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Abstract. This paper describes a method for combining “off-the-shelf” SAT
and constraint solvers for building an efficientSatisfiability Modulo Theories
(SMT) solver for a wide range of theories. Our method followsthe abstrac-
tion/refinement approach to simplify the implementation ofcustom SMT solvers.
The expected performance penalty bynot using an interweaved combination of
SAT and theory solvers is reduced bygeneralisinga Boolean solution of an
SMT problem first via assigningdon’t careto as many variables as possible. We
then use the generalised solution to determine a thereby smaller constraint set
to be handed over to the constraint solver for a background theory. We show
that for many benchmarks and real-world problems, this optimisation results in
considerably smaller and less complex constraint problems.

The presented approach is particularly useful for assembling a practically viable
SMT solver quickly, when neither a suitable SMT solver nor a corresponding in-
cremental theory solver is available. We have implemented our approach in the
ABSOLVER framework and applied the resulting solver successfully toan in-
dustrial case-study: The verification problems arising in verifying an electronic
car steering control system impose non-linear arithmetic constraints, which do
not fall into the domain of any other available solver.

1 Introduction
Satisfiability modulo theories(SMT) is the problem of deciding whether a formula in

quantifier-free first-order logic is satisfiable with respect to a givenbackgroundtheory. For
example, one is interested whether the formulaφ ≡ (i ≥ 0)∧ (¬(2i+ j < 10)∨ (i+ j < 5))
is satisfiable in the theory of integers. In recent years, research on SMT has attracted a lot of
attention. SMT solvers for dedicated theories have been developed, such as Yices (Rushby,
2006b), MathSAT (Bozzano et al., 2005), or CVC (Barrett and Berezin, 2004). The growing
efficiency of these solvers in their respective domains is witnessed in the annual SMT compe-
tition (http://www.smtcomp.org).

Amongst others, SMT has its applications in the area of modelchecking and abstraction
(Lahiri et al., 2006), (symbolic) test case generation (Roorda and Claessen, 2006), or in the
verification of hybrid control systems (Bauer et al., 2007; Rushby, 2006a), to name just a
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few common examples. Especially for the latter, however, one is often faced with the task of
having to solve problems with respect to theories that are not (yet) supported by existing SMT
solvers, althoughconstraint solversfor the required theories are available. These powerful
constraint solvers have been developed for dedicated theories, such as general linear arithmetic
over integer and real numbers (Wächter and Biegler, 2005). In contrast to SMT solvers, such
constraint solvers only accept a conjunction rather than anarbitrary Boolean combination of
atoms.

In this paper, we propose a method for combining off-the-shelf Boolean satisfiability (SAT)
and constraint solvers without altering them to assemble SMT solvers for a wide range of dif-
ferent theories with a minimal engineering overhead, yet with a reasonable practical perfor-
mance. The existing approaches to solve SMT problems can be subdivided into three main
categories. In thetranslation approach(Sheini and Sakallah, 2006), given an SMT instance,
the entire problem is encoded as an equi-satisfiable pure SATinstance such that a solution to
the SAT problem translates into a solution of the original SMT instance. For example, if the
above mentionedφ is solved over the 16 bit integers, then it is straightforward to formulateφ’s
constraints in terms of bits yielding a purely propositional formula. With the advent of highly
efficient SAT solvers (cf. Een and Sörensson (2003); Moskewicz et al. (2001); Prasad et al.
(2005)) this approach turned out quite successful—at leastfor certain background theories, see
for example Jones and Dill (1994); Rodeh and Strichman (2006). However, such a translation
involves a non-obvious interplay between the SAT solver andthe encoding, where the structure
of the underlying problem is difficult to reflect in the encoding. In theabstraction/refinement
approach(Sheini and Sakallah, 2005), one represents each occurringtheory constraint with a
Boolean variable. By substituting these Boolean variablesfor their respective constraints, an
abstract SAT problem is produced and solved first. This determines the set of constraints to be
satisfied. If such a Booleanrepresentative variablehas been set to true, then the corresponding
constraint is selected, and respectively, if a Boolean representative variable has been assigned
false, then the negation of the corresponding constraint isadded to the constraint set. Finally,
this constraint set is passed on to a dedicated solver for thebackground theory of the problem.
If the solver finds a solution, then the original SMT problem has been solved, and a solution
has been determined. On the other hand, if the theory solver fails, then the Boolean abstraction
is refined, a new solution for the abstract SAT instance is computed and the process continues.
In the online solving approach(Ganzinger et al., 2004), both the abstract Boolean problem
and the theory constraints are solved simultaneously, i. e., whenever a Boolean variable which
represents a constraint is assigned, the corresponding constraint or its negation is added to the
set of constraints to be satisfied. This set is checked for satisfiability immediately and conse-
quently conflicts can be detected at an early stage of the search process and can be pruned from
the remaining search space. This approach allows for building highly efficient SMT solvers
and is followed by most modern tools. However, it requires a tight interaction between the SAT
solver and the constraint solver: the SAT solver must call the constraint solver whenever a new
constraint is added and therefore, the solver should be ableto handle this growing constraint
set efficiently. Furthermore, when the SAT solver backtracks, the constraint solver must follow
the backtracking step, and remove the corresponding constraints from the incrementally grow-
ing set. Such a tight interaction complicates the integration of existing constraint solvers since
they need an interface supporting backtracking, similar tothe one described by Ganzinger et al.
(2004). Thus, when building custom SMT solvers using off-the-shelf constraint solvers that do
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not support backtracking, this approach is often impractical, especially in presence of limited
development resources.

Foremost for this reason, our framework, ABSOLVER (Bauer et al., 2007), which allows
the integration of efficient SAT and constraint solvers to build-up custom SMT solvers, fol-
lows the abstraction/refinement approach. As this method proved to be inferior to the online
solving approach, we employ a simple yet surprisingly efficacious optimisation to the abstrac-
tion/refinement scheme: once a SAT solver has determined a solution to the Boolean abstrac-
tion of an SMT problem, we firstgeneralisethis solution, before generating and solving the
underlying constraint problem. This yields fewer and smaller constraint problems than the
traditional approach. More specifically, we use a simple greedy-algorithm to find a minimal
assignment (but not necessarily of minimal weight) which still satisfies the Boolean abstrac-
tion, i. e., each completion of the assignment must still satisfy the Boolean abstraction. Having
found such a partial assignment, each variable is assigned either true, false, ordon’t care. For
each representative variable being assigned true, we add the corresponding constraint to the
constraint set. Respectively, for each representative variable being assigned false, we add the
negation of the constraint. All other representative variables, i. e., all variables being assigned
don’t care, are ignored. Thus, the smaller the assignment, the smallerthe constraint set to be
handed to the corresponding constraint solver. Furthermore, if such a smaller assignment is
found to be conflicting by the theory solvers, a set of possible Boolean solutions is invalidated
by a single assignment. The size of this set is exponential inthe number ofdon’t cares.

Our generalisation of a SAT solver’s solution is based on theefficient computation of a
minimal solution of a given conjunctive normal form (CNF) formula. Our approach is thus
similar in spirit to the so-called MINSAT problem and its variations (Belov and Stachniak,
2005; Delgrande and Gupta, 1996; Kirousis and Kolaitis, 2003), which, however, are known
to be NP-complete (Delgrande and Gupta, 1996). These complexity theoretic results imply
that we cannot hope to find any generally efficient algorithm and therefore, we need to resort
to heuristic approaches which (as our benchmarks in this paper indicate) work well in most
practically relevant cases.

We have implemented the suggested optimisation within our ABSOLVER framework. Even
though we have to admit that our approach does not reach the performance of other participants
of the SMT-COMP in their respective domains, our solver has been successfully applied to an
industrial case-study involving non-linear constraints which are not supported by other solvers
(see Sec. 4). Using ABSOLVER, we were able to verify properties of a car’s electronic steering
control system whose behaviour was given by a MATLAB/Simulink model. Such models
typically capture the dynamics of the closed control loop, involving the actual system and part
of its environment. This loop can then often, as it was in our case, only be expressed in terms
of a non-linear equation system.

2 Abstraction and refinement for SMT
In this section, we develop the framework in which we describe our approach. Since we are

faced with formulas which involve variables ranging over different domains, we use atyped
setting.

Domains, variables, assignments. Let Σ be a finite set oftypesandD = (Dσ)(σ∈Σ) a
family of respectivedomains. Furthermore, letV = (Vσ)(σ∈Σ) be a family of finite sets of
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variablesof the respective type. Abusing notation, we also denote byD the union
⋃

σ∈Σ Dσ

and byV the union
⋃

σ∈Σ Vσ. We also call the elements ofD values.
B denotes theBooleantype as well as the domainB = {tt, ff}. We always assumeB ∈ Σ

and we mostly consider the realsR and integersZ as additional types.
To represent partial assignments with total mappings, we introduce? to denote thedon’t

care value and letD? = {?} ⊎ (Dσ)(σ∈Σ) be the family of domains enriched withdon’t care.
An assignmentis a mappingτ : V → D? assigning to all variables either a value of the

corresponding domain or?. We call τ complete, iff τ(v) 6= ? for all v ∈ V . To establish
an information preorder, we set? ≺ d for all d ∈ D, ordering? below all domain values
and leaving these values unordered. Let� denote the reflexive closure of≺. The information
preorder extends to assignments byτ � τ ′ iff for all v ∈ V τ(v) � τ ′(v). Thus,τ is smaller
thanτ ′ w. r. t.≺, if reassigning? to a number of variables inτ ′ results inτ .

The weight |τ | of an assignmentτ is the number of values different from?, i.e., |τ | =
|{τ(v) 6= ? | v ∈ V}|. Dually, we define thefreedomof τ , denoted by|τ |?, as the number of
don’t cares in its range:|τ |? = |{τ(v) = ? | v ∈ V}|.

The set of assignmentsgeneratedby τ , denoted by〈τ〉, is given by a set of assignments
τ ′ with τ � τ ′. Similarly, the set of complete assignments generated byτ , denoted by〈τ〉, is
given by the set of complete assignmentsτ ′ with τ � τ ′.

Remark 1. The number of complete assignments generated by an assignment τ is exponential
in its freedom:|〈τ〉| = 2|τ |? .

Formulas. Let F = (Fσ)σ∈Σ be a family of ranked function symbols andP = (Pσ)σ∈Σ

a family of ranked predicate symbols. The set of (typed)termsis inductively defined: First,
every variable ofVσ is a term of typeσ, and second, iff ∈ Fσ of rankn is a function symbol
of typeσ anda1, . . . , an are terms of typeσ, thenf(a1, . . . , an) is a term of typeσ.

The set of (typed)atomsis defined as follows: Ifp ∈ Pσ of rankn is a predicate symbol of
typeσ anda1, . . . , an are terms of typeσ, thenp(a1, . . . , an) is an atom of typeσ. Note that
the above definition does not allow terms and atoms which involve two or more types. Each
such atom represents aconstraintformulated in the background theory of the respective type.

A literal is a possibly negated atom, aclauseis a disjunction of literals, and a formula in
conjunctive normal form(CNF) is a conjunction of clauses. Thus, a formulaφ in CNF, as
considered subsequently, has the formφ ≡

∧
i∈I

∨
j∈Ji

(¬)pij(a1, . . . , anij
).

Finally, for a formulaφ, we useVσ(φ) to denote the variables of typeσ occurring inφ.

Example 1. As a running example, we use the following formulaφ consisting of four clauses
over the variablesVZ(φ) = {i, j, k, l} andVB(φ) = {x, y}:

φ ≡ {(i ≥ 0)∨y}∧{¬(2i+j < 10)∨(i+j < 5)}∧{x∨¬(j ≥ 0)}∧{(k+(4−k)+2l ≥ 7)}

Solutions. A complete solutionof φ is a complete assignment to the variables inV , such that
φ evaluates tott in the usual sense. For example, we can defineτ as an assignment forφ (as
shown in Ex. 1) withτ(i) = 3, τ(j) = 1, τ(k) = 0, τ(l) = 2, τ(x) = tt, andτ(y) = ff . This
assignmentsatisfiesall clauses and assigns values other than? to all variables. It is therefore
called acomplete solutionof φ. For a given formulaφ, theSMT problemis to decide whether
there is a complete solution forφ.
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In general, an assignmentτ is asolutionof φ iff every complete assignmentτ ′ with τ � τ ′

(i.e. everyτ ′ ∈ 〈τ〉) is a solution ofφ. For example, an assignmentτ with τ(i) = 3, τ(j) = 1,
τ(k) = ?, τ(l) = 2, τ(x) = tt, andτ(y) = ff is also a solution for formulaφ of Ex. 1 since
the value ofk can be set arbitrarily.

The assignmentτ is called aminimal solutioniff τ is a solution ofφ and minimal w. r. t.�:
Thus, if any further variable inτ is assigned?, then there would be aτ ′ with τ � τ ′ which
does not satisfyφ. A solutionτ is a solution ofminimal weightiff it is a solution and for all
solutionsτ ′ we have|τ | ≤ |τ ′|.

For example, theτ above is not minimal, sinceτ ′ with τ ′ � τ by settingτ ′(i) = 3,
τ ′(j) = 1, andτ ′(l) = 2 and assigning? to all remaining variables is also a solution ofφ. τ ′ is
not only a minimal but also a solution of minimal weight forφ since every solution forφ must
at least assign values toi, j, andl to satisfy the second and the fourth clause, respectively.

2.1 Deciding SMT by abstraction and concretisation
We integrate a Boolean SAT solver as well as constraint solvers for the occurring back-

ground theories into a combined SMT solver. Thereby, we require the constraint solvers to
decide the satisfiability of conjunctions of possibly negated constraints. Thus, our goal is to re-
duce the SMT problem to Boolean SAT problems and constraint solving problems. We follow
the well-known idea of solving first a Boolean abstraction ofφ yielding a constraint problem
for each type at hand.
Boolean abstraction. Given a formulaφ in CNF, its Boolean abstractionabst(φ) is de-
fined as follows: Every atompij(a1, . . . , anij

) is replaced by a newrepresentativeBoolean
variablepij which does not occur otherwise inφ. Thus,ψ := abst(φ) is of the formψ ≡∧

i∈I

∨
j∈Ji

(¬)pij . The representative Boolean variables of a Boolean abstraction abst(φ) are
denoted by the setVR

B
(abst(φ)) ⊆ VB(abst(φ)). Since all representative variables do not occur

otherwise inφ, we haveVR
B

(abst(φ)) ∩ V(φ) = ∅.

Example 2. The Boolean abstraction ofφ shown in Ex. 1 is given asabst(φ) ≡ {v1 ∨ y} ∧
{¬v2 ∨ v3} ∧ {x ∨ ¬v4} ∧ {v5} with VR

B
(abst(φ)) = {v1, . . . , v5}. Here, we usev1 as a

representative Boolean variable for the atom(i ≥ 0), andv2 as representative(2i+ j < 10),
and so forth.

Abstract solutions. Let φ be a formula andψ := abst(φ) its Boolean abstraction. Every
complete assignment to the variables ofφ yields a truth value for the atoms ofφ. As the atoms
are mapped to Boolean variables inψ, this yields a complete assignment for the variables ofψ.
More formally, every assignmentτ to the variables inφ induces an assignmentν := abst(τ)
to the Boolean variables inψ by ν(pij) := (pij(a1, . . . , anij

))[τ ] where(pij(a1, . . . , anij
))[τ ]

denotes the truth value of the atompij(a1, . . . , anij
) under assignmentτ (if someai is assigned

?, thenpij is assigned? as well). We have immediately:

Remark 2. Let τ be a (complete) solution ofφ. Thenabst(τ) is a (complete) solution of
abst(φ).

Concretisation. Let conc(φ, ν) := {τ : V(φ) → D? | abst(τ) = ν} be the set of all
concretisationsof ν with respect toφ. As a consequence of Remark 2, the satisfiability of
φ can be checked by first searching for a complete solutionν of abst(φ) and then checking
whether there is aτ ∈ conc(φ, ν) which satisfiesφ. While the first problem is an ordinary
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Boolean SAT problem, the second problem is a constraint problem, i.e., one has to check
whetherconstr(φ, ν) ≡

∧
ν(pij)=tt pij(a1, . . . , anij

) ∧
∧

ν(pij)=ff ¬pij(a1, . . . , anij
) is satis-

fiable. This suggests the abstraction/refinement approach for checking satisfiability ofφ, i. e.,
to search for an abstract complete solutionν for abst(φ) and to then search for a complete
solution forconstr(φ, ν). We summarise this procedure in the following lemma:

Lemma 1. φ is satisfiable iff there is a complete solutionν of abst(φ) and constr(φ, ν) is
satisfiable.

Note that the application of this lemma requires each invoked constraint solver to be able
to handle negated atoms.

2.2 Generalisation
We adapt the approach in order to reduce the number of calls tothe constraint solvers

and such that the individually processed constraint sets involve fewer constraints—ultimately
yielding a much better overall performance.

The simple yet efficacious idea is togeneralisea given solution obtained by a SAT solver
before considering the constraint problem. Given a complete solutionν for abst(φ), we will
obtain a minimal solutionν′ � ν and replaceν with ν′ in all subsequent steps.

For a not necessarily complete solutionν′, the constraint setconstr(φ, ν′) is exactly defined
as for a complete solution. Note, however, all constrainspij(a1, . . . , anij

) with ν′(pij) = ? are
not part ofconstr(φ, ν′). In other words,constr(φ, ν′) has|ν′|? less atoms thanconstr(φ, ν)
for a complete solutionν. But still, the statement of Lemma 1 holds for incomplete solutions:

Lemma 2. φ is satisfiable iff there is a (possibly incomplete) solutionν′ of abst(φ) and
constr(φ, ν′) is satisfiable.

Proof. Consider a solutionτ ′ of constr(φ, ν′). If τ ′ is not complete, take an arbitrary complete
solutionτ with τ ′ � τ . Then we have(pij(a1, . . . , anij

))[τ ] = ν′(pij) wheneverν′(pij) 6= ?,
i. e., ν′ � abst(τ). Sinceν′ satisfiesabst(φ), abst(τ) satisfiesabst(φ) as well and thusτ
satisfiesφ. The other direction is immediate by Lemma 1.

The next lemma shows that we can resort to incomplete solutions to prune the search space:

Lemma 3. Letν andν′ be solutions ofabst(φ) with ν′ � ν. Then satisfiability ofconstr(φ, ν)
implies satisfiability ofconstr(φ, ν′).

Proof. Sinceconstr(φ, ν′) contains a subset of the constraints ofconstr(φ, ν), every assign-
mentτ which satisfiesconstr(φ, ν) must satisfyconstr(φ, ν′) as well.

Therefore ifν′ is a solution ofabst(φ) andconstr(φ, ν′) is notsatisfiable, thenconstr(φ, ν)
is not satisfiable for allν with ν′ � ν. This gives rise to an efficient procedure for checking
the satisfiability of a formulaφ:

Lemma 4. Let ν ′ be a set of solutions whose elements generate all complete solutions of a
formulaφ, i. e.,

⋃
ν′∈ν′ 〈ν′〉 = {ν | ν is a complete solution ofabst(φ)}. Thenφ is satisfiable

iff there exists aν′ ∈ ν
′ such thatconstr(φ, ν′) is satisfiable.
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Note the following important facts on the approach sketchedabove: First, everyν′ gener-
ates an exponential number of solutions with respect to its freedom|ν′|? (Rem. 1). Further-
more, the number of atoms to check is reduced by the freedom|ν′|? of ν′. Both reasons give
an intuitive explanation for the benefit of our approach empirically confirmed in Sec. 4.

This minimisation approach suggests to find someoptimalsetν′ of solutions to generate all
complete ones. However, as even computing a single solutionof minimum weight from a given
one isNP-complete and enumerating all possible solutions is#P-complete, it is infeasible to
construct such an optimal setν

′ (Delgrande and Gupta, 1996).
Thus, instead of building a setν

′ of minimal solutions at the beginning, weminimiseeach
solution as generated by the SAT solver according to simple heuristics. If the obtained minimal
solution does not yield a concrete solution, we use the SAT solver to produce a new solution
outside the already visited search space. In the next section, we introduce the corresponding
algorithm, and we discuss its efficiency in Sec. 4.

3 Solving algorithm and minimisation

We now present ABSOLVER, which implements the abstraction/refinement approachwith
generalisation, following the ideas that were laid out in the previous section.

3.1 Main loop

ABSOLVER’s main proceduresolve for deciding an SMT problem is shown in Alg. 1.The
procedure takes a formulaφ as input and returns a solutionτ iff φ is satisfiable. To do so,
in line 2, a Boolean abstractionφ′ is computed before entering the main loop. Subsequently,
solve adds further clauses toφ′ whenever it discovers unsatisfiable conjunctions of (possibly
negated) constraints. In the main loop, we first compute a solutionν to the Boolean abstraction
φ′ (line 4). If no such solution exists (line 5), then there exists no solution to the original SMT
instanceφ and the procedure returnsff (line 6).

Otherwise, following the ideas of Section 2.2, the Boolean solution ν is generalised by
reducing the weight|ν| of ν (line 8). This minimisation algorithm (minimisation) is discussed
in Section 3.2. Using the now generalised solutionν to the Boolean abstraction, we construct
the corresponding constraintconstr(φ, ν) and use a constraint solver to search for a concrete
solutionτ (line 9). If a solutionτ exists (line 10), thenτ is indeed a solution to the original
problemφ and accordingly, the algorithm returnsτ as the solution.

If no suchτ exists, an unsatisfiable subset of the literals ofconstr(φ, ν) is constructed by
conflicts and added as a conflict clause toφ′ (line 13). In our implementation,conflicts returns
those literals which are reported to be mutually inconsistent by the employed constraint solver.
If the constraint solver does not return such an unsatisfiable core,conflicts(τ) returns all literals
of constr(φ, ν) and consequently, all of them are added into the new conflict clause.

3.2 Minimisation

Let us now turn our attention to the generalisation algorithmminimisation shown in Alg. 2.
It starts with a complete Boolean assignmentν as returned by the functionboolean_solver,
which we have to minimise.minimisation takes a Boolean formulaφ′ and an assignment
ν which mustsatisfyφ′ initially. The procedure maintains a set of variablesV which are
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ALG. 1 ABSOLVER’s solving algorithm.

1: proc solve(φ)
2: φ′ := abst(φ)
3: while tt do
4: ν := boolean_solver(φ′)
5: if ν = fail then
6: return ff

7: end if
8: ν := minimisation(φ′, ν)
9: τ := constraint_solver(constr(φ, ν))

10: if τ 6= fail then
11: return τ

12: end if
13: φ′ := φ′ ∧ ¬(conflicts(τ))
14: end while

ALG. 2 Iterative minimisation algorithm.

1: proc minimisation(φ′, ν)
2: V := VB(φ′)
3: while tt do
4: for all clausesCi of φ′ do
5: L := satisfying_literals(Ci, ν)
6: if L = {v} or L = {¬v} then
7: φ′ := remove_clause(Ci, φ

′)
8: V := remove_variable(v, V )
9: end if

10: end for
11: if V = ∅ then
12: return ν

13: end if
14: v := select_variable(V )
15: assignv in ν to ?
16: V := remove_variable(v, V )
17: end while

subsequently considered for being assigned?. At first, V is initialised to the set of all variables
VB(φ′) of φ′ (line 2).

Then, a loop is entered in which in each iteration at least onevariable is removed fromV .
This loop has two parts: In lines 4–10, the clauses which are only satisfied by a single literal
(line 6) are removed (line 7) fromφ′ and the corresponding variablev fromV (line 8): As when
a constraint is satisfied by a single literal, the corresponding variable cannot be assigned?. If
no candidate variable remains inV (line 11), the algorithm returns the resulting assignmentν.
Otherwise, all variables inV can be selected to be assigned?. Thus, the algorithm chooses
a variablev ∈ V with select_variable (line 14) according to heuristics discussed below and
reassigns? to v (line 15). Thisv is then removed fromV (line 16)—and a new iteration starts.
Note that the number of iterations is bounded by the number ofvariables.

Selection heuristics. Presumably the choice of the variable to be assigned? (implemented
by select_variable) plays a crucial role in the efficiency of the overall decision procedure.
Therefore, we experimented with the following three different heuristics:Input-order rule: In
the simplest form, variables are chosen according to the structure of the input formula.Purity-
frequency rule:Pure literals are those which occur in a given formula eitheronly negative, or
only positive. In this case,select_variable always prefers a pure variable over a non-pure one.
Representative rule:Applying this heuristic, variables that represent constraints of the back-
ground theory are preferably assigned?. Observe thatminimisation runs with the proposed
selection heuristics in polynomial time with respect to thesize ofφ.

It is easy to construct test cases which strongly discriminate between these variants, as
well as test cases where the heuristics do not apply. Interestingly enough, in the benchmarks
described in the next section, which are taken from the SMT-LIB, the heuristics performed
roughly equal. The measured differences in performance were only on a marginal scale, indi-
cating that either way good (or, bad) candidates for elimination were found.
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Note that the minimisation algorithm is easily integrated into other abstraction/refinement
solvers as a subsequent stepafter the Boolean part of an SMT problem has been solved by
an arbitrary SAT solver, as shown in Alg. 1.Moreover, it would be possible (and, arguably,
sometimes even more efficient) to modify the internals of a SAT solver in order to obtain
a generalisation directly. However, this requires more development effort and ties the SMT
solver to a particular version of a particular tool. Additionally, most of today’s competitive
SAT solvers make use of highly integrated algorithms, such that making modifications to them,
even small ones, becomes a non-trivial and error-prone task. Consequently, having a separate
generalisation algorithm gives us the flexibility we need, and eases implementation.

4 Implementation and benchmarks

This section briefly discusses implementation details of ABSOLVER and gives three kinds
of benchmarks showing the efficiency of our approach. First,we show the speed-up of using
the generalisation approach by comparing ABSOLVER without and with generalisation on ex-
isting benchmarks. Second, we compare ABSOLVER with third-party SMT solvers that follow
both an iterative approach and an abstraction/refinement approach, showing that our approach
yields an inferior but still estimable solver. Most interestingly, we report that we indeed easily
obtained an SMT solver for non-linear arithmetic constraints that helped us to verify a car’s
electronic steering control system.

ABSOLVER as originally introduced by Bauer et al. (2007), is a C++ framework that, once
combined with the appropriate solvers, can be either used asa stand-alone tool, or integrated in
terms of a system library, e. g., to extend other constraint-handling systems. In the discussion
that follows, we refer to ABSOLVERas the framework in its original form, and ABSOLVERDC
as the framework that has now been extended with the iterative minimisation algorithm de-
scribed above. Currently, ABSOLVER interfaces with LSAT (Bauer, 2005), grasp (Marques-
Silva and Sakallah, 1996) and (z)Chaff (Moskewicz et al., 2001), although in this paper, only
the latter was used to run benchmarks. The concretisation ishandled by specialised solvers
offered by the COIN-OR library (Lougee-Heimer, 2003). Basically, the COIN-OR library is a
collection of dedicated, and more or less independently developed constraint solvers, covering,
e. g., linear arithmetic, or non-linear arithmetic, each with a different solver.

An input problem to ABSOLVER (and, therefore, to ABSOLVERDC) then consists of a
standard DIMACS (DIMACS, 1993) format SAT problem, where the background constraints
are expressed in a custom language, encoded in the DIMACS comments. This way, the abstract
part of an ABSOLVERproblem is already understood by any standard SAT solver, but naturally
“wrapper” code has to be written for processing the solver’sreturn set correctly. Part of the
solver “wrapper” is also the iterative minimisation algorithm for the SAT solver, i. e., each
assignment produced by the SAT solver is first generalised, before the concrete solution is
determined. Moreover, the “wrapper” is also responsible for evaluating the return values of
the constraint solver, and for adding the negated abstract solution back to the input clause, if
necessary. This design facilitates a loose integration of the individual solver. However, we
expect some constant penalty on all benchmarks, because the“wrapper” has to do type or
character marshalling of input and return values to solvers, rather than accessing a solver’s
data structures directly in terms of, say, pointers to memory locations.

The benchmarks presented in the following sections have been executed using a timeout
of two hours, and a memory limit of 1.2 GB on a 3.2 GHz Intel Xeonsystem, equipped with
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2 GB of RAM. All test cases are taken from the QF_LIA suite thatis part of the SMT-LIB
benchmarks (Ranise and Tinelli, 2006).

4.1 ABSOLVER vs. ABSOLVERDC
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FIG. 1: With and withoutdon’t cares.

A direct comparison between ABSOLVER and
ABSOLVERDC is shown in Fig. 1. Each test
case is represented by a cross in the diagram,
where the x-coordinate reflects the runtime of AB-
SOLVERDC, and the y-coordinate the runtime of
ABSOLVER. Consequently, when ABSOLVERDC
outperforms ABSOLVER, the corresponding cross is
located within the upper left area of the diagram.
Both, the x- and y-axis show the runtime in seconds,
based on a logarithmic scale. Marks at the upper
and rightmost end of the diagram denote timeouts
of ABSOLVER and ABSOLVERDC, respectively. Fig. 1 indicates that, in all test cases, AB-
SOLVERDC is at least as efficient as ABSOLVER, and even outperforms ABSOLVER in roughly
one quarter of the test cases by more than an order of magnitude. Those runs, in turn, exhibit
speed ups of more than three orders of magnitude. Note that more than 20 test cases resulted
in timeouts of ABSOLVER, whereas ABSOLVERDC was still able to solve these efficiently.

4.2 Comparison with other solvers
In Fig. 2, ABSOLVERDC is compared to CVC 3, MathSAT, and Yices. Let us use the

same type of diagram as for the comparison between ABSOLVERDC and ABSOLVER above,
i. e., for each test run, a cross is added in a square such that the x- and y-coordinate reflect
the runtime of ABSOLVERDC and the other solver on a logarithmic scale, respectively. Not
surprisingly, other solvers which employ an iterative approach, still perform better in these
test runs than ABSOLVERDC does. However, ABSOLVERDC shows a comparatively stable
and reliable performance compared to these solvers. In fact, due to the optimisations in place,
ABSOLVERDC is able to solve most test runs in additional time which is only greater by a
constant factor. As shown in Fig. 2a, ABSOLVERDC is comparable to CVC 3, since most
test runs are clustered around the diagonal line, and since both tools are able to solve some
test cases which cannot be solved by the respective competitor. Fig. 2b, and 2c show that
ABSOLVERDC is clearly slower than MathSAT and Yices. However, 60% of all benchmarks
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FIG. 2: A detailed comparison.



Bauer et al.

are solved by ABSOLVERDC within a runtime which is only larger by a constant factor.This
is indicated by the diagonal lines, as due to the logarithmicscale of the diagrams a constant
factor translates to diagonal corridors. The corridors represent factors of 20, and 100 in Fig. 2a-
c, respectively. Note that part of this overhead is due to thetext/file-based interface to the
underlying solver.

4.3 Industrial case-study with non-linear arithmetic constraints
The ABSOLVER framework was originally developed to handle general mixedarithmetic

and Boolean constraints as arising in the verification of MATLAB/Simulink models (Bauer
et al., 2007). To the best of our knowledge, no pre-existing tools supported the occurring
non-linear constraints imposed by these models. Consequently, we integrated a specialised
non-linear constraint solver, as provided by the COIN-OR library, into ABSOLVER.

We have employed successfully ABSOLVER in verifying a number of properties of a car’s
steering control system. The continuous dynamics of the controller and its environment had
been modelled using MATLAB/Simulink, where the environment consisted of non-linear func-
tions modelling the physical behaviour of the car. An automated conversion (using a custom
tool-chain) resulted in 976 CNF-clauses, and 24 (non-) linear expressions representing the con-
straints. Currently, ABSOLVER in its original version is able to solve the imposed constraint
problem in 17 seconds. On the other hand, our optimised solver ABSOLVERDC, was able to
solve the same problem in only 9 seconds, giving a speed-up ofroughly 50%. In both cases
the employed theory solvers were COIN (Lougee-Heimer, 2003) (for the linear part), zChaff
(Moskewicz et al., 2001) (for the Boolean part), and IPOPT (Wächter and Biegler, 2005) (for
the non-linear part).

5 Conclusions

We have presented a simple yet surprisingly efficacious optimisation to the abstraction/
refinement approach in SMT solving. Starting with our ABSOLVER framework as originally
presented by Bauer et al. (2007), we were able to improve the performance of the solver sub-
stantially bygeneralisinga SAT solver’s solution, before generating and solving the underly-
ing constraint problem. This yields fewer and smaller constraint problems than the traditional
approach. Our experiments confirm that the optimisation improves the traditional abstrac-
tion/refinement approach and pushes our framework in a practically applicable range.

In many domains, specialised SMT solvers exist and ABSOLVER cannot compete with
these solvers. However, to build an SMT solver with our framework, it is sufficient to integrate
a SAT solver and non-incremental theory solversas black boxes.Therefore, ABSOLVER pro-
vides a useful trade-off point between research and development effort on the one hand side,
and the domain of solvable problems on the other: With a minimum engineering effort, we
were able to build a solver for non-linear arithmetic SMT problems and to successfully apply
this solver in verifying a car’s electronic steering control system—no other solver was able
to process these non-linear constraints before. As such ourframework somewhat closes the
gap between more advanced SMT solvers being developed in research, and currently arising
industrial problems which are often based upon hitherto unsupported theories.
Acknowledgements. Thanks to Jinbo Huang, NICTA, for comments on an earlier version of
this paper.
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