
Monitoring of real-time properties

Andreas Bauer, Martin Leucker, and Christian Schallhart

Institut für Informatik, Technische Universität München

Abstract. This paper presents a construction for runtime monitors that check
real-time properties expressed in timed LTL (TLTL). Due to D’Souza’s results,
TLTL can be considered a natural extension of LTL towards real-time. Moreover,
a typical obstacle in runtime verification is solved both for untimed and timed for-
mulae, in that standard models of linear temporal logic are infinite traces, whereas
in runtime verification only finite system behaviours are at hand. Therefore, a 3-
valued semantics (true, false, inconclusive) for LTL and TLTL on finite traces
is defined that resembles the infinite trace semantics in a suitable and intuitive
manner. Then, the paper describes how to construct, given a (T)LTL formula, a
deterministic monitor with three output symbols that reads a finite trace and yields
its according 3-valued (T)LTL semantics. Notably, the monitor rejects a trace as
early as possible, in that any minimal bad prefix results in false as a return value.

1 Introduction

Runtime verification [9] is becoming a popular tool to complement verification tech-
niques such as model checking and testing, especially for so-called black box systems.
In a nutshell, runtime verification works as follows. A correctness property ϕ, usually
formulated in some linear temporal logic, such as LTL [20], is given and a so-called
monitor that accepts all models for ϕ is automatically generated. The system under
scrutiny as well as the generated monitor are then executed in parallel, such that the
monitor observes the system’s behaviour. System behaviour which violates property ϕ
is then detected by the monitor and an according alarm signal is returned.

Monitors can be employed in different phases of system development: In the testing
phase [7], the system is executed with typical inputs and monitors are observed for
complaints. At customer’s site, monitors check for bugs that escaped the testing phase
and may trigger recovery actions [5].

Various runtime verification approaches for LTL have been proposed already [13,
16, 17, 15, 23]. However, the current approaches suffer—to our opinion—from the treat-
ment of the following obstacle: The semantics of LTL is defined over infinite (be-
havioural) traces whereas monitoring a running system allows an at most finite view. In
consequence, various authors have proposed custom interpretations of LTL over finite
traces using weak and strong semantics: the weak interpretation of a formula ϕ w. r. t.
a finite trace u is that if up to the point where u ends, “nothing has yet gone wrong”,
ϕ holds. In the strong view, ϕ holds only if it evaluates to true within u. (see [12]
for an overview). However, good examples can be found for each of the interpretations
and—at the same time—also examples that the chosen approach is misleading.

In this paper, we propose a simple, yet—as we find—convincing way to overcome
this obstacle. Instead of trying to define a two-valued semantics for LTL on finite traces,
we define a three valued semantics, using values true, false , and ?, where the latter

1

denotes inconclusive. Given a finite string u and a formulaϕ, the truth values are defined
as expected: if there is no continuation of u satisfying ϕ, the value is false . If every
continuation of u satisfies ϕ, we go for true. Otherwise, we say ?, since the observations
so far are just inconclusive to say either true or false .

We argue that it is important to work with three instead of two truth values: Con-
sider, for instance, the property G¬p stating that no state satisfying p should occur.
Clearly, when p is observed, the monitor should complain. As long as p does not hold,
it is misleading to say that the formula is true, since the next observation might already
violate the formula. On the other hand, consider the formula ¬pU init stating that noth-
ing bad (p) should happen before the init function is called. If, indeed, the init function
has been called and no p has been observed before, the formula is true, regardless what
will happen in the future. For testing and verification, it is important to know whether
some property is indeed true or whether the current observation is just inconclusive.

Thus, in this paper, we propose a 3-valued logic, LTL3, which can be interpreted
over finite traces based on the standard semantics of LTL for infinite traces. Further-
more, we describe how to construct, given an LTL formula, a (deterministic) finite state
machine (FSM) with three output symbols. This automaton reads finite traces and yields
their 3-valued LTL semantics. Hence, it can be directly deployed for runtime verifica-
tion. Standard minimisation techniques for FSMs can be used to obtain an optimal FSM
w. r. t. number of states.

Our 3-valued semantics for LTL rounds off the study of safety properties in terms
of automata in [18] from a temporal logic perspective. In [18], a bad prefix (of a Büchi
automaton), is defined as a finite prefix which cannot be the prefix of any accepting
trace. Dually, a good prefix is a finite prefix such that any infinite extension of the trace
will be accepted. It is exactly this classification that forms the basis of our 3-valued
semantics: “bad prefixes” (of formulas) are mapped to false , “good prefixes” evaluate
to true, while the remaining prefixes yield ?. Thus, monitors for 3-valued formulas
classify prefixes as one of good = true, bad = false , or ? (neither good nor bad).

Since an extension of a bad (good) prefix is bad (good, respectively), there is a
minimal bad (good) prefix for every bad (good) prefix. In runtime verification, one is
interested in getting information already for minimal prefixes and one solution was
worked out in [10]. However, all “bad prefixes” for a formula ϕ gives rise to false–
also minimal ones. Thus, the correctness of our monitor procedures for LTL and TLTL
ensures that already for minimal good or bad prefixes one of true or false is obtained.
Altogether, we get a coherent study of (not only safety) LTL properties based on finite
prefixes together with optimal acceptors, as they are called in [10], based on elementary
results for LTL and automata theory.

To make our result easily accessible to the reader and to complete the picture started
in [10], our concepts are first developed in the setting of LTL. However, the main con-
cern of this paper are real-time systems. Therefore, we develop our ideas also for TLTL,
a logic introduced in [21], which, as argued by D’Souza in [11] can be considered a nat-
ural counterpart of LTL in the timed setting. Hence, for a TLTL formula a monitor is
constructed which operates over finite timed traces. Again, by correctness of our con-
struction, monitors signal faults or satisfaction “as early as possible”. While the general
scheme, as we show, is also applicable in the timed setting, the monitor construction is
technically much more involved. Automata for TLTL employ so-called event recording

2

and event predicting clocks. Since in runtime verification the future of a trace is not
known, predicting events are difficult to handle. We introduce symbolic runs and show
their benefit for checking promises efficiently, avoiding the translation of event-clock
automata to (predicting-free) timed automata.

[14] studies monitor generation based on LTL enriched with a freeze quantifier
for time. In [24, 6], fault diagnosis for timed systems is examined, a problem that is
more complicated than runtime verification. However, only timed automata or event
recording automata are used, no prediction of events is supported. TLTL is event-based,
meaning that the system emits events when the system’s state has changed. In [19] mon-
itoring of continuous signals is considered, which is intrinsicly different to observing
discrete signals in a continuous time domain. All of the work mentioned so far employs
a 2-valued semantics. In [10], minimal prefixes for runtime verification are discussed,
which our approach offers for free thanks to the 3-valued semantics.

We have implemented the untimed setting and validated our approach examining a
real-world case study. The monitor generator, exemplifying material, a case study, and
a full version of the paper is available from http://runtime.in.tum.de/.

2 Preliminaries
For the remainder of this paper, let AP be a finite set of atomic propositions and Σ =
2AP a finite alphabet. We write ai for any single element of Σ, i.e., ai is a possibly
empty set of propositions taken from AP. Finite traces overΣ are elements of Σ∗, and
are usually denoted by u, u′, u1, u2, . . . , whereas infinite traces are elements of Σω,
usually denoted by w,w′, w1, w2,

The set of LTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (p ∈ AP)

Let i ∈ N be a position. The semantics of LTL formulae is defined inductively over
infinite sequencesw = a0a1 . . . ∈ Σω as follows:w, i |= true,w, i |= ¬ϕ iffw, i 6|= ϕ,
w, i |= p iff p ∈ ai, w, i |= ϕ1 ∨ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2, w, i |= ϕ1Uϕ2 iff there
exists k ≥ i with w, k |= ϕ2 and for all l with i ≤ l < k, w, l |= ϕ1, and w, i |= Xϕ

iff w, i + 1 |= ϕ. Further, let w |= ϕ, iff w, 0 |= ϕ. For every LTL formula ϕ, its set
of models, denoted by L(ϕ), is a regular set of infinite traces and can be described by a
corresponding Büchi automaton.

A (nondeterministic) Büchi automaton (NBA) is a tuple A = (Σ,Q,Q0, δ, F),
where Σ is a finite alphabet, Q is a finite non-empty set of states, Q0 ⊆ Q is a set of
initial states, δ : Q×Σ → 2Q is the transition function, and F ⊆ Q is a set of accepting
states. We extend the transition function δ : Q×Σ → 2Q, as usual, to δ′ : 2Q ×Σ∗ →
2Q by δ′(Q′, ε) = Q′whereQ′ ⊆ Qand δ′(Q′, ua) =

⋃

q′∈δ′(Q′,u) δ(q
′, a). To simplify

notation, we use δ for both δ and δ′. A NBA is called deterministic iff for all q ∈ Q,
a ∈ Σ, |δ(q, a)| = 1, and |Q0| = 1. We use DBA to denote a deterministic Büchi
automaton. A run of an automaton A on a word w = a1 . . . ∈ Σω is a sequence of
states and actions ρ = q0a1q1 . . . , where q0 is an initial state of A and for all i ∈ N we
have qi+1 ∈ δ(qi, ai). For a run ρ, let Inf(ρ) denote the states visited infinitely often. A
run ρ of a NBA A is called accepting iff Inf(ρ) ∩ F 6= ∅.

A nondeterministic finite automaton (NFA) A = (Σ,Q,Q0, δ, F) is one where Σ,
Q, Q0, δ, and F are defined as for a Büchi automaton, but which operates on finite

3

words. A run of A on a word w = a1 . . . an ∈ Σ∗ is a sequence of states and actions
ρ = q0a1q1 . . . qn, where q0 is an initial state of A and for all i ∈ N we have qi+1 ∈
δ(qi, ai). The run is called accepting if qn ∈ F . A NFA is called deterministic iff for
all q ∈ Q, a ∈ Σ, |δ(q, a)| = 1, and |Q0| = 1. We use DFA to denote a deterministic
finite automaton.

Finally, let us recall the notion of a Moore machine, also called finite-state machine
(FSM), which is a finite state automaton enriched with output, formally denoted by a
tuple (Σ,Q,Q0, δ,∆, λ), where Σ, Q, Q0 ⊆ Q, δ is as before and ∆ is the output
alphabet, λ : Q → ∆ the output function. The outputs of a Moore machine, defined by
the function λ, are thus determined by the current state q ∈ Q alone, rather than by input
symbols. As before, δ extends to the domain of words as expected. For a deterministic
Moore machine, we denote by λ also the function that applied to a word u yields the
output in the state reached by u rather than the sequence of outputs.

3 Three-valued LTL in the untimed setting
To overcome difficulties in defining an adequate boolean semantics for LTL on finite
traces, we propose a 3-valued semantics. The intuition is as follows: in theory, we ob-
serve an infinite sequence w of some system. For a given formula ϕ, thus either w |= ϕ

or not. In practice, however, we can only observe a finite prefix u of w. Consequently,
we let the semantics of u and ϕ be true, if uw′ |= ϕ for every possible future extension
w′. On the other hand, if uw′ is not a model of ϕ for all possible infinite continuations
w′ of u, we define the semantics of u and ϕ as false. In the remaining case, the truth
value of uw′ and ϕ depends on w′. Thus, we define the semantics of u with respect to
ϕ to be inconclusive, denoted by ?, to signal that u itself is not sufficient to determine
how ϕ will evaluate in any possible future which is prefixed with u.

Formally, we define our 3-valued semantics in terms of LTL3 over the set of truth
values B3 = {⊥, ?,>} as follows:

Definition 1 (3-valued semantics of LTL). Let u ∈ Σ∗ denote a finite trace. The truth
value of a LTL3 formula ϕ w. r. t. u, denoted by [u |= ϕ], is an element of B3 and defined
as follows:

[u |= ϕ] =











> if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.

Now, we develop an automata-based monitor procedure for LTL3. More specifically,
for a given formulaϕ ∈ LTL3, we construct a finite Moore machine, Āϕ that reads finite
traces u ∈ Σ∗ and outputs [u |= ϕ], thus a value in B3.

For a NBA A, we denote by A(q) the NBA that coincides with A except for Q0,
which is defined asQ0 = {q}. Fixϕ ∈ LTL for the rest of this section and let Aϕ denote
the NBA, which accepts all models of ϕ, and let A¬ϕ denote the NBA, which accepts
all counter examples of ϕ. The corresponding construction is standard and explained,
for example in [26]. For these automata, we observe:

Lemma 1. Let Aϕ = (Σ,Qϕ, Q
ϕ
0 , δ

ϕ, Fϕ) denote the NBA such that L(Aϕ) = L(ϕ).
For u ∈ Σ∗, let δ(Qϕ

0 , u) = {q1, . . . , ql}. Then
[u |= ϕ] 6= ⊥ iff ∃q ∈ {q1, . . . , ql} such that L(Aϕ(q)) 6= ∅.

4

Lemma 2. Let A¬ϕ = (Σ,Q¬ϕ, Q
¬ϕ
0 , δ¬ϕ, F¬ϕ) denote the NBA such thatL(A¬ϕ) =

L(¬ϕ). For u ∈ Σ∗, let δ(Q¬ϕ
0 , u) = {q1, . . . , ql}. Then

[u |= ϕ] 6= > iff ∃q ∈ {q1, . . . , ql} such that L(A¬ϕ(q)) 6= ∅.

Correctness of the first lemma follows directly from the definition of acceptance for
Büchi automata and the second lemma rephrases the first one by substituting ¬ϕ for ϕ.

For Aϕ and A¬ϕ, we now define a function Fϕ : Qϕ → B respectively F¬ϕ :
Q¬ϕ → B (where B = {>,⊥}), assigning to each state q whether the language of
the respective automaton starting in state q is not empty. Thus, if Fϕ(q) = > holds,
then the automaton Aϕ starting at state q accepts a non-empty language and each finite
prefix u leading to state q can be expanded in order to satisfy ϕ. Using Fϕ and F¬ϕ, we
define two NFAs Âϕ = (Σ,Qϕ, Q

ϕ
0 , δ

ϕ, F̂ϕ) and Â¬ϕ = (Σ,Q¬ϕ, Q
¬ϕ
0 , δ¬ϕ, F̂¬ϕ)

where F̂ϕ = {q ∈ Qϕ | Fϕ(q) = >} and F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = >}.
Âϕ, resp. Â¬ϕ, accept the finite traces u for which [u |= ϕ] evaluates to 6= ⊥ and,

respectively, 6= >.

Lemma 3. Using the notation as before, we have for all u ∈ Σ∗:

u ∈ L(Âϕ) iff [u |= ϕ] 6= ⊥ and u ∈ L(Â¬ϕ) iff [u |= ϕ] 6= >

Therefore, we can evaluate [u |= ϕ] according to Lemma 3 as follows.

Lemma 4. With the notation as before, we have [u |= ϕ] = > if u 6∈ L(Â¬ϕ), [u |= ϕ] =

⊥ if u 6∈ L(Âϕ), and [u |= ϕ] =? if u ∈ L(Âϕ) and u ∈ L(Â¬ϕ).

The lemma yields a simple procedure to evaluate the semantics ofϕ for a given finite
trace u: we evaluate both u ∈ L(Â¬ϕ) and u ∈ L(Âϕ) and use Lemma 4 to determine
[u |= ϕ]. As a final step, we now define a (deterministic) FSM Āϕ that outputs for
each finite string u its associated 3-valued semantical evaluation with respect to some
LTL-formula ϕ.

Let Ãϕ and Ã¬ϕ be the deterministic versions of Âϕ and Â¬ϕ, which can be com-
puted in the standard manner by power-set construction. Now, we define the FSM in
question as a product of Ãϕ and Ã¬ϕ:

Definition 2 (Monitor Āϕ for a LTL-formula ϕ). Let Ãϕ = (Σ,Qϕ, {qϕ
0 }, δ

ϕ, F̃ϕ)
and Ã¬ϕ = (Σ,Q¬ϕ, {q¬ϕ

0 }, δ¬ϕ, F̃¬ϕ) be the DFAs which correspond to the two
NFAs Âϕ and Â¬ϕ as defined for Lemma 3. Then we define the monitor Āϕ = Ãϕ ×
Ã¬ϕ as the FSM (Σ, Q̄, q̄0, δ̄, λ̄), where Q̄ = Qϕ×Q¬ϕ, q̄0 = (qϕ

0 , q
¬ϕ
0), δ̄((q, q′), a) =

(δϕ(q, a), δ¬ϕ(q′, a)), and λ̄ : Q̄→ B3 is defined by

λ̄((q, q′)) =







> if q′ 6∈ F̃¬ϕ

⊥ if q 6∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

We sum up our entire construction in Fig. 1 and conclude by formulating the cor-
rectness theorem.

Theorem 1. Let ϕ ∈ LTL3 and let Āϕ = (Σ, Q̄, q̄0, δ̄, λ̄) be the corresponding moni-
tor. Then, for all u ∈ Σ∗ the following holds: [u |= ϕ] = λ̄(δ̄(q̄0, u)).

5

ϕ
ϕ

¬ϕ

Aϕ

A¬ϕ

Fϕ

F¬ϕ

Âϕ

Â¬ϕ

Ãϕ

Ã¬ϕ

Ā

Input (1) Formula (2) NBA (3)
Emptiness
per state (4) NFA (5) DFA (6) FSM

Fig. 1. The procedure for getting [u |= ϕ] for a given ϕ

Complexity. Consider Fig. 1: Given ϕ, step 1 requires us to replicate ϕ and to negate
it, i.e., it is linear in the original size. Step 2, the construction of the NBAs, causes an
exponential blow-up in the worst-case. Steps 3 and 4, leading to Âϕ and Â¬ϕ, do not
change the size of the original automata. Then, computing the deterministic automata
of step 5, might again require an exponential blow-up in size. In total the FSM of step
6 will have double exponential size with respect to |ϕ|.

While the size of the final FSM is inO(22n

) which sounds a lot, standard minimisa-
tion algorithms for FSMs can be used to derive an optimal deterministic monitor w. r. t.
the number of states. Optimality implies that any other method, in the worst case, has
the same complexity. Better complexity results in other approaches are either due to us-
ing a restricted fragment of LTL or otherwise imply that the chosen temporal operators
might not limit the expressive power of LTL but sometimes impose long formulas for
encoding the desired behaviour.

That said, we have implemented the determinisation of NFAs and the product for
obtaining Ā (steps 4–6) in an on-the-fly fashion. This technique is well known for ex-
ample in compiler construction [1]. Our examples confirm huge savings in memory
consumption.

4 Three-valued LTL in the timed setting—TLTL

In this part, we extend the approach developed in the preceding section to the timed
setting. Thus, the goal is to dynamically check real-time specifications formulated in a
timed temporal logic. We use timed LTL (TLTL for short), a logic introduced in [21], in
the form presented in [22]. The language expressible by a TLTL formula can be defined
by event-clock automata [4], a subclass of timed automata. It was shown in [11] that
TLTL corresponds exactly to the class of languages definable in first-order logic inter-
preted over timed words. Thus, it can be considered as the natural counterpart of LTL
for the timed setting. Given the translation to event-clock automata in the literature [22],
we base our timed runtime verification approach on TLTL and event-clock automata.

4.1 Preliminaries

Let us fix an alphabetΣ of actions for the rest of this section. In the timed setting, every
symbol a ∈ Σ is associated with an event-recording clock, xa, and an event-predicting
clock, ya. An (infinite) timed word w over the alphabet Σ is an (infinite) sequence
of timed events (a0, t0)(a1, t1) . . . consisting of symbols ai ∈ Σ, and non-negative
numbers ti ∈ R

≥0, such that for each i ∈ N, ti < ti+1 (strict monotonicity), and for all
t ∈ R

≥0 there is an i ∈ N such that ti > t (progress). Furthermore, for w as above, we
call its sequence of actions (the projection to the first component) the untimed word of
w, denoted by ut(w).

6

To simplify notation, we abbreviate (Σ×R
≥0) by TΣ . Thus, a finite timed word is

an element of TΣ ∗ and the domain of infinite timed words is denoted by TΣ ω. Given
an (infinite) timed wordw, the value of the event-recording clock variable xa at position
i of w equals ti − tj , where j represents the last position preceding i such that aj = a.
If no such position exists, then the value of xa remains undefined, denoted by ⊥. The
event-predicting clock variable ya at position i equals tk − ti, where k represents the
next position after i such that ak = a. If no such position exists, again, the variable
remains undefined. The set of all event-clocks is denoted by CΣ = {xa, ya | a ∈ Σ}.
A clock valuation function over a timed word w, γi : CΣ → R

≥0 ∪ {⊥} assigns a
positive real, or undefined value to each clock variable corresponding to position i. We
abbreviate R

≥0 ∪ {⊥} by T⊥.
A clock constraint compares a clock value to a natural number. Let Ψ(CΣ) denote

the set of clock constraints over CΣ . Formally, a clock constraint ψ ∈ Ψ(CΣ) is a
conjunction of formulae of the form z ./ c, where z ∈ CΣ , ./∈ {<,≤,≥, >} and
c ∈ N. For clock constraint ψ and clock valuation function γ, we write γ |= ψ to denote
that w.r.t. γ, constraint ψ is fulfilled, where ⊥ ./ c for c ∈ N and ./∈ {<,≤,≥, >}
does not hold and the remaining cases are defined in the expected manner.

4.2 Syntax and semantics of TLTL3

Let Σ be a finite set of actions. A set of formulas ϕ of TLTL is defined by the grammar
ϕ ::= true | a | Ca ∈ I | Ba ∈ I | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (a ∈ Σ),

where Ca is the operator that measures the time elapsed since the last occurrence of a,
and Ba the operator that predicts the next occurrence of a within a timed interval I ∈ I.
The set of intervals I contains intervals of the form (l, r), [l, r), (l, r], or [l, r], where
l, r ∈ R

≥0 ∪ {∞}. Without loss of generality, we assume l < r, except for [l, r], and
for intervals (l, r], or [l, r] that r 6= ∞. To simplify notation, we use [(and)] for interval
borders which can either be (or [, respectively),].

The semantics of TLTL formulae are defined inductively over infinite timed words
w ∈ TΣω, where w = (a0, t0)(a1, t1) . . . , and i ∈ N

≥0 as follows: w, i |= true,
w, i |= ¬ϕ iff w, i 6|= ϕ, w, i |= a iff ai = a, w, i |= Ca ∈ I iff γi(xa) ∈ I , w, i |=
Ba ∈ I iff γi(ya) ∈ I , w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2, w, i |= ϕ1Uϕ2 iff
∃k ≥ i with w, k |= ϕ2 and ∀l : (i ≤ l < k ∧w, l |= ϕ1), w, i |= Xϕ iff w, i+ 1 |= ϕ.
Further, let w |= ϕ, iff w, 0 |= ϕ.

Analogously to the untimed case, we now define a 3-valued semantics for TLTL,
from this point onwards denoted as TLTL3, as follows:

Definition 3. Let u ∈ TΣ∗ denote a finite timed trace. The truth value of a TLTL3

formula ϕ w. r. t. u, denoted by [u |= ϕ], is an element of B3 and defined as follows:

[u |= ϕ] =











> if ∀σ such that uσ ∈ TΣω uσ |= ϕ

⊥ if ∀σ such that uσ ∈ TΣω uσ 6|= ϕ

? otherwise.

4.3 Symbolic runs of event-clock automata

We first recall the definition of an event-clock automaton: Given a finite set of clocks,
CΣ , we define an event-clock automaton as a finite state automaton whose edges are an-
notated both with input symbols and with clock constraints as Aec = (Σ,Q,Q0, E, F),

7

where Σ is a finite input alphabet, Q a finite set of states, Q0 ⊆ Q are initial states,
F ⊆ 2Q is a set of accepting states (generalized Büchi acceptance condition) and
E ⊆ Q× Σ × Ψ(CΣ) × Q a set of transitions. An edge e = (q, a, ψ, q′) represents a
transition from state q upon symbol a to q′, where the clock constraint ψ then specifies
when e is enabled. For an event-clock automaton A, let KA denote the biggest constant
appearing in some constraint of A; we write K when A is clear from the context.

A timed run θ of an automaton Aec = (Σ,Q,Q0, E, F) over a timed word w ∈
TΣω starting in (q0, γ0) is an infinite sequence of state-valuation tuples and transitions
(q0, γ0)

α1→ (q1, γ1)
α2→ . . . with qi ∈ Q, and γi being the evaluation function assigning

for every element from Σ the value of the recording and predicting event clocks corre-
sponding to αi, where αi ∈ TΣ is a timed event of the form (ai ∈ Σ, ti ∈ R

≥0), and
for all i ≥ 1 there is a transition inE of the form (qi−1, ai, ψ, qi) such that γi |= ψ. Aec

accepts θ, iff for each Fi ∈ F , a state q ∈ Fi exists such that q occurs infinitely often
in θ. γ0 is initial (w.r.t. w) if γ0(xa) = ⊥ and γ0(ya) = ti if αi = (a, ti) and for j < i

and αj = (aj , tj), aj 6= a, and γ0(ya) = ⊥ if a does not occur in w. Then, the timed
language accepted by Aec, denoted as L(Aec), is the set of timed words for which an
accepting run of Aec exists starting in (q0, γ0), for some q0 ∈ Q0 and the initial γ0.

For runtime verification predicting clock variables pose a problem, since informa-
tion about the future occurrence of an action a is predicted, but this information is not
available yet. We solve this problem by representing the value of some predicting clock
variable symbolically. A symbolic clock valuation function Γ : CΣ → T⊥ ∪ I assigns
a positive real, or undefined value to each recording clock variable and an interval or
undefined value to each predicting clock variable. The interval constrains the possible
values of a predicting variable. To simplify notation, we identify Γ (ya) = (l, r) with
the constraint ya > l ∧ ya < r (and similarly for borders [and]).

For a symbolic clock evaluation Γ , we define the following three operations: time
elapse, reset, and conjunction. Given an elapsed time t ∈ R

≥0, Γ ′ = Γ + t, where
Γ ′(xa) = Γ (xa) + t and for Γ (ya) = [(l, r)], we set Γ ′(ya) = [(l−̇t, r − t)], where
−̇ yields at least 0. If r − t < 0, then Γ ′ is invalid. Γ reset by action a, denoted by
Γ ↓a, sets xa = 0 and removes all constraints on ya, and we set Γ ′(ya) = [0,∞)
and Γ ′(zb) = Γ (zb) for all b 6= a. The conjunction of Γ with constraint ψ yields
Γ ′ = Γ∧ψ, where each predicting clock ya is combined with the constraints ofψ which
involve ya, i. e., for a ∈ Σ, Γ ′(ya) = Γ (ya) ∧

∧

{ya ./ c ⊆ ψ}. We call Γ ′ invalid,
if for some ya, Γ ′(ya) is not satisfiable. Furthermore, a transition (q, a, ψ, q′) ∈ E

is applicable to a pair (q, Γ), if the constraints xb ./ c in ψ are satisfied by Γ , for
all b ∈ Σ, and 0 ∈ Γ (ya). If (q, a, ψ, q′) ∈ E is applicable, then the corresponding
successor of (q, Γ) is (q′, Γ ′), where Γ ′ = (Γ↓a) ∧ ψ.

A symbolic timed run Θ of an automaton Aec = (Σ,Q,Q0, E, F) over a timed
word w ∈ TΣω starting in (q0, Γ0) is an infinite sequence of state-symbolic-valuation
tuples and transitions as follows: (q0, Γ0)

α1→ (q1, Γ1)
α2→ . . . with qi ∈ Q, and Γi being

a symbolic valuation function, where for each (qi−1, Γi−1)
(ai,ti)
→ (qi, Γi), there exists

some transition (qi−1, ai, ψ, qi) applicable to (qi−1, Γi−1 + ti) and (qi, Γi) is the result
of this application. The notion of acceptance for symbolic runs corresponds to that of
runs, i. e., for each Fi ∈ F there is some q ∈ Fi occurring infinitely often. We call Γ0

initial if for a ∈ Σ, Γ0(xa) = ⊥ and Γ0(ya) = [0,∞).

8

Theorem 2. Let Aec = (Σ,Q,Q0, E, F) be an event-clock automaton andw ∈ TΣ ω.
Then, there is an accepting run onw starting in (q0, γ0) iff there is a symbolic accepting
run on w starting in (q0, Γ0) for initial Γ0.

The important fact about the previous theorem is that γ0 is dependent on w (since
each predicting clock ya has to be initialised to match the first occurrence of a), while Γ0

is independent of w. Thus, symbolic runs are a suitable device for runtime verification.

4.4 A monitor procedure for TLTL3

We can assume that for some property ϕ as well as its negation, an event-clock au-
tomaton is given, accepting precisely the models of ϕ respectively ¬ϕ (see [22] for
details). Looking at the scheme developed in the untimed setting, we are now tempted
to check for every state q of the event-clock automaton, whether the language accepted
from state q is empty. However, this would yield wrong conclusions, as can be seen
in Fig. 2. While the language accepted in state 2 is non-empty and, despite, state 2 is

0 1 2
a b[xa ≥ 2]

a[xa ≤ 1]

Fig. 2. Event-clock automaton

reachable, the automaton does not accept
any word when starting in state 0. The con-
straint when passing from 1 to 2 requires
the clock xa to be at least 2. This, however,
prevents the loop in state 2 to be taken.

We therefore decided to work on the so-called region automaton (for alternatives see
Remark 2 on page 11). Recall that K denotes the biggest constant occurring in some
constraint of the event-clock automaton. Two clock valuations γ1, γ2 are in the same
region, denoted by γ1 ≡ γ2 iff

– for all z ∈ CΣ , γ1(z) = ⊥ iff γ2(z) = ⊥, and (agreement on undefined)
– for all z ∈ CΣ , if γ1(z) ≤ K or γ2(z) ≤ K, then bγ1(z)c = bγ2(z)c, and

(agreement on integral part)
– for all a ∈ Σ, let 〈γ(xa)〉 = dxae − γ(xa) and 〈γ(ya)〉 = γ(ya) − byac. Then, for

all z1, z2 ∈ CΣ with γ1(z1) ≤ K and γ2(z2) ≤ K,
• 〈γ1(z1)〉 = 0 iff 〈γ2(z1)〉 = 0
• 〈γ1(z1)〉 ≤ 〈γ1(z2)〉 iff 〈γ2(z1)〉 ≤ 〈γ2(z2)〉. (agreement on fraction’s order)

A clock region is an equivalence class of ≡. Let R denote the set of all regions.
The key property of the region equivalence is stability [3]: given state s and two

equivalent valuations γ1 and γ2, then (s′, γ′) is an a-successor of (s, γ1) iff (s′, γ′′) is
one of (s, γ2) for suitable γ′′ equivalent to γ′. Lifting this to infinite runs, we get:

Lemma 5. Let Aec be an event-clock automaton, q some state of Aec, and γ1, γ2 two
valuations with γ1 ≡ γ2. Let w̄ ∈ Σω. Then, there exists an accepting run on some
infinite timed word w1 ∈ TΣω with ut(w1) = w̄ starting in (q, γ1) iff there exists an
accepting run on some infinite timed word w2 ∈ TΣω with ut(w2) = w̄ starting in
(q, γ2).

Note that the so-called zone equivalence [2] is not stable.
For completeness, we give the translation of an event-clock automaton to a region

automaton, as presented in [22], whose states actually serve their purpose in our ap-
proach, because of the previous lemma.

9

A clock regionκ2 is a time successor of a clock regionκ1, denoted by κ2 ∈ TS (κ1),
iff for all γ ∈ κ1 there is some t ∈ R

≥0 such that γ + t ∈ κ2. Here, γ′ = γ + t is
defined as γ′(xa) = γ(xa) + t and γ′(ya) = γ(ya) − t. To simplify notation, let us
fix an event-clock automaton Aec = (Σ,Q,Q0, E, F). The region automaton of Aec is
the (generalized) Büchi automatonR(Aec) = (Σr, Qr, Qr

0, E
r, F r), where

– Qr = {(l, κ, ζ) | l ∈ Q, κ ∈ R, ζ ∈ {t, d}} is the set of states
– Qr

0 = {(l, κ, ζ) ∈ Qr | l ∈ Q0, ∀a ∈ Σ, κ(xa) = ⊥, ζ = d} is the set of initial
states

– Σr = Σ ∪ {ε}
– Er = Er

d ∪ Er
t is the union of untimed and timed transitions, where

• Er
d = {((l1, κ1, t), (l2, κ2, d), a) | (l1, a, ψ, l2) ∈ E and

∃κ3 s. t. κ1 = κ3[ya := 0], κ2 = κ3[xa := 0], and κ3 |= ψ}
• Er

t = {((l, κ1, d), (l, κ2, t), ε) | κ2 ∈ TS (κ1)}
– F r = {F r

i | Fi ∈ F} ∪ {Fxa
| Ca ∈ I ∈ Sub(ϕ)} ∪ {Fya

| Ba ∈ I ∈ Sub(ϕ)},
• where for Fi ∈ F , F r

i = {(l, κ, ζ) | l ∈ Fi}
• Fxa

= {(l, κ, ζ) | ∀γ ∈ κ γ(xa) = 0 ∨ γ(xa) > c ∨ γ(xa) = ⊥}
• Fya

= {(l, κ, ζ) | ∀γ ∈ κ γ(ya) = 0 ∨ γ(ya) = ⊥}

Note that the region automaton as defined here is a Büchi automaton and thus, the
accepted language is a sequence of (untimed) words overΣ. Thus, it is easy to compute
for every state, whether the accepted (untimed) language is empty or not. For every state
(l, κ, ζ) with a non-empty language, stability now guarantees that for each γ ∈ κ, there
is some accepting run of the original event-clock automaton starting in (l, γ) for some
timed word w. Dually, if the accepted language is empty, the underlying event-clock
automaton has no accepting run starting in (l, γ) for any γ ∈ κ and any w (Lemma 5).

We now describe a procedure that reads timed events and decides whether further
events might yield an accepting run (satisfying the formula to check).

The procedure is based on the event-clock automaton as well as the region automa-
ton. It follows the possible symbolic computations for the given input along the lines
of the event-clock automaton. To decide, whether future events might contribute to an
accepting run, the region automaton is consulted.

Let us fix an event-clock automaton Aec and its region automaton R(Aec) for the
moment. Let us consider the timed word w = (a0, t0)(a1, t1) · · · ∈ TΣω. Recall that
(a0, t0) actually means that the first action a0 occurs at time t0.

Let Γ0 be the initial symbolic valuation of Aec and l0 one of the initial states of
Aec. Now, for the first event (a0, t0), we compute the set of successors w.r.t. Aec. If
this set is empty, the underlying formula is obviously violated. If not, each successor
is a pair (l, Γ). Each (l, Γ) now corresponds to a set of states in the region automaton.
If and only if for all of them the accepted language is empty, the underlying property
is violated, which follows directly from Theorem 2 and Lemma 5. We continue with
each successor state (l, Γ) for which a corresponding accepting state of R(Aec) exists,
reading the input event.

Thus, the generated procedure keeps a set of possible state-symbolic valuation pairs
that represent the possible current states of Aec (giving credit to the non-deterministic
nature of Aec). Furthermore, the transition table of Aec and the states of R(Aec) en-
riched with emptiness per state information are stored as look-up tables.

10

ϕ

ϕ

¬ϕ

Aϕ

ec

A¬ϕ

ec

Rϕ

R¬ϕ

Fϕ

F¬ϕ

Ā

Input (1) Formula (2) ECA (3) Region
automaton

(4)
Emptiness
per state (5) Monitor

Fig. 3. The procedure for getting [u |= ϕ] for a given ϕ ∈ TLTL3.

Remark 1. To enhance the practical applicability of our approach, we adjust the proce-
dure slightly: the formal framework described above requires the monitor to complain
iff for some prefix (a0, t0) . . . (ai, ti) no accepting run exists. In particular, it is assumed
that “a watch is consulted only when some action occurs”. But the time transitions
yielding the subsequent regions in the region automaton actually (often) constrain the
possible occurrence of some future event a. For each current valuation Γ corresponding
to a set of regions, we check in R(A) the possible accepting time successors and com-
pute a maximal time bound before some event has to occur to reach an accepting state.
Thus, in practice, we can set a timer interrupt, when such a bound exists, and decide for
rejection, when a timeout occurs before a suitable action has been read.

The overall monitor procedure for TLTL3 is similar to the untimed case and sum-
marised in Fig. 3. However, since we have to consider the region automaton (with empti-
ness per state information) together with the current clock valuation to compute the
timed successor, we do not get an NFA neither can determinise to get a DFA (at least in
a straightforward manner). We therefore propose for the overall monitor procedure to
rely on R(Aϕ

ec) and R(A¬ϕ
ec) in an on-the-fly manner, as described above.

Remark 2. We have used region automata to keep our presentation short and simple.
The key property of our monitor construction, however, is stability of the region equiv-
alence. Thus, our approach can be improved by taking a coarser stable partition of the
underlying timed transition system instead of the region equivalence. Such partitions
have been studied extensively in [25].

Complexity. Consider Fig. 3 and observe that step 1 is constant. The region automaton
of Aϕ

ec (resp. A¬ϕ
ec) is exponential with respect to the length of the underlying formula

ϕ as well as the largest constant K appearing in ϕ. Following the different paths for
some prefix (due to the non-determinism of the region automaton) might cause further
exponential blow-up in space, in the worst case.

5 Conclusions
The paper presented a monitor construction for (T)LTL formulae. For LTL, we have
shown the construction to be optimal, in that no smaller deterministic finite state mon-
itor accepting the same language as ours can be constructed. For both, LTL and TLTL,
the construction reflects minimality, such that true or false is returned by the monitor as
early as an observed behavioural trace allows. The latter is an implicit property of the
constructed monitor and does not require additional analyses, or data structures besides
the monitor itself.

We have already implemented the untimed setting and integrated the monitor gen-
erator within a larger logging and unit testing framework. Examples and an extended

11

version of this paper including details of the implementation are available from http:
//runtime.in.tum.de/

References
1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles and Techniques and Tools. Addison-

Wesley, 1986.
2. R. Alur. Timed automata. In NATO-ASI 1998 Summer School on Verification of Digital and

Hybrid Systems, 1998.
3. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
4. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable class of timed

automata. TCS, 211(1-2):253–273, 1999.
5. A. Bauer, M. Leucker, and C. Schallhart. Model-based runtime analysis of distributed reac-

tive systems. In ASWEC’06. IEEE, 2006.
6. P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis using timed automata. In FoSSaCS,

LNCS 3441. Springer, 2005.
7. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-based

Testing of Reactive Systems, LNCS 3472. Springer, 2005.
8. M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space systems

with fine-grained abstractions using spin. In SPIN’01, LNCS 2057.
9. S. Colin and L. Mariani. Run-Time Verification, chapter 18. LNCS 3472. [7], 2005.

10. M. d’Amorim and G. Rosu. Efficient monitoring of omega-languages. In CAV’05, LNCS
3576. Springer, 2005.

11. D. D’Souza. A logical characterisation of event clock automata. Int. Journ. Found. Comp.
Sci., 14(4):625–639, Aug. 2003.

12. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V. Campenhout. Reasoning
with temporal logic on truncated paths. In CAV’03, LNCS 2725.

13. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties
on Running Programs. In ASE’01, IEEE, 2001.

14. J. Håkansson, B. Jonsson, and O. Lundqvist. Generating online test oracles from temporal
logic specifications. STTT, 4(4):456–471, 2003.

15. K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer. ENTCS,
55(2), 2001.

16. K. Havelund and G. Rosu. Monitoring programs using rewriting. In ASE’01, IEEE, 2001.
17. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In TACAS’02, 2002.
18. O. Kupferman and M. Y. Vardi. Model checking of safety properties. FMSD, 19(3):291–314,

2001.
19. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In FOR-

MATS/FTRTFT, LNCS 3253. Springer, 2004.
20. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on

the Foundations of Computer Science (FOCS-77). IEEE, 1977.
21. J.-F. Raskin and P.-Y. Schobbens. State clock logic: A decidable real-time logic. In O. Maler,

editor, HART, LNCS 1201. Springer, 1997.
22. J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks—decidability, complexity and

expressiveness. JALC, 4(3):247–286, 1999.
23. V. Stolz and E. Bodden. Temporal Assertions using AspectJ. In Fifth Workshop on Runtime

Verification (RV’05). ENTCS. to appear.
24. S. Tripakis. Fault diagnosis for timed automata. In W. Damm and E.-R. Olderog, editors,

FTRTFT, LNCS 2469. Springer, 2002.
25. S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations.

FMSD, 18(1):25–68, 2001.
26. M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, LNCS 1043.

Springer, 1996.

12

