes and exceptions, as well as support for a sub-
set of regular expressions. On the one hand side, Salt exceeds specific
features of these approaches, for example, in that it allows the nesting
of scopes and supports the specification of real-time properties. On the
other hand, Salt is fully translatable to LTL, if no real-time operators
are used, and to TLTL (also known as state-clock logic), if real-time op-
erators appear in a specification. The latter is needed in particular for
verification tasks to do with reactive systems imposing strict execution
times and deadlines. Salt’s semantics is defined in terms of a translation
to temporal (real-time) logic, and a compiler is freely available from the
project web site, including an interactive web interface to test drive the
compiler. This tutorial paper details on the theoretical foundations of
Salt as well as its practical use in applications such as model checking
and runtime verification.

1 Introduction

When considering specification language formalisms, we have at least three dif-
ferent characteristics for their classification, which are (i) expressiveness, (ii) con-
ciseness, and (iii) readability. In simple words, expressiveness means, which kind
of languages can be defined at all within the considered formalism, while concise-
ness studies the question, how long the shortest spefications for a given family of
languages is. Readability, on the other hand, deals with the question, how easy

it is, to specify a certain language within the given formalism for a typical hu-
man beeing—and is thus a vague, not formal notion. Salt, which is an acronym
for structured assertion language for temporal logic, aims to be a general pur-
pose specification and assertion language, and was first introduced in [1]. It has
been designed especially with readability in mind. Thus, one of the main goals
of Salt is to offer users, who are not necessarily experts in formal specification
and verification, a versatile tool that allows them to express system properties in
a formal and concise, yet intelligible manner. In that respect, Salt has the look
and feel of a general purpose programming language (e.g., it uses if-then-else
constructs, supports (a subset of) regular expressions, and allows the definition

LTL PastLTL

Prop. Logic

TLTL

FO

FO
e
c

MSO
e
c

MSO

RE
xp

RExp(*)

Fig. 1. Relationships between propositional, first-order, and temporal logics.

of macros), yet it is fully translatable into standard temporal logics, such as
linear time temporal logic (LTL [2]) or, if dedicated real-time operators appear
inside a specification, to TLTL (also known as state-clock logic [3, 4]). In other
words, the untimed fragment of Salt is equally expressive as LTL, whereas the
timed fragment is equally expressive as TLTL. D’Souza has shown in [4] that
TLTL corresponds exactly to the first-order fragment of monadic second order
logic interpreted over timed words. This resembles the correspondence of LTL
and first-order logic over words as shown by Kamp [5]. However, LTL is strictly
less expressive than second-order logic over words which, in turn, is expressively
equivalent to ω-regular expressions. This also explains why full support of regular
expressions is not possible when only LTL-expressible properties are in question
(see Figure 1 for an overview).

As such it is possible to employ Salt as a higher level specification front-
end to be used with standard model checking or runtime verification tools that
otherwise would accept plain LTL formulae with a minimal set of operators as
input. As a matter of fact, the freely available Salt compiler1, which takes as
input a Salt specification and returns a temporal logic formula, already supports
the syntax of two powerful and commonly used model checking tools, namely
SMV [6] and SPIN [7], such that deployment should be relatively straightforward,
irrespective of the choice of verification tool.

The emphasis of this paper, however, is less on motivating the overall ap-
proach (which was already done in [1]), but rather to give an overview of the
main language features, and to demonstrate how it can be used to specify com-
plex temporal properties in a concise and accurate manner. Another important
objective, which did not play an important role in [1], is to deepen our under-
standing of the similarities between Salt and some closely related approaches,
in particular

– Dwyer et al.’s frequently cited specification patterns [8] which have become
part of the Bandera system used to model checking Java programs [9],

– the Property Specification Language (PSL [10, 11]), which is also a high-level
temporal specification language, predominantly used for the specification

1 For details, see http://salt.in.tum.de/ and/or the authors’ homepages.

of integrated circuits, and recently standardised by the IEEE (IEEE-Std
1850TM–2005),

As a matter of fact, parts of the design of Salt were directly influenced by
the features existent in these approaches, but the goal was not to create yet
another domain-specific tool, but a generic one which like LTL is more or less
application-agnostic.

For instance, Salt offers operators to express complex temporal scopes (e.g.,
by means of from, upto, between, etc.), which is one of the main features under-
lying the specification patterns. On the other hand, Salt also offers operators
to express so called exceptions (by means of accepton and rejecton), which
similarly appear in PSL. While Salt’s use of scopes exceeds the possibilities of
the specification patterns, in that they allow the nesting of scopes, Sec. 4 will
show that the exception operators in Salt are basically equivalent to those of
PSL.

The rest of the paper is structured as follows. The next section is a guided
tour of the language itself and highlights its main features; as such this section
intersects most with work already presented in [1], except for the extended list of
practical examples. Sec. 3 provides details on the translation of Salt expressions
into LTL, i.e., semantics and implementation. In Sec. 4, we discuss in a more
detailed manner the differences and similarities of Salt and other languages,
in particular PSL and the Bandera input language, whereas in Sec. 5, we dis-
cuss complexity and experimental results of using Salt as a general purpose
specification language. Finally, Sec. 6 concludes the paper.

2 Feature overview

A Salt specification contains one or many assertions that together formulate
the requirements associated with a system under scrutiny. Each assertion is
translated into a separate LTL/TLTL formula, which can then be used in, say,
a model checker or a runtime verification framework. Salt uses mainly textual
operators, so that the frequently used LTL formula �(p→ ♦q) would be written
as

assert always (p implies eventually q).

Note that the assert keyword precedes all Salt specifications, except meta-
definitions such as macros.

The Salt language itself consists of the following three layers, each covering
different aspects of a specification:

– The propositional layer provides the atomic, Boolean propositions as well as
the well-known Boolean operators.

– The temporal layer encapsulates the main features of the Salt language
for specifying temporal system properties. The layer is divided into a future
fragment and a symmetrical past fragment.

– The timed layer adds real-time constraints to the language. It is equally
divided into a future and a past fragment, similar to the temporal layer.

Within each layer, macros and parameterised expressions can be defined and
instantiated by iteration operators, enlarging the expressiveness of each layer
into the orthogonal dimension of functions.

As pointed out in the introduction, depending on which layers are used for
specification, the Salt compiler generates either LTL or TLTL formulae (resp.
with or without past operators). For instance, if only operators from the propo-
sitional layer are used, the resulting formulae are purely propositional formulae.
If only operators from the temporal and the propositional layer are used, the
resulting formulae are LTL formulae, whereas if the timed layer is used, the
resulting formulae are TLTL formulae.

2.1 Propositional layer

Atomic propositions. Boolean propositions are the atomic elements from
which Salt expressions are built. They usually resemble variables, signals, or
complete expressions of the system under scrutiny. Salt is parameterised with
respect to the propositional layer: any term that evaluates to either true or false
can be used as atomic proposition. This allows, for example, propositions to be
Java expressions when used for runtime verification of Java programs, or, simple
bit-vectors when Salt is used as front end to verification tools like SMV [6].

Usually, every identifier that is used in the specification and that was not
defined as a macro or a formal parameter is treated as an atomic proposition,
which means that it appears in the output as it has been written in the speci-
fication. Additionally, arbitrary strings can be used as atomic propositions. For
example,

assert always "state != ERROR"

is a valid Salt specification and results in the output (here, in SMV syntax)

LTLSPEC G state != ERROR .

However, the Salt compiler can also be called with a customised parser
provided as a command line parameter, which is then used to perform additional
checks on the syntactic structure of the propositions thus, making the use of
structured propositions more reliable.

Boolean operators. The well-known set of Boolean operators ¬, ∧, ∨, → and
↔ can be used in Salt both as symbols (!, &, |, ->, <->), or as textual operators
(not, and, or, implies, equals). Additionally, the conditional operators if-then
and if-then-else, which have been already mentioned in the introduction, can
be used. They tend to make specifications easier to read, because if-then-else
constructs are familiar to programmers in almost any language. With the help
of conditional operators, the introductory example could be reformulated as

assert always (if p then eventually q).

More so, any such formula can be arbitrarily combined using the Boolean con-
nectives.

2.2 Temporal layer

The temporal layer consists of a future and a past fragment. Although past
operators do not add expressiveness [12], they can help to write formulae that
are easier to understand and more efficient for processing [13].

In the following, we concentrate on the future fragment of Salt. The past
fragment is, however, completely symmetrical. Salt’s future operators are trans-
lated using only LTL future operators, and past operators are translated using
only LTL past operators. This leaves users the complete freedom as to whether
they do or do not want to have past operators in the result. This is useful as
not all verification frameworks support both fragments. That said, it would be
likewise possible to extend the current compilation process of Salt: The plain
Salt compiler translates past operators into LTL with past operators. If the
specification should be used say for a verification tool that does not support
past operators, a further translation process may be started compiling past for-
mulas to equivalent, possibly non-elementary longer future formulas. If, on the
other hand, both future and past operators are supported, either output might
be used, depending on how efficiently past operators are supported.

Standard LTL operators. Naturally, Salt provides the common LTL oper-
ators U, W, R, �, ♦ and ◦, written as until, until weak, releases, always,
eventually, and next.

Extended operators. Salt provides a number of extended operators that help
express frequently used requirements.

– never. The never operator is dual to always and requires that a formula
never holds. While this could of course be easily expressed with the standard
LTL operators, using never can, again, help to make specifications easier to
understand.

– Extended until. Salt provides an extended version of the LTL U operator.
The users can specify whether they want it to be exclusive (i. e., in ϕ U ψ,
ϕ has to hold until the moment ψ occurs) or inclusive (i. e., ϕ has to hold
until and during the moment ψ occurs) 2

They can also choose whether the end condition is required (i. e., must even-
tually occur), weak (i. e., may or may not occur), or optional (i. e., the ex-
pression is only considered if the end condition eventually occurs).

2 This has nothing to do with strict or non-strict U: strictness refers to whether the
present state (i. e., the left end of the interval where ϕ is required to hold) is included
or not in the evaluation, while inclusive/exclusive defines whether ϕ has to hold in
the state where ψ occurs (i. e., the right end of the interval). Strict Salt operators
can be created by adding a preceding next-operator.

– Extended next. Instead of writing long chains of next operators, Salt users
can specify directly that they want a formula to hold at a certain step in the
future. It is also possible to use the extended next operator with an interval,
e. g., specifying that a formula has to hold at some time between 3 and 6
steps in the future. Note that this operator refers only to states at certain
positions in the sequence, not to real-time constraints.

Counting quantifiers. Salt provides two operators, occurring and holding,
that allow to specify that an event has to occur a certain number of times.
occurring deals with events that may last more than one step and are separated
by one or more steps in which the condition does not hold. holding considers
single steps in which a condition holds. Both operators can also be used with
an interval, e. g., expressing the fact that an event has to occur at most 2 times
in the future. To express this requirement manually in LTL, one would have to
write

¬p W (p W (¬p W (p W �¬p))).

The corresponding Salt specification is written concisely as

assert occurring [<=2] p.

Exceptions. Salt also includes exception operators, named rejecton and
accepton, which interrupt the evaluation of a formula upon occurrence of an
abort condition. rejecton evaluates a formula to false if the abort condition
occurs and the formula has not been accepted before. For example, monitoring
a formula ♦ϕ when there has been no occurrence of ϕ yet would evaluate to
false. The dual operator, accepton, evaluates a formula to true if it has not
been rejected before.

While exceptions do not add expressiveness to the language (i.e., untimed
Salt using exceptions is fully translatable to standard LTL), they can be very
useful, for example, when specifying a communication protocol that requires
certain messages to be sent, but allows to abort the communication at any time
by sending a reset message. This would be expressed in Salt as

assert (con_open and next (data until con_close))

accepton reset .

Exceptions also play an important role in the specification and verification of
hardware systems. This is why languages such as PSL or ForSpec, which are
used in this domain, both include this feature (see Sec. 4).

Scope operators. Many temporal specifications use requirements restricted to
a certain scope, i. e., they state that the requirement has to hold only before,
after, or between some events, and not on the whole sequence [8]. This can be
expressed in Salt using the operators upto (or before), from (or after) and
between.

Figure 2 illustrates scopes. It should be clear from the figure that it is manda-
tory in Salt to specify whether the delimiting events are part of the interval
(i. e., inclusive) or not (i. e., exclusive).

Fig. 2. Scopes of upto, from and between.

Furthermore, for scope operators it has to be stated whether the occurrence of
the delimiting events is strictly required. For example, the following specification

assert p

between inclusive optional call ,

inclusive optional answer

means that p has to hold within the interval delimited by call and answer,
provided such an interval exists. Without the keyword optional, such an interval
would be required and within this interval, p must occur.

While it is possible to implement a translation of the from operator into
LTL relatively straightforward (see Sec. 3), the upto operator proves to be more
difficult, as can be seen in the following example.

A specification always ϕ upto b expresses that ϕ must always hold until the
occurrence of the end condition b. A näıve translation into LTL would be ϕ W b.
This is in order for a purely propositional ϕ, but might be wrong when temporal
operators are used: Consider for example ϕ := p -> (eventually s) yielding
the formula (p→ ♦s)Wb, intending to say “p should be followed by s before b”.
The sequence pbs is a model for the latter formula, although s occurs after the
end condition b, which clearly violates our intuitions. To meet our intuition, the
negated end condition b has to be inserted into the U and ◦ statements of ϕ in
various places, e. g., like this: (p→ (¬b U (¬b ∧ s))) W b. Dwyer et al. describe
this procedure in the notes of their specification pattern system [8]. It is however
a tedious and highly error-prone task if undertaken manually.

Salt supports automatic translation by internally defining a stop operator.
Using stop, the above example can be formulated as ((p→ ♦s) stop b)Wb with
stop b expressing that (p → ♦s) shall not take into account states after the
occurrence of b. It is then transformed into an LTL expression in a similar way
as the rejecton and accepton operators. Details can be found in Sec. 3.

Regular expressions. Regular expressions are well-known to many program-
mers. They provide a convenient way to express complex patterns of events, and
appear also in many specification languages (see Sec. 4). However, arbitrary reg-
ular languages can be defined using regular expressions, while LTL only allows
to define so-called star-free languages (cf. [14]). Thus, regular expressions have
to be restricted in Salt in order to stay translatable to standard LTL. The main
operators of Salt regular expressions (SREs) are concatenation (;), union (|)
and Kleene-star operators (*), but no complement. The argument of a Kleene-
star operator is required to be a propositional formula. The advantage of this
operator set—in contrast to the usual operator set for star-free regular expres-
sions, which contains concatenation, union and complement—is that it can be
translated more efficiently into LTL.

Salt provides further SRE operators that do not increase the expressiveness,
but, arguably, make dealing with expressions more convenient for users. For ex-
ample, the overlapping sequence operator : states that one expression follows
another one, overlapping in one step. The ? and + operators (optional expres-
sion and repetition at least once) are common extensions of regular expressions.
Moreover, there are a number of variations of the Kleene-star operator such as
*[=n] to express how many steps from now the argument has to consecutively
hold, *[>n] (resp. *[>n]) to express a minimum (resp. maximum) bound on the
consecutive occurrence of the argument, *[n..m] to express an exact bound, etc.
All these operators, however, have to adhere to the same restriction as the stan-
dard Kleene-star operator; that is, their argument needs to be a propositional
formula.

While traditional regular expressions match only finite sequences, a Salt

regular expression holds on an (infinite) sequence if it matches a finite prefix of
the sequence.

Finally, with the help of regular expressions, we can rewrite the example
using exception operators as

assert /con_open; data*; con_close/ accepton reset .

2.3 Timed layer

Salt contains a timed extension that allows the specification of real-time con-
straints. Timed operators are translated into TLTL [3, 4], a timed variant of
LTL.

Timing constraints in Salt are expressed using the modifier timed[∼],
which can be used together with several untimed Salt operators in order to

turn them into timed operators. ∼ is one of <, <=, =, >=, > for next timed and
either < or <= for all other timed operators.

– next timed[∼ c]ϕ

states that the next occurrence of ϕ is within the time bounds ∼ c. This
corresponds to the operator �∼cϕ in TLTL.

– ϕ until timed[∼ c] ψ

states that ϕ is true until the next occurrence of ψ, and that this occurrence
of ψ is within the time bounds ∼ c. The extended variants of until can be
used as timed operators as well.

– always timed[∼ c] ϕ

states that ϕ must always be true within the time bounds ∼ c.
– never timed[∼ c] ϕ

states that ϕ must never be true within the time bounds ∼ c.
– eventually timed[∼ c] ϕ

states that ϕ must be true at some point within the time bounds ∼ c.

2.4 Macros and parameterised expressions

Salt allows user-defined sub-expressions as macros and to parameterise macros
and sub-expressions. Macro definitions do not begin with the assert keyword.
They can be called in the same way as built-in Salt operators. Within cer-
tain limits, this allows the user to extend the Salt language using their own
operators. For example, the following macro is called in infix notation:

define respondsto(x, y) := y implies eventually x

assert always (reply respondsto request)

Iteration operators allow to instantiate a parameterised sub-expression or
macro with a list of values provided by the user. For example, the following
specification states that either a or !b or c must hold forever.

assert someof list [a, !b, c] as i in always i

Parameters defined in a macro or an iteration expression can also be used to
parameterise Boolean variables, as in the following example, which states that
exactly one of the four variables, state_1, state_2, state_3 and state_4, must
be true.

assert exactlyoneof enumerate [1..4] as i in state_i

Macros can help to make a specification easier to understand, because com-
plicated sub-expressions can be transparently hidden from the user, and accessed
via an intuitive name that explains what the expression actually stands for. Sub-
expressions that are used several times have to be written down only once.

2.5 Further examples

In this section, a concluding look at some more Salt specifications is taken, and
their corresponding LTL versions examined. The examples are mostly borrowed

from the survey presented in [8], except where indicated otherwise. Note that
propositions appearing in the specifications are not necessarily marked as such
and are denoted in plain text only, indicating their intuitive meaning wrt. the
respective application.

1. The requirement that a system should operate until a queue of jobs is either
empty, or an abort signal issued can be formulated in LTL as

¬((¬(queuelength == 0 ∨ abort)) U
(¬working ∧ (¬(queuelength == 0 ∨ abort)))).

The accompanying Salt specification would be:

assert working until weak

("queuelength == 0" | abort),

where abort is a proposition, and not the abort operator.
2. To specify idle behaviour, the following LTL specification could be used:

�(¬return Execute ∨ (return Execute ∧ ((♦call Execute) ⇒

(¬(¬call Execute U (call doWork ∧ ¬call Execute)))))).

It asserts that between the moment in which an execution completes, and
before a new one begins, there is no work done. In Salt, this example would
be written as:

assert always

(never call_doWork

between inclusive optional return_Execute ,

exclusive optional call_Execute).

3. Coming back to an example from the area of protocol specification, one
might assert that an answer was immediately preceded by a request. In LTL
this would be written as:

�(answer ⇒ (◦request)).
Using a macro, in Salt, precedes can be expressed as follows:

define precedes(x, y) := if y then once x

assert always (request precedes answer).

4. A system with n input channels, may be using at most one at a time. Given
that n = 4, this simple requirement would require

�(((in 0 ∧ (¬(in 1 ∨ (in 2 ∨ in 3))))∨

((in 1 ∧ (¬(in 0 ∨ (in 2 ∨ in 3))))∨

((in 2 ∧ (¬(in 0 ∨ (in 1 ∨ in 3))))∨

(in 3 ∧ (¬(in 0 ∨ (in 1 ∨ in 2)))))))∨

(¬(in 0 ∨ (in 1 ∨ (in 2 ∨ in 3)))))

if specified in LTL. The shorter Salt specification appears to be less error-
prone and more readable:

assert always

(exactlyoneof enumerate [0..3] as i in in_i) |

(noneof enumerate [0..3] as i in in_i).

5. To show that regular expressions can be very useful for specification pur-
poses, in the following it is expressed that a connection signal is eventually
answered by an acknowledgement, followed by at least four data packets and
a close signal. Again, this is first examined in LTL:

�(connection⇒

(♦(answer ∧ (◦(data U (data∧

(◦(data ∧ (◦(data ∧ (◦(data ∧ (◦ close))))))))))))).

Now, consider the Salt counterpart using a regular expression:

assert always

(if connection then

eventually /answer; data *[>=4]; close /)

6. Consider an elevator: A possible requirement could be that between the time
an elevator is called at a floor and the time it opens its doors at that floor,
the elevator can arrive at that floor at most twice. In Salt, this can be
specified as:

assert always

(occurring [<=2] atfloor

between inclusive optional call , exclusive

optional open)

7. This section is now concluded by extending this example further and thus,
showing most of Salt’s features in one use-case. The following specification
describes the following behaviour: On all three floors in a building, calling
the elevator at floor i implies that it may pass at most two times at that
floor without opening its doors, and that it must finally open its doors at
that floor within 60 seconds.

define max_twice_at_floor_before_open (i) :=

always (occurring [<=2] atfloor_i

between inclusive optional call_i ,

exclusive optional open_i)

define max_60s_before_open (i) :=

always (call_i implies

eventually timed [<=60.0] open_i)

assert allof enumerate [1..3] as floor in

max_twice_at_floor_before_open (floor)

and max_60s_before_open (floor)

The modifiers optional in the between-statement make sure that atfloor_i
is only checked provided call_i occurs.

Note that the equality between the LTL specifications in the above examples
and their Salt counterparts, was established using the model checker SMV. For
this purpose the Salt specifications were first compiled into plain LTL using
the Salt compiler and then compared with the manually written requirements.

3 Semantics

Salt comes with a precisely defined semantics. It can be translated into either
LTL or TLTL; the latter only when timed operators are used in a specifica-
tion. Therefore, we define the semantics of Salt’s operators by means of their
corresponding LTL or respectively TLTL formulae.

More precisely, we define a translation function T to translate a valid Salt

specification ψ into a temporal logic formula T (ψ), and define that an infinite
word w over a finite alphabet of actions satisfies ψ iff w |= T (ψ) (using the
standard satisfaction relation |= defined for LTL/TLTL [15]).

For brevity, we exemplify the translation on a few selected operators only
and refer to the extensive language reference and manual available from Salt’s
homepage at http://salt.in.tum.de/ for the remaining cases.

In what follows, let ψ, ϕ, and ϕ′ denote Salt specifications. Many of Salt’s
operators can be considered as simple syntactic sugaring and are easily translated
to LTL. For example, T (ϕ or ϕ′)) is translated inductively to T (ϕ)∨T (ϕ′). The
aforementioned accepton operator, which adds an exception to a specification
is inductively defined as follows:

T (b accepton a) = b ∨ a

T ((¬ϕ) accepton a) = ¬T (ϕ rejecton a)

T ((ϕ ∧ ψ) accepton a) = T (ϕ accepton a) ∧ T (ψ accepton a)

T ((ϕ ∨ ψ) accepton a) = T (ϕ accepton a) ∨ T (ψ accepton a)

T ((ϕ U ψ) accepton a) = T (ϕ accepton a) U T (ψ accepton a)

T ((◦ϕ) accepton a) = (◦T (ϕ accepton a)) ∨ a

T ((�ϕ) accepton a) = ¬(¬a U ¬T (ϕ accepton a))

T ((♦ϕ) accepton a) = ♦T (ϕ accepton a),

Whereas the rejecton operator, which is used in the above definition, is given
in terms of:

T (b rejecton r) = b ∧ ¬r

T ((¬ϕ) rejecton r) = ¬T (ϕ accepton r)

T ((ϕ ∧ ψ) rejecton r) = T (ϕ rejecton r) ∧ T (ψ rejecton r)

T ((ϕ ∨ ψ) rejecton r) = T (ϕ rejecton r) ∨ T (ψ rejecton r)

T ((ϕ U ψ) rejecton r) = T (ϕ rejecton r) U T (ψ rejecton r)

T ((◦ϕ) rejecton r) = (◦T (ϕ rejecton r)) ∧ ¬r

T ((�ϕ) rejecton r) = �T (ϕ rejecton r)

T ((♦ϕ) rejecton a) = ¬r U T (ϕ rejecton r).

However, not all Salt operators translate in such a straightforward inductive
manner, since their translation depends on what is defined by the according sub-
formulae occurring in a given expression. To guide the translation process for
such operators, we have introduced an artificial or helper operator, stop, which
is inductively defined as follows:

T (b stopexcl s) = b

T ((¬ϕ) stopexcl s) = ¬T (ϕ stopexcl s)

T ((ϕ ∧ ψ) stopexcl s) = T (ϕ stopexcl s) ∧ T (ψ stopexcl s)

T ((ϕ ∨ ψ) stopexcl s) = T (ϕ stopexcl s) ∨ T (ψ stopexcl s)

T ((ϕ U ψ) stopexcl s) = (¬s ∧ T (ϕ stopexcl s)) U (¬s ∧ T (ψ stopexcl s))

T ((ϕ W ψ) stopexcl s) = T (ϕ stopexcl s) W (s ∨ T (ψ stopexcl s))

T ((◦ϕ) stopexcl s) = ◦(¬s ∧ T (ϕ stopexcl s))

T ((◦W ϕ) stopexcl s) = ◦(s ∨ T (ϕ stopexcl s))

T ((�ϕ) stopexcl s) = T (ϕ stopexcl s) W s

T ((♦ϕ) stopexcl s) = (¬s) U (¬s ∧ T (ϕ stopexcl s))

where b denotes an atomic proposition from the action alphabet and s an arbi-
trary formula, possibly atomic also.

Thus, stop selects certain aspects of a formula, and in ψ ≡ ϕ1 stop ϕ2,
intuitively asserts that the validity of ψ does not depend on events occurring
after ϕ2 has occurred. Again, for brevity, we consider only the exclusive variant of
stop and only for the future fragment of Salt. The past fragment and inclusive
semantics, however, are each symmetrical.

The more complicated scope operator upto, which was discussed earlier in
Sec. 2.2, and whose translation depends on stop, is then defined as:

T (ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b

if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b

else: (♦b) ∧ (T (ϕ) stopexcl b)

T (ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (T (ϕ) stopexcl b)

T (ϕ upto excl weak b) = (T (ϕ) stopexcl b)

T (req ϕ upto excl req b) =
if T (ϕ) = �ψ: ¬b ∧ ((ψ stopexcl b) U b)
if T (ϕ) = ¬♦ψ: ¬b ∧ ((¬ψ stopexcl b) U b)
else: (♦b) ∧ ¬b ∧ (T (ϕ) stopexcl b)

T (req ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (¬b ∧ (T (ϕ) stopexcl b))

T (req ϕ upto excl weak b) = ¬b ∧ (T (ϕ) stopexcl b)

T (weak ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b

if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b

else: (♦b) ∧ (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: b ∨ ¬((¬ψ stopexcl b) U b)
else: (♦b) → (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl weak b) = b ∨ (T (ϕ) stopexcl b)

T (ϕ upto incl req b) = (♦b) ∧ (T (ϕ) stopincl b)

T (ϕ upto incl opt b) = (♦b) → (T (ϕ) stopincl b)

T (ϕ upto incl weak b) =
if T (ϕ) = �ψ: ¬(¬b U ¬(ψ stopincl b))
if T (ϕ) = ¬♦ψ: ¬(¬b U (ψ stopincl b))
else: (T (ϕ) stopincl b)

where, of course, stopexcl and stopincl are references to the exclusive and
inclusive variants of stop, respectively.

Similar translation schemes are defined for the remaining operators’ seman-
tics, which are detailed in the Salt language reference and manual.

4 Comparison with existing approaches

As already mentioned in the introduction, the design of Salt is influenced by a
number of existing (domain-specific) specification languages, in particular PSL

and specification patterns. In order to see the differences between these ap-
proaches and Salt, besides their domain-specifitivity, we go again through the
main list of Salt features and discuss similarities and differences between the
approaches.

4.1 Overview

Like Salt, the Property Specification Language PSL [11] is a high level specifi-
cation language, but predominantly used in the area of integrated circuit design.
The initial version of PSL, which underwent standardisation by the IEEE, be-
came available in March 2003, whereas the latest version, version 1.1, became
available in April 2004. The PSL standard incorporates concepts and ideas of var-
ious other specification languages, such as ForSpec, which has been developed at
Intel and been donated to Accellera in order to facilitate the then ongoing stan-
dardisation efforts (cf. [16]). PSL also comprises different layers, (i) a Boolean,
(ii) temporal, (iii) verification, and (iv) modelling layer. The Boolean layer is
much like Salt’s propositional layer, and available in different flavours, depend-
ing on the concrete application domain; for instance, there exists a VHDL flavour
which means that Boolean connectives follow roughly the same syntax used in
VHDL, which is a standard hardware specification language and simulation en-
vironment (cf. [17]). The temporal layer, in turn, is divided into two separate
languages: the foundation language and the optional branching extension, with
the main difference being that the former employs a linear model of time, and
the latter a branching one. Therefore, in the following comparison with Salt, we
focus mainly on the foundation language, although some features are the same
for both languages. The foundation language, basically, consists of

– the usual Boolean connectives,
– future-time LTL operators,
– clocking operators,
– Sequential Extended Regular Expressions (SEREs), as well as
– an abort operator to model exceptions.

The verification layer consists of directives which describe how the temporal
properties should be used by verification tools. Unlike Salt, the assert keyword
is part of the verification layer, and not inherent to all specifications alike. Instead
of assert it is also possible to assume that a specification holds, or to check
if certain parts of a trace are covered by an SERE. As such, the verification
layer instructs an employed verification tool how to treat the specification. Note
that Salt specifications, basically, always use assert, except to define macros.
Finally, the modelling layer of PSL is used to introduce domain-specific modelling
constructs, e.g., in a VHDL-flavour or other hardware description language, to
model directly the behaviour of hardware designs, and therefore augment what
is possible using PSL alone. For example, it can be used to calculate an expected
value of an output or use custom data structures, but then typically exceeding
what is expressible using ω-regular languages alone. In fact, there exists currently

no accepted formal semantics for PSL’s modelling layer (cf. [18]). However, when
augmented models are merely used for simulation, e.g., to compare the observed
behaviour with a specified one (runtime verification), then such formal properties
of the system are of no concern as a runtime verification toolkit would not care
how a trace has been generated. Salt, on the other hand, aiming to be used as
a general specification front-end, rather than a system modelling tool does not
currently offer the integration of third-party languages as a means of extension.

Like PSL, the Bandera system [19, 20] is also a domain-specific tool, in that
it targets the Java language as platform to perform software model checking
on. Dwyer et al.’s specification patterns [8] have been adopted by the Bandera
Specification Language (BSL), which has a compiler to translate high-level speci-
fications to LTL. Basically, Dwyer et al. analysed ca. 600 real-world specifications
in order to identify common patterns among them [8]. These patterns were then
formalised, and formed the foundation of their well-known specification patterns.
Conceptually, specification patterns are similar to design patterns in software en-
gineering [21]; that is, a pattern provides a solution to a recurring problem, often
including notes about its advantages, drawbacks, and alternatives. As such it en-
ables inexperienced users to reuse expert knowledge. The specification patterns
themselves consist of requirements, such as “absence” (i. e., a condition is false)
or “response” (i. e., an event triggers another one), that can be expressed under
different scopes, like “globally”, “before an event r”, “after an event q”, or “be-
tween two events r and q”. Similarly to PSL and Salt, BSL consists of layers:
the assertion property specification layer allows developers to define constraints
on program contexts, whereas the temporal property specification layer provides
support for temporal properties.

4.2 A comparison of features

In what follows, we go through a list of core features of the Salt language, as
presented in Sec. 2, and discuss how the other specification languages mentioned
above realise them, if at all. Since this discussion is guided by the features existing
in Salt, it is not meant to distill a single best approach, but rather to show
where the similarities and the differences are between all three languages. An
objective comparison is also difficult because BSL and PSL each are optimised
for a different purpose, namely hardware design/verification and software model
checking.

Extended operators. Salt’s extended operators aim at providing a richer set
of LTL-like primitives, e.g., such as never as opposed to the frequently used
LTL-operator always. PSL also has the never operator and its own equivalent
operators to Salt’s different versions of the next and until operators. BSL, on
the other hand, discourages the use of low-level LTL primitives in favour of high-
level patterns and scopes. Hence it does not provide these operators although it
is easy to express them in terms of the standard LTL operators.

Scopes. Scopes have been identified by Dwyer et al. as an important issue in
the specification pattern system. However, their pattern system is restricted to
predefined requirements. That is, it does not allow nested scopes, and by default
only certain combinations of inclusive/exclusive and required/optional delim-
iters. Some—but by far not all—scopes can also be expressed in PSL using the
next event and different variants of before operators. Salt’s distinguishing
feature here is that scope operators can be used with arbitrary formulae, even
with nested scope operators as in the following example:

assert weak e between inclusive optional

(eventually (required a before exclusive required b)

from exclusive optional c),

exclusive required d

Here, the outer-most scope is a between, which uses a from scope which, in turn,
uses a before scope as one of its arguments. Admittedly, the example is hard to
read and rather artificial, but it does highlight this particular feature of Salt

in a very obvious manner.

Exceptions. Interestingly one of the main changes between versions 1.0 and 1.1
of PSL, besides precedence ordering, is the treatment of PSL’s abort operator,
and whose Salt counterpart are the operators accepton and rejecton. The
reason for this change is described in [22]. In this paper, Armoni et al. describe
their discovery that the original definition of the abort operator would cause, in
the worst-case, a non-elementary blow-up when translating a specification into
an alternating Büchi automaton. In essence, this meant that PSL, as it was de-
fined in version 1.0, could render subsequent formal verification an unnecessarily
difficult if not impossible task, as the performance of most such tools, which use
temporal specifications, directly depends on the size of the resulting automata
representations. This problem has been addressed by basically adopting the se-
mantics of a similar language wrt. this operator, called ForSpec [23], and which
has been mainly developed at Intel and donated to Accellera in 2003. ForSpec
also offers exception operators, called accept and reject, and specifications are
translatable into a logic termed Reset-LTL in [22]. Although Reset-LTL contains
two additional operators when compared to Pnueli’s LTL, the two languages are
actually equally expressive [22]. At this stage we only give an intuitive semantics
of Reset-LTL, and refer the reader to the Appendix for a formal account.

An infinite word w at position i over some alphabet is said to satisfy a Reset-
LTL formula, ϕ, if 〈wi, false, false〉 |= ϕ holds. But unlike in standard LTL, this
satisfaction relation is not only defined between an infinite word and a formula,
but also between two additional Boolean formulae, which capture the exception
conditions for the accept and reject operators, respectively. Let us refer to the
former by a and the latter by r. Initially, when evaluating a formula, false and
false are used for a and r, and the definition of the semantics (see Appendix)
ensures that during evaluation, it is not possible for a and r to be true at the
same time. That is, in some relation 〈wi, a, r〉 |= ϕ, if a is satisfied in state wi

then the entire word wi is a model, irrespective of whether or not ϕ is satisfied by
wi using the standard LTL semantics. On the other hand, if r is satisfied, then
wi is not a model, irrespective of whether or not ϕ is satisfied using standard
LTL semantics. As such a and r are, indeed, exception conditions, and set to
a value other than false by the definition of the accept and reject operators
above. What is interesting to note is that Salt’s exception operators accepton
and rejecton are, in fact, compatible with Reset-LTL’s exception operators in
the following sense.

Theorem 1. The following relationship holds between the Reset-LTL operators

abort and reject and the Salt operators accepton and rejecton:

〈wi, false, false〉 |= accept e in φ if and only if wi |= φ accepton e,

and

〈wi, false, false〉 |= reject e in φ if and only if wi |= φ rejecton e.

Again, for a formal proof of this statement, see the Appendix.
Note also that although PSL adheres to Reset-LTL semantics with respect to

the two exception operators, it has adopted its own keyword (abort) and, unlike
Salt’s exception operators which are defined in a mutually recursive manner in
Sec. 3, uses a direct definition, expressed in terms of two “helper” symbols, ⊤
and ⊥, instead of the two Boolean context formulae as in Reset-LTL. These
helper symbols are not part of the underlying alphabet. Basically, the symbol ⊤
is such that everything holds on it, including false, and ⊥ is such that nothing
holds on it, including true. As the two semantic definitions for the exception
operators are expressively equivalent, we abstain from giving further details at
this point, but the interested reader may refer to [22, 24] and [10, §B2.1.1.2].

Regular expressions. As pointed out in Sec. 2, Salt supports a subset of
regular expressions, which is translatable to LTL. Note that as is the case with
PSL, Salt regular expressions (SREs) do not offer complementation as an oper-
ator. The reason being not to restrict expressiveness, but the fact that arbitrary
use of complementation in a specification can lead to exponentially larger LTL
formulae in the translation. It is, however, possible to negate the language an
expression defines by using not as can be seen in the example already employed
in Sec. 2:

assert not /con_open; data*; con_close/

accepton reset

As SEREs form a superset of SREs (modulo a different semantics, e.g., SEREs
are typically enclosed by brackets instead of slashes), the above is also a valid
PSL expression. Salt basically supports the same repetition operators as SEREs
do, but with further restrictions on their arguments to not allow specifications
that would otherwise exceed the expressiveness of star-free languages, and thus
LTL:

– The argument of *, *[>n], *[>=n] and + has to be a propositional formula.
– All expressions except for the last in an SRE must be either Boolean propo-

sitions, or they must be other SRE combined by |. No other Boolean con-
nectives are allowed for the combination of SRE (although they can be used
to form propositional expressions).

– The last element in an SRE may be any Salt expression, however, because
of operator precedences it may be necessary to surround it with parentheses.

Other operators, like the overlapping sequence operator (“:”) are also inspired
from SEREs, and its semantics defined accordingly.

To the best of our knowledge, BSL does not currently offer any kind of
support for regular expressions.

Real-time support. As also pointed out in Sec. 2, Salt has dedicated sup-
port for real-time specifications, in that temporal operators can be enriched
with discrete timeouts as is shown in the last example in Sec. 2.5. Recall that
all specifications employing real-time directives are translated into TLTL, and
although the timing constraints that appear in a Salt specification can only
be discrete, TLTL’s underlying model of time is continuous [4]. TLTL basically
enriches standard LTL with two operators, each accepting a discrete value as
argument: one operator is used to express when a proposition was true in the
past, and the other one to express when it will be true in the future. Based on
these operators, it is easy to derive time-bounded variants of the typical LTL
modalities.

Neither PSL nor BSL currently offer real-time support in the above sense.
However, PSL supports clocked expressions using the “@” operator, which can
be appended to unclocked expressions, similarly as time-bounds in Salt can
be appended to untimed expressions. Clocks, however, are not used to model
real-time, but to match (parts of) expressions with different parts of the clock
cycles of the hardware system under scrutiny. For example, @rose defines that
something has to hold on a rising edge, @negedge on a negative edge, and so on.
As such, PSL adopts a hardware designer’s point of view. Salt on the other hand
adopts, more or less, a purely behavioural point of view, in that the intention
is not to let users model the actual implementation of an event-driven real-time
system, but its abstract behaviour. Arguably, a continuous model of time, as is
offered by TLTL and discrete time-outs, are an adequate language to achieve
this goal.

Macros and parameterised expressions. In comparison to Salt, PSL’s
macro definition capabilities are more akin to C or C++’s preprocessor. PSL
defines the well-known directives for #define, #ifdef, #undef, etc. which behave
in the expected way. In addition it offers two less common directives, %for and
%if, whose semantics can be explained as follows. The %for directive replicates
something a number of times. The syntax is as follows:

// using a range

%for var in expr1 .. expr2 do

...

%end

// using a list

%for var in { item1 , item2 , ... , itemN } do

...

%end

where var is an identifier, expr1 and expr2 are statically computable expres-
sions, and item1, item2 etc. are either a number or a simple identifier. In the first
case the text inside the %for...%end pairs will be replicated expr2− expr1 + 1
times (assuming that expr2 ≥ expr1). In the second case the text will be repli-
cated according to the number of items in the list (cf. [11, §8.5]). The following
PSL macro definition using %for

%for ii in 0..3 do

assign aa[ii] = ii > 2;

%end

is therefore equivalent to this slightly longer piece of PSL code:

assign aa[0] = 0 > 2;

assign aa[1] = 1 > 2;

assign aa[2] = 2 > 2;

assign aa[3] = 3 > 2;

As such, the %for directive is PSL’s counterpart to Salt’s enumeration operator,
whereas %if is similar to the #ifdef construct known from C/C++. However
%if must be preferred over #ifdef when the condition refers to variables defined
in an encapsulating %for. For further details, refer to [11, 10].

While BSL doesn’t directly support macros in the above sense, it has a
rich and powerful assertion language as well as predicate definition sublanguage.
While neither offers an if-then-else construct, the assertion language lets users
define assertions of the form of C’s conditional operator “:”, which is also part
of C++, Java, and other languages, e.g., as in a? b : c, which is equivalent
to if a then b else c. Also, assertions in BSL define static properties, in
that they are Boolean conditions which can be checked at certain control-flow
points throughout the execution of a Java program, such as method entry and
return. However, Salt’s parameterised expressions (and as such PSL’s %for

operator) have a match in BSL. Consider, for example, the following excerpt
from a specification given in [19]:

FullToNonFull: forall[b:BoundedBuffer].

{Full(b)} leads to {!Full(b)} globally

which is translated into a parameterised specification, which during verification
is instantiated accordingly by all objects of type BoundedBuffer:

�(Full(b) → ◦(¬Full(b))).

Table 1. Comparison of Salt language features with those of other specification lan-
guages.

Ext. ops Scopes Exceptions Reg. exp. Real-time Macros Iterators

Salt G#

PSL G# #

BSL # # # # G#

Obviously, this form of parameterisation using type information is geared to-
wards the verification of Java programs.

Summary. As an overview, we present a brief summary of our findings in the
form of a table in Table 1.

4.3 Further related work

EAGLE [25], is a temporal logic with a small but flexible set of primitives. The
logic is based on recursive parameterised equations with fix-point semantics and
merely three temporal operators: next-time, previous-time, and concatenation.
Using these primitives, one can construct the operators known from various
other formalisms, such as LTL or regular expressions. While EAGLE allows the
specification of real-time constraints, it lacks most high level constructs such as
nested scopes, exceptions, counting quantifiers currently present in Salt.

Duration calculus [26] and similar interval temporal logics overcome some
of the limitations of LTL that we mentioned. These logics can naturally encode
past operators, scoping, regular expressions, and counting. However, it is unclear
how to translate specifications in these frameworks to LTL such that standard
model checking and runtime verification tools based on LTL can be employed.

Notably, [27] describes a symmetric approach by providing a more low-level
and formal framework in which the various different aspects of different tem-
poral logics can be expressed. The observational mu-calculus is introduced as
an “assembly language” for various extensions of temporal logic. In a follow-up
paper [28], first results from an integration of the observational mu-calculus into
the Object Constraint Language (OCL), which also forms part of the UML are
described. However, the goal of this work was not to provide a more rich and
natural syntax, but rather a sufficient set of temporal operators.

5 Realisation and results

Specification languages like Salt, PSL, BSL, etc. aim at offering as many con-
venience operators to users as possible, in order to make the specifications more
concise, thus readable, and the task of specification ultimately less error-prone.
However, increased conciseness often comes at a price, namely that the com-
plexity of these formalisms increases. Although, to the best of our knowledge,

there does not exist a complexity result for PSL’s satisfiability problem, there
exist results for LTL and specific SERE features: While LTL is known to be
PSpace-complete, it turns out that adding even just a single operator of the
ones offered by SEREs makes the satisfiability problem at least ExpSpace hard
[29]. On the other hand in [22] it is noted, that Reset-LTL, which we have used
to express PSL’s exception operators in Sec. 4 is only PSpace-complete. As,
due to Theorem 1 we can easily create a Reset-LTL formula for every untimed
Salt specification that uses only the LTL operators, extended operators, and
exceptions, it follows that this fragment is also in PSpace. In fact, due to the
PSpace-completeness of LTL, it follows that this fragment is PSpace-complete.

The situation is different when we consider the complete untimed fragment
of Salt. In particular, it contains a variant of the ◦-operator, as in nextn[n]ϕ,
which states that ϕ is required to hold n steps from now in the future. It was
pointed out in [30], that the succinctness gains of this operator alone push the
complexity of a logic up by one exponent as the formula nextn[2n] is only
of length O(n). This is the same argument used in [23] to explain ExpSpace-
hardness of FTL, the logic underlying ForSpec. We thus get:

Theorem 2. The untimed Salt fragment consisting of LTL-, extended-, and

abort-operators is PSpace-complete. By adding the nextn operator, one obtains

an ExpSpace-complete fragment.

Note that we currently have no similar result for full Salt as it would require
analysing many more features than the ones above. In fact, to the best of our
knowledge, there does not exist a similar result for PSL, despite the fragments
considered in [29], presumably for the same reason.

5.1 Experimental results

We have implemented our concepts in terms of a compiler for the Salt lan-
guage. The compiler front end is currently implemented in Java, while its back
end, which also optimises specifications for size, is realised via the functional pro-
gramming language Haskell. Basically, the compiler’s input is a Salt specifica-
tion and its output a temporal logic formula. Like with programming languages,
compilation of Salt is done in several stages. First, user-defined macros, count-
ing quantifiers and iteration operators are expanded to expressions using only a
core set of Salt operators. Then, the Salt operators are replaced by expres-
sions in the subset Salt--, which contains the full expressiveness of LTL/TLTL
as well as exception handling and stop operators. The translation from Salt--
into LTL/TLTL is treated as a separate step since it requires weaving the abort
conditions into the whole subexpression. The result is an LTL/TLTL formula
in form of an abstract syntax tree that is transformed easily into concrete syn-
tax via a so-called printing function. Currently, we provide printing functions
for SMV [6] and SPIN [7] syntax, but the users can easily provide additional
printing functions to support their tool of choice. The use of optimised, context-
dependent translation patterns as well as a final optimisation step performing
local changes also help reducing the size of the generated formulae.

As the time required for model checking depends exponentially on the size
of the formula to check, efficiency was an important issue for the development
of Salt and its compiler. Because of the arguments presented in the discussion
above, one might suspect that generated formulae are necessarily bigger and less
efficient to check than handwritten ones. But our experiments show that the
compiler is doing a good job of avoiding this worst-case scenario in practice.

In order to quantify the efficiency of the Salt compiler, existing LTL for-
mulae were compared to the formulae generated by the compiler from a corre-
sponding Salt specification. This was done for two data sets: the specification
pattern system [8] (50 specifications) and a collection of real-world example spec-
ifications, mostly from the Dwyer’s et al.’s survey data [8] (26 specifications).
The increase or decrease of the formula was measured using the following pa-
rameters:

BA [Fri]: Number of states of the Büchi automaton (BA) generated using the
algorithm proposed by Fritz [31], which is one of the best currently known.
This is probably the most significant parameter, as a BA is usually used for
model checking, and the duration of the verification process depends highly
on the size of this automaton.

BA [Odd]: Number of states of the BA generated using the algorithm proposed
by Oddoux [32].

U: Number of U, R, � and ♦ in the formula.
X: Number of ◦ in the formula.
Boolean: Number of Boolean leafs, i. e., variable references and constants. This

is a good parameter for estimating the length of the formula.

The results can be seen in Figure 3. The formulae generated by the Salt

compiler contain a greater number of Boolean leafs, but use less temporal op-

erators and, therefore, also yield a smaller BA. The error markers in the figure
indicate the simple standard error of the mean.

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

n
cr

ea
se

BA [Fri] BA [Odd] U X Boolean

Specification Patterns

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

n
cr

ea
se

BA [Fri] BA [Odd] U X Boolean

Example Specifications

Fig. 3. Size of generated formulae.

Discussion. As it turned out, using Salt for writing specifications does not de-
prave model checking efficiency in practice. On the contrary, one can observe
that it often leads to more succinct formulae. The reason for this result is that
Salt performs a number of optimisations. For instance, when translating a for-
mula of the form ϕWψ, the compiler can choose between the two equivalent
expressions

¬(¬ψ U (¬ϕ ∧ ¬ψ)) and (ϕ U ψ) ∨�ϕ.

While the first expression duplicates ψ in the resulting formula, the second ex-
pression duplicates ϕ, and introduces a new temporal operator. In most cases,
the first expression, which is less intuitive for humans, yields better technical
results.

Another equivalence utilised by the compiler is: �(ϕ W ψ) ⇐⇒ �(ϕ ∨ ψ).
With ϕ W ψ being equivalent to (ϕ U ψ) ∨ �ϕ, the left hand side reads as
�((ϕ U ψ) ∨ �ϕ). When ϕ and ψ are propositions, this expression results in
a BA with four states (using the algorithm proposed by Fritz [31]). �(ϕ ∨ ψ),
however, is translated into a BA with only a single state.

Of course, the benefit obtained from using the Salt approach is of no princi-
ple nature: The rewriting of LTL formulae could be done without having Salt

as a high-level language. What is more, given an LTL-to-BA translator that
produces a minimal BA for the language defined by a given formula, no optimi-
sations on the formula level would be required, and such a translation function
exists—at least theoretically.3 Nevertheless, the high abstraction level realised
by Salt makes the mentioned optimisations easily possible, and produces BAs
that are smaller than without such optimisations—despite the fact that today’s
LTL-to-BA translators already perform many optimisations.

6 Conclusions

In this tutorial paper we gave an overview and a practical introduction to Salt,
a high-level extensible specification and assertion language for temporal logic.
We not only gave an overview over its core features, but also a detailed compar-
ison with related approaches, in particular PSL and the Bandera input language
BSL, as well as provided practical examples and results concerning the complex-
ity of Salt. Our experimental results show that the higher level of abstraction,
offered by Salt when compared to normal LTL, does not practically result in
an efficiency penalty, as compiled specifications are often considerably smaller
than manually written ones. This is somewhat in contrast with our more theo-
retical considerations, in that the satisfiability problem of Salt specifications,
depending on which features are used, can be exponentially harder than that of
LTL. However, the experiments show that this exponential gap does not show

3 As the class of BAs is enumerable and language equivalence of two BAs decidable, it
is possible to enumerate the class of BAs ordered by size and take the first one that
is equivalent to the one to be minimised. Clearly, such an approach is not feasible
in practice—and feasible minimisation procedures are hard to achieve.

up in many practical examples, and that our compiler, on the contrary, is able
to optimise formulae to result in smaller automata.

Our feature comparison between Salt, PSL, and the Bandera input language
BSL shows that Salt incorporates many of the features present in these domain-
specific languages, while still being fully translatable to standard temporal logic.
However, one could argue that this is also a shortcoming of Salt, in that it is
not possible to express the full fragment of ω-regular languages as can be done in
other approaches, but then of course not being able to map all specifications to
LTL formulae any longer. This fact could be compensated for by adding a direct
translation of Salt into automata as is suggested, for example, in [33], which
introduces a regular form of LTL, i.e., expressively complete wrt. ω-regular lan-
guages. Moreover, the feature comparison does not show a clear “winner” among
specification languages, since they have been designed for different purposes. In
fact, Salt could be used in combination with other approaches, such as BSL
where it would be possible to use the output of the Salt compiler, i.e., standard
LTL formulae, as input to BSL’s temporal property specification layer, which
offers support for LTL specifications.

Salt as presented in this tutorial paper is ready to use and we invite the
reader to explore it via an interactive web interface at http://salt.in.tum.de/,
or to download the compiler from the same location.

References

1. Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT—Structured Asser-
tion Language for Temporal logic. In Z. Liu and J. He, editors, Proc. Eighth
International Conference on Formal Engineering Methods (ICFEM), volume 4260
of LNCS, pages 757–776. Springer, October 2006.

2. Amir Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on
the Foundations of Computer Science (FOCS), pages 46–57, Providence, Rhode
Island, 1977. IEEE.

3. Jean-François Raskin and Pierre-Yves Schobbens. State clock logic: A decid-
able real-time logic. In Proc. Intl. Workshop on Hybrid and Real-Time Systems
(HART), volume 1201 of LNCS, pages 33–47, London, UK, 1997. Springer.

4. Deepak D’Souza. A logical characterisation of event clock automata. International
Journal of Foundations of Computer Science, 14(4):625–639, August 2003.

5. Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, Los Angeles, 1968.

6. K. L. McMillan. The SMV system, symbolic model checking - an approach. Tech-
nical Report CMU-CS-92-131, Carnegie Mellon University, 1992.

7. Gerard J. Holzmann. The model checker Spin. IEEE Trans. on Software Engi-
neering, 23:279–295, May 1997.

8. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifica-
tions for finite-state verification. In Proc. 21st Int. Conf. on Software Engineering
(ICSE), pages 411–420. IEEE, May 1999.

9. J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In Proc.
22nd Int. Conf. on Software Engineering (ICSE). IEEE, June 2000.

10. Accellera Property Specification Language. Reference Manual 1.1, April 2004.
11. Cindy Eisner and Dana Fisman. A Practical Introduction to PSL (Series on Inte-

grated Circuits and Systems). Springer, 2006.
12. Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the tem-

poral analysis of fairness. In Proc. 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL), pages 163–173. ACM, 1980.

13. Nicolas Markey. Temporal logic with past is exponentially more succinct, concur-
rency column. Bulletin of the EATCS, 79:122–128, 2003.

14. Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. In
Proc. Conference on Logic of Programs, pages 196–218. Springer, 1985.

15. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems.
Springer, 1995.

16. Limor Fix. Fifteen years of formal property verification in intel. In Orna Grumberg
and Helmut Veith, editors, 25 Years of Model Checking, pages 139–144. Springer,
2008.

17. Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2nd edition, 2001.

18. Luca Ferro and Laurence Pierre. Formal semantics for PSL modeling layer and
application to the verification of transactional models. In Proc. Conference on De-
sign, Automation and Test in Europe (DATE), pages 1207–1212. European Design
and Automation Association, 2010.

19. James C. Corbett, Matthew Dwyer, John Hatcliff, and Robby. A language frame-
work for expressing checkable properties of dynamic software. In Proc. SPIN Soft-
ware Model Checking Workshop (SPIN), LNCS. Springer, August 2000.

20. James Corbett, Matthew Dwyer, John Hatcliff, and Robby. Expressing checkable
properties of dynamic systems: The Bandera specification language. Technical
Report 04, Kansas State University, Department of Computing and Information
Sciences, 2001.

21. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

22. R. Armoni, D. Bustan, O. Kupferman, and M. Y. Vardi. Resets vs. aborts in
linear temporal logic. In Proc. International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), LNCS, pages 65–80. Springer,
2003.

23. Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza,
Avner Landver, Sela Mador-Haim, Eli Singerman, Andreas Tiemeyer, Moshe Y.
Vardi, and Yael Zbar. The ForSpec temporal logic: A new temporal property-
specification language. In Proc. International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS), LNCS, pages 296–211.
Springer, 2002.

24. Cindy Eisner. PSL for runtime verification: Theory and practice. In Oleg Sokol-
sky and Serdar Tasiran, editors, Proc. 7th International Workshop on Runtime
Verification (RV), volume 4839 of LNCS, pages 1–8. Springer, 2007.

25. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime veri-
fication. In Fifth International Conference on Verification, Model Checking and
Abstract Interpretation, 2004.

26. Zhou ChaoChen, Tony Hoare, and Anders P. Ravn. A calculus of durations. In-
formation Processing Letters, 40(5):269–276, 1991.

27. Julian Bradfield and Perdita Stevens. Observational mu calculus. In Proc. Work-
shop on Fixed Points in Computer Science (FICS), pages 25–27, 1998. An extended
version is available as BRICS-RS-99-5.

28. Julian C. Bradfield, Juliana Küster Filipe, and Perdita Stevens. Enriching OCL
using observational mu-calculus. In Proc. 5th International Conference on Funda-
mental Approaches to Software Engineering (FASE), volume 2306 of LNCS, pages
203–217. Springer, 2002.

29. Martin Lange. Linear time logics around psl: Complexity, expressiveness, and a
little bit of succinctness. In Proc. 18th International Conference on Concurrency
Theory (CONCUR), volume 4703 of LNCS, pages 90–104. Springer, 2007.

30. Rajeev Alur and Thomas A. Henzinger. Real-time logics: complexity and expres-
siveness. Technical report, Stanford, CA, USA, 1990.

31. Carsten Fritz. Constructing Büchi automata from linear temporal logic using
simulation relations for alternating Büchi automata. In Oscar H. Ibarra and Zhe
Dang, editors, Proc. Implementation and Application of Automata (CIAA), volume
2759 of LNCS, pages 35–48, Santa Barbara, CA, USA, 2003. Springer.

32. Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In Proc.
13th International Conference on Computer Aided Verification (CAV), LNCS,
pages 53–65. Springer, 2001.

33. Martin Leucker and César Sánchez. Regular linear temporal logic. In C. B. Jones,
Z. Liu, and J. Woodcock, editors, Proc. 4th International Colloquium on The-
oretical Aspects of Computing (ICTAC), volume 4711 of LNCS, pages 291–305.
Springer, 2007.

A Proofs

In this appendix, we summarise the formal semantics of Reset-LTL [22] and give
a detailed proof of Theorem 1.

Definition 1 (Reset-LTL). Let Σ := 2AP be a finite alphabet made up of

propositions in the set AP , w ∈ Σω an infinite word, and a, r be two Boolean

formulae over AP , then

– 〈wi, a, r〉 |= p if wi |= a ∨ (p ∧ ¬r),
– 〈wi, a, r〉 |= ¬ϕ if 〈wi, r, a〉 6|= ¬ϕ
– 〈wi, a, r〉 |= ϕ ∨ ψ if 〈wi, a, r〉 |= ϕ or 〈wi, a, r〉 |= ψ

– 〈wi, a, r〉 |= ◦ϕ if wi |= a or 〈wi+1, a, r〉 |= ϕ and wi 6|= r,

– 〈wi, a, r〉 |= ϕUψ if ∃k ≥ i. 〈wk, a, r〉 |= ψ ∧ ∀i ≤ l < k. 〈wl, a, r〉 |= ϕ,

– 〈wi, a, r〉 |= accept e in ϕ if 〈wi, a ∨ (e ∧ ¬r), r〉 |= ϕ,

– 〈wi, a, r〉 |= reject e in ϕ if 〈wi, a, r ∨ (e ∧ ¬a)〉 |= ϕ,

where wi denotes w’s infinite suffix after the i-th position, i.e., wi = wiwi+1 . . .

Theorem 1. The following relationship holds between the Reset-LTL operators
abort and reject and the Salt operators accepton and rejecton:

〈wi, false, false〉 |= accept e in φ if and only if wi |= φ accepton e,

and

〈wi, false, false〉 |= reject e in φ if and only if wi |= φ rejecton e.

Proof. By structural induction. Note that the relevant semantic definitions for
Salt’s exception operators are given in Sec. 3. Let p ∈ AP and φ := p.

〈wi, false, false〉 |= accept e in p

⇔ 〈wi, e, false〉 |= p

⇔ wi |= e ∨ p
⇔ wi |= p accepton e.

〈wi, false, false〉 |= reject e in p

⇔ 〈wi, false, e〉 |= p

⇔ wi |= p ∧ ¬e
⇔ wi |= p rejecton e.

φ := ϕ ∨ ψ:
〈wi, false, false〉 |= accept e in ϕ ∨ ψ

⇔ 〈wi, e, false〉 |= ϕ ∨ ψ
⇔ 〈wi, e, false〉 |= ϕ ∨ 〈wi, e, false〉 |= ψ

⇔ wi |= ϕ accepton e ∨ wi |= ψ accepton e

⇔ wi |= ϕ ∨ ψ accepton e

The case for reject e in ϕ ∨ ψ is analogous.
φ := ◦ϕ:

〈wi, false, false〉 |= accept e in ◦ϕ
⇔ wi |= e ∨ 〈wi+1, e, false〉 |= ϕ

⇔ wi |= e ∨ wi+1 |= ϕ accepton e

⇔ wi |= e ∨ wi |= ◦(ϕ accepton e)
⇔ wi |= (◦ϕ) accepton e.

The case for reject e in ◦ϕ is analogous.
φ := ϕ U ψ:

〈wi, false, false〉 |= accept e in ϕ U ψ

⇔ wi |= e ∨ 〈wi, e, false〉 |= ϕ U ψ

⇔ ∃k ≥ i. 〈wk, e, false〉 |= ψ ∧ ∀i ≤ l < k. 〈wl, e, false〉 |= ϕ

⇔ ∃k ≥ i. wk |= ψ accepton e ∧ ∀i ≤ l < k. wl |= ϕ accepton e

⇔ wi |= ϕ accepton e U ψ accepton e

⇔ wi |= ϕ U ψ accepton e.

The case for reject e in ϕ U ψ is analogous.
φ := ¬ϕ: Negation is somewhat a special case due to the mutual recursive
definition of the semantics. Here, we treat the Reset-LTL side first by itself, and
use the duality between the accept and reject operators as follows.

〈wi, false, false〉 |= accept e in ¬ϕ
⇔ 〈wi, false, false〉 |= ¬(reject e in ϕ)
⇔ 〈wi, false, false〉 6|= (reject e in ϕ).

Next, we observe that the following holds in Salt:

wi |= ¬ϕ accepton e⇔ wi 6|= ϕ rejecton e.

Now, equivalence follows from case two of the induction hypothesis, i.e.,

wi |= ϕ rejecton e⇔ 〈wi, false, false〉 |= (reject e in ϕ).

The case for reject e in ¬ϕ is dual. ⊓⊔

