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Abstract The main purpose of this paper is to introduce a first-order temporal
logic, LTLFO, and a corresponding monitor construction based on a new type of
automaton, called spawning automaton.

Specifically, we show that monitoring a specification in LTLFO boils down to
an undecidable decision problem. The proof of this result revolves around specific
ideas on what we consider a “proper” monitor. As these ideas are general, we
outline them first in the setting of standard LTL, before lifting them to the setting
of first-order logic and LTLFO. Although due to the above result one cannot hope
to obtain a complete monitor for LTLFO, we prove the soundness of our automata-
based construction and give experimental results from an implementation. These
seem to substantiate our hypothesis that the automata-based construction leads to
efficient runtime monitors whose size does not grow with increasing trace lengths
(as is often observed in similar approaches). However, we also discuss formulae
for which growth is unavoidable, irrespective of the chosen monitoring approach.
Specifically, we provide a general categorisation of so called monitorable languages,
which is closely related to this notion of “growth-inducing” (that is, trace-length
dependent) formulae. It relates to the well-known safety-progress hierarchy, yet is
orthogonal to it.

Keywords monitoring · spawning automata · temporal logic · first-order logic ·
monitorability · trace-length independence

1 Introduction

In the area of runtime verification (cf. [23,22,16,9]), a monitor typically describes
a device or program which is automatically generated from a formal specification
capturing undesired (resp. desired) system behaviour. The monitor’s task is to
passively observe a running system in order to detect if the behavioural specifi-
cation has been satisfied or violated by the observed system behaviour. While,
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arguably, the majority of runtime verification approaches are based on proposi-
tional logic (or expressively conservative parametric extensions thereof; cf. §8 for
an overview), there exist works that have considered full first-order logic (cf. [22,
6,4]). Monitoring first-order specifications has also gained prior attention in the
database community, especially in the context of so called temporal triggers, which
correspond to first-order temporal logic specifications that are evaluated wrt. a lin-
ear sequence of database updates (cf. [11,12,34]). Although the underlying logics
are generally undecidable, the monitors in these works usually address decidable
problems, such as “is the so far observed behaviour a violation of a given spec-
ification ϕ?” Additionally, in many approaches, ϕ must only ever be a safety or
domain independent property for this problem to actually be decidable (cf. [11,4]),
which can be ensured by syntactic restrictions on the input formula, for example.

As there exist many different ways in which a system can be monitored in
this abstract sense, we are going to put forth very specific assumptions concerning
the properties and inner-workings of what we consider a “proper” monitor. None
of these assumptions is particularly novel or complicated, but they help describe
and distinguish the task of a “proper” monitor from that of, say, a model checker,
which can also be used to solve monitoring problems as we shall see.

The two basic assumptions are easy to explain: Firstly, we demand that a
monitor is what we call trace-length independent, meaning that its efficiency does
not decline with an increasing number of observations. Secondly, we demand that
a monitor is monotonic wrt. reporting violations (resp. satisfication) of a spec-
ification, meaning that once the monitor returns “SAT” to the user, additional
observations do not lead to it returning “UNSAT” (and vice versa). We are going
to postulate further assumptions, but these are mere consequences of the two basic
ones and are explained in §2.

At the heart of this paper, however, is a custom first-order temporal logic, in
the following referred to as LTLFO, which is undecidable. Yet we outline a sound,
albeit incomplete, monitor construction for it based on a new type of automaton,
called spawning automaton. LTLFO was originally developed for the specification
of runtime verification properties of Android “Apps” and has already been used
in that context (see [7] for details). Although [7] gave a monitoring algorithm for
LTLFO based on formula rewriting, it turns out that the automata-based construc-
tion given in this paper leads to practically more efficient results in practice.

Structure of this paper. As our definition of what constitutes a “proper” monitor
is not tied to a particular logic we will develop it first for standard LTL (§2), the
quasi-standard in the area of runtime verification. In §3, we give a more detailed
account of LTLFO, before we lift the results of §2 to the first-order setting (§4).
The automata-based monitor construction for LTLFO is given in §5 along with two
comprehensive examples to convey an intuitive understanding of the underlying
principles and ideas. In §6.1, we then discuss some optional optimisations to said
algorithm, which aim at making the resulting monitor smaller, thus more efficient
at runtime. They are discussed separately, because didactically it makes sense
to separate underlying principles from implementation-oriented extensions. The
section finishes, with experimental results, obtained from a Scala-implementation
of our monitoring algorithm.

Arguably, §7 is a logical consequence of the previous sections, in that it dis-
cusses what languages can be effectively monitored (by our algorithms or any other
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for that matter) and how they relate to one another. As such, it lays out a formal
language classification not unlike the well-known safety-progress hierarchy [28],
but with a focus on monitoring.

Related work is discussed in §8, and §9 concludes. We have added some detailed
proofs of formal statements in the appendix of this paper.

Previous versions of this paper. Since this is an extended version of a recent con-
ference paper (see [8]), a word to highlight additional or new content is in order.
Besides minor structural changes, the following contributions are unique in com-
parison with [8]:

• §6.1 on implementation optimisations.
• Extended experiments in §6.2, comparing the original and optimised versions

of the monitor.
• An extensive example in §5, which explains the behaviour of the monitoring

algorithm (in accordance to the earlier example in this section, which merely
described the behaviour of spawning automata).

• §7 on monitorable and trace-length dependent formal languages.
• Detailed formal proofs.

2 Complexity of monitoring in the propositional case

In what follows, we assume basic familiarity with LTL and topics like model check-
ing (cf. [13,3] for an overview). Despite that, let us first state a formal LTL se-
mantics, since we will consider its interpretation on infinite and finite traces. For
that purpose, let AP denote a set of propositions, LTL(AP) the set of well-formed
LTL formulae over that set, and for some set X set X∞ = Xω ∪ X∗ to be the
union of the sets of all infinite and finite traces over X. When AP is clear from
the context or does not matter, we use LTL instead of LTL(AP). Also, for a given
trace w = w0w1 . . ., the trace wi is defined as wiwi+1 . . .. As a convention we use
u, u′, . . . to denote finite traces, by σ the trace of length 1, and w for infinite ones
or where the distinction is of no relevance.

Definition 1 Let ϕ ∈ LTL(AP), w ∈ (2AP)∞ be a non-empty trace, and i ∈ N0,
then

wi |= p iff p ∈ wi, where p ∈ AP,

wi |= ¬ϕ iff wi |= ϕ does not hold,

wi |= ϕ ∧ ψ iff wi |= ϕ and wi |= ψ,

wi |= Xϕ iff |w| > i and wi+1 |= ϕ,

wi |= ϕUψ iff there is a k s.t. i ≤ k < |w|, wk |= ψ, and for all i ≤ j < k,wj |= ϕ.

And if w0 |= ϕ holds, we usually write w |= ϕ instead. Although this semantics,
which was also proposed in [29], gives rise to mixed languages, i.e., languages
consisting of finite and infinite traces, we shall only ever be concerning ourselves
with either finite-trace or infinite-trace languages, but not mixed ones. It is easy
to see that over infinite traces this semantics matches the definition of standard
LTL. Recall, LTL is a decidable logic; in fact, the satisfiability problem for LTL is
known to be PSpace-complete [33].
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As there are no commonly accepted rules for what qualifies as a monitor (not
even in the runtime verification community), there exist a myriad of different ap-
proaches to checking that an observed behaviour satisfies (resp. violates) a formal
specification, such as an LTL formula. Some of these (cf. [23,6]) consist in solving
the word problem (see Definition 2). A monitor following this idea can either first
record the entire system behaviour in form of a trace u ∈ Σ+, where Σ is a finite
alphabet of events and Σ+ the set of non-empty traces over said alphabet, or pro-
cess the events incrementally as they are emitted by the system under scrutiny.
Both approaches are documented in the literature (cf. [23,20,22,6]), but only the
second one is suitable to detect property violations (resp. satisfaction) right when
they occur.

Definition 2 The word problem for LTL is defined as follows.
Input: A formula ϕ ∈ LTL(AP) and some trace u ∈ (2AP)+.
Question: Does u |= ϕ hold?

In [29], a bilinear algorithm for this problem was presented (an even more efficient
solution was recently given in [26]). Hence, the first sort of monitor, which is really
more of a test oracle than a monitor, solves a classical decision problem. The second
sort of monitor, however, solves an entirely different kind of problem, which cannot
be stated in complexity-theoretical terms at all: its input is an LTL formula and
a finite albeit unbounded trace which grows incrementally. This means that this
monitor solves the word problem for each and every new event that is added to
the trace at runtime. We can therefore say that the word problem acts as a lower
bound on the complexity of the monitoring problem that such a monitor solves;
or, in other words, the problem that the online monitor solves is at least as hard
as the problem that the offline monitor solves.

There are approaches to build efficient (i.e., trace-length independent) monitors
that repeatedly answer the word problem (cf. [23]). However, such approaches
violate our second basic assumption, mentioned in the introduction, in that they
are necessarily non-monotonic. To see this, consider ϕ = aUb and some trace u =
{a}{a} . . . {a} of length n. Using our finite-trace interpretation, u 6|= ϕ. However, if
we add un+1 = {b}, we get u |= ϕ.1 For the user, this essentially means that she
cannot trust the verdict of the monitor as it may flip in the future, unless of course
it is obvious from the start that, e.g., only safety properties are monitored and
the monitor is built merely to detect violations, i.e., bad prefixes. However, if we
take other monitorable languages into account as we do in this paper, i.e., those
that have either good or bad prefixes (or both), we need to distinguish between
satisfaction and violation of a property (and want the monitor to report either
occurrence truthfully).

Definition 3 For any L ⊆ Σω, u ∈ Σ∗ is called a good prefix (resp. bad prefix) of
L iff uΣω ⊆ L holds (resp. uΣω ∩ L = ∅), where uΣω is the set of infinite traces
beginning with u.

We shall use good(L) ⊆ Σ∗ (resp. bad(L)) to denote the set of good (resp. bad)
prefixes of L. For brevity, we also write good(ϕ) instead of good(L(ϕ)), and do the
same for bad(L(ϕ)).

1 Note that this effect is not particular to our choice of finite-trace interpretation. Had we
used, e.g., what is known as the weak finite-trace semantics, discussed in [18], we would first
have had u |= ϕ and if un+1 = ∅, subsequently u 6|= ϕ.
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A monitor that detects good (resp. bad) prefixes has been termed impartial
in [16] as it not only states something about the past, but also about the future:
once a good (resp. bad) prefix has been detected, no matter how the system would
evolve in an indefinite future, the property would remain satisfied (resp. violated).
In that sense, impartial monitors are monotonic by definition. A further monitor
characteristic is anticipation [16], which demands detection of shortest good or bad
prefixes. While in [9] a construction is given that yields a trace-length independent
(even optimal) impartial and anticipatory monitor for an LTL formula as well as a
timed extension called TLTL, we shall see that obtaining anticipatory monitors for
first-order temporal specifications is generally impossible. The obtained monitor
basically returns > to the user if u ∈ good(ϕ) holds, ⊥ if u ∈ bad(ϕ) holds, and ?
otherwise. Not surprisingly though, the monitoring problem such a monitor solves
is computationally more involved than the word problem. It solves what we call
the prefix problem (of LTL), which can easily be shown PSpace-complete by way
of LTL satisfiability.

Definition 4 The prefix problem for LTL is defined as follows.

Input: A formula ϕ ∈ LTL(AP) and some trace u ∈ (2AP)∗.

Question: Does u ∈ good(ϕ) (resp. bad(ϕ)) hold?

Theorem 1 The prefix problem for LTL is PSpace-complete.

Proof For brevity, we will only focus on bad prefixes. It is easy to see that u ∈
bad(ϕ) iff L(u0∧Xu1∧XXu2∧. . .∧ϕ) = ∅. Constructing this conjunction takes poly-
nomial time and the corresponding emptiness check can be performed in PSpace
[33]. For hardness, we proceed with a reduction of LTL satisfiability. Again, it is
easy to see that L(ϕ) 6= ∅ iff σ 6∈ bad(Xϕ) for any σ ∈ 2AP. This reduction is linear,
and as PSpace = co-PSpace, the statement follows. ut

We would like to point out the possibility of building an impartial and antici-
patory though trace-length dependent LTL monitor using an “off the shelf” model
checker, which accepts a propositional Kripke structure and an LTL formula as
input. Note that here we make the common assumption that Kripke structures
produce infinite as opposed to finite traces.

Definition 5 The model checking problem for LTL is defined as follows.

Input: A formula ϕ ∈ LTL(AP) and a Kripke structure K over 2AP.

Question: Does L(K) ⊆ L(ϕ) hold?

As in LTL the model checking and the satisfiability problems are both PSpace-
complete [33], we can use a model checking tool as monitor: given that it is straight-
forward to construct K, s.t. L(K) = u(2AP)ω, in no more than polynomial time,
we return > to the user if L(K) ⊆ L(ϕ) holds, ⊥ if L(K) ⊆ L(¬ϕ) holds, and ?
if neither holds. One could therefore be tempted to think of monitoring merely
in terms of a model checking problem, but we shall see that as soon as the logic
in question has an undecidable satisfiability problem this reduction fails. Besides,
it can be questioned whether monitoring as model checking leads to a desirable
monitor with its obvious trace-length dependence and having to repeatedly solve
a PSpace-complete problem for each new event.
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3 LTLFO—Formal definitions and notation

Let us now introduce our first-order specification language LTLFO and related
concepts in more detail. The first concept we need is that of a sorted first-order

signature, given as Γ = (S,F,R), where S is a finite non-empty set of sorts, F a
finite set of function symbols and R = U ∪ I a finite set of a priori uninterpreted
and interpreted predicate symbols, s.t. U∩ I = ∅ and R∩F = ∅. The former set of
predicate symbols are referred to as U-operators and the latter as I-operators. As
is common, 0-ary functions symbols are also referred to as constant symbols. We
assume that all operators in Γ have a given arity that ranges over the sorts given
by S, respectively. We also assume an infinite supply of variables, V, that also
range over S and where V ∩ (F ∪R) = ∅. Let us refer to the first-order language
determined by Γ as L(Γ ). While terms in L(Γ ) are made up of variables and
function symbols, formulae of L(Γ ) are defined as follows:

ϕ ::= p(t1, . . . , tn) | r(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ∀(x1, . . . , xn) : p. ϕ,

where t1, . . . , tn are terms, p ∈ U, r ∈ I, and x1, . . . , xn ∈ V. As variables are
sorted, in the quantified formula ∀(x1, . . . , xn) : p. ϕ, the U-operator p with arity
τ1 × . . .× τn, defines the sorts of variables x1, . . . , xn to be τ1, . . . , τn, with τi ∈ S,
respectively. For terms t1, . . . , tn, we say that p(t1, . . . , tn) is well-sorted if the sort of
every ti is τi. This notion is inductively applicable to terms. Moreover, we consider
only well-sorted formulae and refer to the set of all well-sorted L(Γ ) formulae over
a signature Γ in terms of LTLFO

Γ . When a specific Γ is either irrelevant or clear
from the context, we will simply write LTLFO instead. When convenient and a
certain index is of no importance in the given context, we also shorten notation of
a vector (x1, . . . , xn) by a (bold) x.

A Γ -structure, or just first-order structure is a pair A = (|A|, I), where |A| =
|A|1 ∪ . . . ∪ |A|n, is a non-empty set called domain, s.t. every sub-domain |A|i is
either a non-empty finite or countable set (e.g., set of all integers or strings) and
I an interpretation. I assigns to each sort τi ∈ S a specific sub-domain τIi =
|A|i, to each function symbol f ∈ F of arity τ1 × . . . × τl −→ τm a function fI :
|A|1 × . . . × |A|l −→ |A|m, and to every I-operator r with arity τ1 × . . . × τm a
relation rI ⊆ |A|1 × . . . × |A|m. We restrict ourselves to computable relations and
functions. In that regard, we can think of I as a mapping between I-operators
(resp. function symbols) and the corresponding algorithms which compute the
desired return values, each conforming to the symbols’ respective arities. Note
that the interpretation of U-operators is rather different from I-operators, as it is
closely tied to what we call a trace and therefore discussed after we introduce the
necessary notions and notation.

We model observed system behaviour in terms of actions: Let p ∈ U with
arity τ1 × . . . × τm and d ∈ Dp = |A|1 × . . . × |A|m, then we call (p,d) an action.
We refer to finite sets of actions as events. A system’s behaviour is therefore a
finite trace of events, which we also denote as a sequence of sets of ground terms
{sms(1234)}{login(“user”)} . . . when we mean the sequence of tuples {(sms, 1234)}
{(login, “user”)} . . . Therefore the occurrence of some action sms(1234) in the trace
at position i ∈ N0, written sms(1234) ∈ wi, indicates that, at time i, sms(1234)
holds (or, from a practical point of view, an SMS was sent to number 1234). We
follow the convention that only symbols from U appear in a trace, which therefore
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gives these symbols their respective interpretations. The following formalises this
notion.

A first-order temporal structure is a tuple (A, w), where A = (|A0|, I0)(|A1|, I1)
. . . is a (possibly infinite) sequence of first-order structures and w = w0w1 . . . a
corresponding trace. We demand that for all Ai and Ai+1 from A, it is the case that
|Ai| = |Ai+1| for all f ∈ F, fIi+1 = fIi , and for all τ ∈ S, τIi = τIi+1 . For any two
structures, A and A′, which satisfy these conditions, we write A ∼ A′. Moreover
given some A and A, if for all Ai from A, we have that Ai ∼ A, we also write
A ∼ A. In other words, the latter notation states that the same domain as well as
interpretation of functions and sorts, defined in A, is used throughout all first-order
structures of the sequence A. Finally, the interpretation of a U-operator p with
arity τ1 × . . .× τm is then defined wrt. a position i in w as pIi = {d | (p,d) ∈ wi}.
Essentially this means that, unlike function symbols, U- and I-operators don’t
have to be rigid.

Note also that from this point forward, we consider only the case where the
policy to be monitored is given as a closed formula, i.e., a sentence. This is closely
related to our means of quantification: a quantifier in LTLFO is restricted to those
elements that appear in the trace, and not arbitrary elements from a (possibly
infinite) domain. While certain policies cannot be expressed with this restriction
(e.g., “for all phone numbers x that are not in the contact list, r(x) is true”), this
restriction bears the advantage that, when examining a given trace, functions and
relations are only ever evaluated over known objects. The advantages of this type
of quantification in monitoring first-order languages have also been pointed out
in [22,6]. In other words, had we allowed free variables, a monitor might end up
having to “try out” all the different domain elements in order to evaluate such
policies, which runs counter to our design rationale of quantification.

In what follows, let us fix a particular Γ . The semantics of LTLFO can now be
defined wrt. a quadruple (A, w, v, i) as follows, where i ∈ N0, and v is an (initially
empty) set of valuations assigning domain values to variables:

(A, w, v, i) |= p(t1, . . . , tn) iff (tIi1 , . . . , t
Ii
n ) ∈ pIi ,

(A, w, v, i) |= r(t1, . . . , tn) iff (tIi1 , . . . , t
Ii
n ) ∈ rIi ,

(A, w, v, i) |= ¬ϕ iff (A, w, v, i) |= ϕ is not true,

(A, w, v, i) |= ϕ ∧ ψ iff (A, w, v, i) |= ϕ and (A, w, v, i) |= ψ,

(A, w, v, i) |= Xϕ iff |w| > i and (A, w, v, i+ 1) |= ϕ,

(A, w, v, i) |= ϕUψ iff for some k ≥ i, (A, w, v, k) |= ψ,

and (A, w, v, j) |= ϕ for all i ≤ j < k,

(A, w, v, i) |= ∀(x1, . . . , xn) : p. ϕ iff for all (p, d1, . . . , dn) ∈ wi,
(A, w, v ∪ {x1 7→ d1, . . . , xn 7→ dn}, i) |= ϕ,

where terms are evaluated inductively and xI treated as v(x). If (A, w, v, 0) |= ϕ,
we write (A, w, v) |= ϕ, and if v is irrelevant or clear from the context, (A, w) |= ϕ.

Later we will also make use of the (possibly infinite) set of all actions (resp.
events) wrt. A, given as (A)-Act =

⋃
p∈U{(p,d) | d ∈ Dp} (resp. (A)-Ev = 2Act)

and take the liberty to omit the trailing (A) whenever a particular A is either
irrelevant or clear from the context. We can then describe the generated language

of ϕ, L(ϕ) (or simply the language of ϕ, i.e., the set of all logical models of ϕ)
compactly as L(ϕ) = {(A, w) | wi ∈ Ev and (A, w) |= ϕ}, although, as before,
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we shall only ever concern ourselves with either infinite- or finite-trace languages,
but not mixed ones. Finally, we will use common syntactic “sugar”, including
∃(x1, . . . , xn) : p. ϕ = ¬(∀(x1, . . . , xn) : p. ¬ϕ), etc.

Example 1 For brevity, cf. [7] for some example policies formalised in LTLFO. How-
ever, to give at least an intuition, let’s pick up the idea of monitoring Android
“Apps” again, and specify that “Apps” must not send SMS messages to numbers
not in a user’s contact database. Assuming there exists a U-operator sms, which
is true / appears in the trace, whenever an “App” sends an SMS message to phone
number x, we could formalise said policy in terms of G∀x : sms. contact(x). Note
how in this formula the meaning of x is given implicitly by the arity of sms and
must match the definition of contact in each world, i.e., x is not just any domain
element, but a numerical value, which sms uses to capture the phone number as-
sociated with an incoming SMS. Also note how sms itself is interpreted indirectly
via its occurrence in the trace, whereas contact never appears in the trace, even if
true. contact can be thought of as interpreted via a program that queries a user’s
contact database, whose contents may change over time.

4 Complexity of monitoring in the first-order case

LTLFO as defined above is undecidable as can be shown by way of the following
lemma. It basically helps us reduce finite satisfiability of standard first-order logic
to LTLFO.

Lemma 1 Let ϕ be a sentence in first-order logic, then we can construct a correspond-

ing ψ ∈ LTLFO s.t. ϕ has a finite model iff ψ is satisfiable.

Theorem 2 LTLFO is undecidable.

Proof (Sketch) Follows from Lemma 1 and Trakhtenbrot’s Theorem (cf. [27, §9]).

Let’s now define what is meant by Kripke structures in our new setting. They
either give rise to infinite-trace languages (i.e., have a left-total transition rela-
tion), or represent finite traces (i.e, each state has at most one successor and the
transition relation is loop-free). The latter ones we refer to as linear Kripke struc-
tures. For brevity, we shall restrict to the definition of the former. Note that we
will also skip detailed redefinitions of the decision problems discussed in §2, since
the concepts transfer in a straightforward manner.

Definition 6 Given some A, a (A)-Kripke structure, or just first-order Kripke struc-
ture, is a state-transition system K = (S, s0, λ,→), where S is a finite set of states,

s0 ∈ S a distinguished initial state, λ : S −→ Â × Ev, where Â = {A′ | A′ ∼ A}, a
labelling function, and →⊆ S × S a (left-total) transition relation.

Definition 7 For a (A)-Kripke structure K with states s0, . . . , sn, the generated

language is given as L(K) = {(A, w) | (A0, w0) = λ(s0) and for all i ∈ N there exist
some j, k ∈ {0, . . . , n} s.t. (Ai, wi) = λ(sj), (Ai−1, wi−1) = λ(sk) and (sk, sj) ∈→}.

The inputs to the LTLFO word problem are therefore an LTLFO formula and
a linear first-order Kripke structure, representing a finite input trace. Unlike in
standard LTL,
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Theorem 3 The word problem for LTLFO is PSpace-complete.

The inputs to the LTLFO model checking problem, in turn, are a left-total first-
order Kripke structure, which gives rise to an infinite-trace language, and an LTLFO

formula.

Theorem 4 The model checking problem for LTLFO is in ExpSpace.

The reason for this result is that we can devise a reduction of that problem to
LTL model checking in exponential space. While the PSpace-lower bound is easy,
e.g., via reduction of the LTLFO word problem, we currently do not know how
tight these bounds are and, therefore, leave this as an open problem. Note also
that the results of both Theorem 3 and Theorem 4 are obtained even without
taking into account the complexities of the interpretations of function symbols
and I-operators; that is, for these results to hold, we assume that interpretations
do not exceed polynomial, resp. exponential space.

We have seen in §2 that the prefix problem lies at the heart of an impartial
monitor. While in LTL it was possible to build an impartial and anticipatory
monitor using a model checker (albeit a very inefficient one), the following shows
that this is no longer possible.

Lemma 2 Let A be a first-order structure and ϕ ∈ LTLFO, then L(ϕ)A = {(A, w) |
A ∼ A, w ∈ Evω, and (A, w) |= ϕ}. Testing if L(ϕ)A 6= ∅ is generally undecidable.

Theorem 5 The prefix problem for LTLFO is undecidable.

Proof (Sketch) As in Theorem 1: (A, σ) ∈ bad(Xϕ) iff L(ϕ)A = ∅ for any σ ∈ Ev.

5 Monitoring LTLFO

A corollary of Theorem 5 is that there cannot exist a complete monitor for LTLFO-
definable infinite trace languages. Yet one of the main contributions of our work is
to show that one can build a sound and efficient LTLFO monitor using a new kind
of automaton. Before we go into the details of the actual monitoring algorithm, let
us first consider the automaton model, which we refer to as spawning automaton

(SA). SAs are called that, because when they process their input, they potentially
“spawn” a positive Boolean combination of “children SAs” (i.e., subautomata) in
each such step. Let B+(X) denote the set of all positive Boolean formulae over
the set X. We say that some set Y ⊆ X satisfies a formula β ∈ B+(X), written
Y |= β, if the truth assignment that assigns true to all elements in Y and false to
all X − Y satisfies β.

Definition 8 A spawning automaton, or simply SA, is given by A = (Σ, l,Q,Q0, δ→,
δ↓,F), where Σ is a countable set called alphabet, l ∈ N0 the level of A, Q a
finite set of states, Q0 ⊆ Q a set of distinguished initial states, δ→ a transition
relation, δ↓ what is called a spawning function, and F = {F1, . . . , Fn | Fi ⊆ Q} an

acceptance condition (to be defined later on). We have δ→ : Q × Σ −→ 2Q and
δ↓ : Q×Σ −→ B+(A<l), where A<l = {A′ | A′ is an SA with level less than l}.
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Definition 9 A run of spawning automaton A over input w ∈ Σω is a mapping
ρ : N0 −→ Q, s.t. ρ(0) ∈ Q0 and ρ(i + 1) ∈ δ→(ρ(i), wi) for all i ∈ N0. ρ is locally

accepting if Inf(ρ) ∩ Fi 6= ∅ for all Fi ∈ F , where Inf(ρ) denotes the set of states
visited infinitely often. It is called accepting if l = 0 and it is locally accepting.
If l > 0, ρ is called accepting if it is locally accepting and for all i ∈ N0 there is
a set Y ⊆ A<l, s.t. Y |= δ↓(ρ(i), wi) and all spawning automata A′ ∈ Y have an

accepting run, ρ′, over wi. The accepted language of A, L(A), consists of all w ∈ Σω,
for which it has at least one accepting run.

5.1 Spawning automata construction

Given some ϕ ∈ LTLFO, let us now examine in detail how to build the correspond-
ing SA, Aϕ = (Σ, l,Q,Q0, δ→, δ↓,F) s.t. L(Aϕ) = L(ϕ) holds. To this end, we
set Σ = {(A, σ) | σ ∈ (A)- Ev}. If ϕ is not a sentence, we write Aϕ,v to denote
the spawning automaton for ϕ in which free variables are mapped according to a
finite set of valuations v.2 To define the set of states for an SA, we make use of
a restricted subformula function, sf|∀(ϕ), which is defined like a generic subfor-
mula function, except if ϕ is of the form ∀x : p. ψ, we have sf|∀(ϕ) = {ϕ}. This
essentially means that an SA for a formula ϕ on the topmost level looks like the
generalised Büchi automaton (GBA, cf. [3]) for ϕ, where quantified subformulae
have been interpreted as atomic propositions.

For example, if ϕ = ψ ∧ ∀x : p. ψ′, where ψ is a quantifier-free formula, then
Aϕ, at the topmost level n, is like the GBA for the LTL formula ψ ∧ a, where a
is an atomic proposition; or in other words, Aϕ handles the subformula ∀x : p. ψ′

separately in terms of a subautomaton of level n − 1 (see also definition of δ↓
below).

Finally, we define the closure of ϕ wrt. sf|∀(ϕ) as cl(ϕ) = {¬ψ | ψ ∈ sf|∀(ϕ)} ∪
sf|∀(ϕ), i.e., the smallest set containing sf|∀(ϕ), which is closed under negation.
The set of states of Aϕ, Q, consists of all complete subsets of cl(ϕ); that is, a set
q ⊆ cl(ϕ) is complete iff

• for any ψ ∈ cl(ϕ) either ψ ∈ q or ¬ψ ∈ q, but not both; and
• for any ψ ∧ ψ′ ∈ cl(ϕ), we have that ψ ∧ ψ′ ∈ q iff ψ ∈ q and ψ′ ∈ q; and
• for any ψUψ′ ∈ cl(ϕ), we have that if ψUψ′ ∈ q then ψ′ ∈ q or ψ ∈ q, and if
ψUψ′ 6∈ q, then ψ′ 6∈ q.

Let q ∈ Q and A = (|A|, I). The transition function δ→(q, (A, σ)) is defined iff

• for all p(t) ∈ q, we have tI ∈ pI and for all ¬p(t) ∈ q, we have tI 6∈ pI ,
• for all r(t) ∈ q, we have tI ∈ rI and for all ¬r(t) ∈ q, we have tI 6∈ rI .

In which case, for any q′ ∈ Q, we have that q′ ∈ δ→(q, (A, σ)) iff

• for all Xψ ∈ cl(ϕ), we have Xψ ∈ q iff ψ ∈ q′, and
• for all ψUψ′ ∈ cl(ϕ), we have ψUψ′ ∈ q iff ψ′ ∈ q or ψ ∈ q and ψUψ′ ∈ q′.

2 Considering free variables, even though our runtime policies can only ever be sentences, is
necessary, because an SA for a policy ϕ is inductively defined in terms of SAs for its subformulae
(i.e., Aϕ’s subautomata), some of which may contain free variables.
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Level 0

{u→ 1, ip→ 2.3.4.1, u
′ → 3, ip′ → 2.3.4.3}

¬eq(u, u′ )

eq(ip, ip
′ )

{u→ 1, ip→ 2.3.4.1, u
′ → 1, ip′ → 2.3.4.1}

¬eq(u, u′ )

eq(ip, ip
′ )

{u→ 2, ip→ 2.3.4.2, u
′ → 3, ip′ → 2.3.4.3}

¬eq(u, u′ )

eq(ip, ip
′ )

{u→ 2, ip→ 2.3.4.2, u
′ → 1, ip′ → 2.3.4.1}

¬eq(u, u′ )

eq(ip, ip
′ )

Level 1

{u→ 1, ip→ 2.3.4.1}

(∀(u′ , ip′ ) : send. eq(u
, u′ )⇒ eq(ip, ip

′ ))

logout(u, ip)

{u→ 2, ip→ 2.3.4.2}

(∀(u′ , ip′ ) : send. eq(u
, u′ )⇒ eq(ip, ip

′ ))

logout(u, ip)

Level 2

∀(u, ip) : login. ((∀(u′ , ip
′ ) : send. eq(u

, u′ )⇒ eq(ip, ip
′ ))Ulogout(u,

ip))

Fig. 1 Spawning on {login(1, 2.3.4.1), login(2, 2.3.4.2), send(3, 2.3.4.3), send(1, 2.3.4.1)}.

This is similar to the well known syntax directed construction of GBAs (cf. [3]),
except that we also need to cater for quantified subformulae. For this purpose, an
inductive spawning function is defined as follows. If l > 0, then δ↓(q, (A, σ)) yields ∧

∀x:p.ψ∈q

 ∧
(p,d)∈σ

Aψ,v′

 ∧
 ∧
¬∀x:p.ψ∈q

 ∨
(p,d)∈σ

A¬ψ,v′′

 ,

where v′ = v ∪ {x 7→ d} and v′′ = v ∪ {x 7→ d} are sets of valuations, otherwise
δ↓(q, (A, σ)) yields >. Moreover, we set Q0 = {q ∈ Q | ϕ ∈ q}, F = {FψUψ′ | ψUψ′ ∈
cl(ϕ)} with FψUψ′ = {q ∈ Q | ψ′ ∈ q ∨ ¬(ψUψ′) ∈ q}, and l = depth(ϕ), where
depth(ϕ) is called the quantifier depth of ϕ. For some ϕ ∈ LTLFO, depth(ϕ) =
0 iff ϕ is a quantifier free formula. The remaining cases are inductively defined
as follows: depth(∀x : p. ψ) = 1 + depth(ψ), depth(ψ ∧ ψ′) = depth(ψUψ′) =
max(depth(ψ),depth(ψ′)) and depth(¬ϕ) = depth(Xϕ) = depth(ϕ).

Lemma 3 Let ϕ ∈ LTLFO (not necessarily a sentence) and v be a valuation. For each

accepting run ρ in Aϕ,v over input (A, w), ψ ∈ cl(ϕ), and i ≥ 0, we have that ψ ∈ ρ(i)
iff (A, w, v, i) |= ψ.

Theorem 6 The constructed SA is correct in the sense that for any sentence ϕ ∈
LTLFO, we have that L(Aϕ) = L(ϕ).

Example 2 Consider the graphical representation of an SA for ϕ = G(∀(u, ip) :
login. ((∀(u′, ip′) : send. eq(u, u′) ⇒ eq(ip, ip′))Ulogout(u, ip))) in Fig. 1. In a nut-
shell, ϕ states that once user u has logged in to the system from IP-address ip, she
must not send anything from an IP-address other than ip until logged out. While ϕ
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is not meant to represent a realistic security policy as is, it does help highlight the
features of an SA: We first note that level l of Aϕ is given by depth(ϕ) = 2. As ϕ is
of the form G∀(u, ip) : login. ψ, Aϕ’s state space is de facto that of an ordinary GBA
for an LTL formula of the form Gp. Let’s now assume that σ = {login(1, 2.3.4.1),
login(2, 2.3.4.2), send(3, 2.3.4.3), send(1, 2.3.4.1)} is an event, which we want Aϕ
to process. Due to ϕ’s outmost quantifier, the two login-actions will lead to the
spawning of a conjunction of two subautomata of respective levels l−1 (downward
dotted lines). The state space of these subautomata is de facto that of an ordinary
GBA for an LTL formula of the form aUb as one can see in Fig. 1, level 1. These
SAs also keep track of a quantified formula, hence the two send-actions will also
spawn a conjunction of subautomata, basically, to check if eq(u, u′) ⇒ eq(ip, ip′)
holds. The respective valuations are given below each SA, whereas the respective
current states are marked in grey.

5.2 Monitor construction

Before we look at the actual monitor construction, which is conceptually somewhat
similar to [9], let us first introduce some additional concepts and notation: For a
finite run ρ in Aϕ over (A, u), we call δ↓(ρ(j), (Aj , uj)) = oblj an obligation, where
0 ≤ j < |u|, in that oblj represents the language to be satisfied after j inputs. That
is, oblj refers to the language represented by the positive Boolean combination of

spawned SAs. We say oblj is met by the input, if (A
j
, uj) ∈ good(oblj) and violated

if (A
j
, uj) ∈ bad(oblj). Furthermore, ρ is called potentially locally accepting, if it can

be extended to a run ρ′ over (A, u) together with some infinite suffix, such that ρ′

is locally accepting.

The monitor for a formula ϕ ∈ LTLFO can now be described in terms of two
mutually recursive algorithms: The main entry point is Algorithm M. It reads an
event and issues two calls to a separate Algorithm T: one for ϕ (under a possibly
empty valuation v) and one for ¬ϕ (under a possibly empty valuation v). The
purpose of Algorithm T is to detect bad prefixes wrt. the language of its argument
formula, call it ψ. It does so by keeping track of those finite runs in Aψ,v that are
potentially locally accepting and where its obligations haven’t been detected as
violated by the input. If at any time not at least one such run exists, then a bad
prefix has been encountered. Algorithm T, in turn, uses Algorithm M to evaluate
if obligations of its runs are met or violated by the input observed so far (i.e., it
inductively creates submonitors): after the ith input, it instantiates Algorithm M
with argument ψ′ (under corresponding valuation v′) for each Aψ′,v′ that occurs
in obli and forwards to it all observed events from time i on.

Algorithm M (Monitor). The algorithm takes a ϕ ∈ LTLFO (under a possibly
empty valuation v). Its abstract behaviour is as follows: Let us assume an initially
empty first-order temporal structure (A, u). Algorithm M reads an event (A, σ),
prints “>” if (AA, uσ) ∈ good(ϕ) (resp. “⊥” for bad(ϕ)), and returns. Otherwise
it prints “?”, whereas we now assume that (A, u) = (AA, uσ) holds.3

3 Obviously, the monitor does not really keep (A, u) around, or it would be necessarily trace-

length dependent. (A, u) is merely used here to explain the inner workings of the monitor.
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M1. [Create instances of Algorithm T.] Create two instances of Algorithm T: one
with ϕ and one with ¬ϕ, and call them Tϕ,v and T¬ϕ,v, respectively.

M2. [Forward next event.] Wait for next event (A, σ) and forward it to Tϕ,v and
T¬ϕ,v.

M3. [Communicate verdict.] If Tϕ,v sends “no runs”, print ⊥ and return. If T¬ϕ,v
sends “no runs”, print > and return. Otherwise, print “?” and go back to
M2. z

Algorithm T (Track runs). The algorithm takes a ϕ ∈ LTLFO (under a corre-
sponding valuation v), for which it creates an SA, Aϕ,v. It then reads an event
(A, σ) and returns if Aϕ,v, after processing (A, σ), does not have any potentially
locally accepting runs, for which obligations haven’t been detected as violated.
Otherwise, it saves the new state of Aϕ,v, waits for new input, and then checks
again, and so forth.
T1. [Create SA.] Create an SA, Aϕ,v.
T2. [Wait for new event.] Let (A, σ) be the event that was read.
T3. [Update potentially locally accepting runs.] Let B and B′ be (initially empty)

buffers. If B = ∅, for each q ∈ Q0 and for each q′ ∈ δ→(q, (A, σ)): add
(q′, [δ↓(q, (A, σ))]) to B. Otherwise, set B′ = B, and subsequently B = ∅. Next,
for all (q, [obl1, . . . , obln]) ∈ B′ and for all q′ ∈ δ→(q, (A, σ)): add (q′, [oblnew,
obl1, . . . , obln]) to B, where oblnew = δ↓(q, (A, σ)).

T4. [Create submonitors.] For each (q, [oblnew, obl1 . . . , obln]) ∈ B: call Algorithm M
with argument ψ (under corresponding v′) for each Aψ,v′ that occurs in
oblnew.

T5. [Iterate over candidate runs.] Assume B = {b0, . . . , bm}. Create a counter
j = 0 and set (q, [obl0, . . . , obln]) = bj to be the jth element of B.

T6. [Send, receive, replace.] For all 0 ≤ i ≤ n: send (A, σ) to all submonitors
corresponding to SAs occurring in obli, and wait for the respective verdicts.
For every returned > (resp. ⊥) replace the corresponding SA in obli with >
(resp. ⊥).

T7. [Corresponding run has violated obligations?] For all 0 ≤ i ≤ n: if obli = ⊥,
remove bj from B and go to T9.

T8. [Obligations met?] For all 0 ≤ i ≤ n: if obli = >, remove obli.
T9. [Next run in buffer.] If j ≤ m, set j to j + 1 and go to step T6.

T10. [Communicate verdict.] If B = ∅, send “no runs” to the calling Algorithm M
and return, otherwise send “some run(s)” and go back to T2. z

For a given ϕ ∈ LTLFO and (A, u), let us use Mϕ(A, u) to denote the successive
application of Algorithm M for formula ϕ, first on u0, then u1, and so forth. We
then get

Theorem 7 Mϕ(A, u) = > ⇒ (A, u) ∈ good(ϕ) (resp. for ⊥ and bad(ϕ)).

Example 3 Let’s recall the specification used in Example 2, which we are going
to use in the following to somewhat exemplify the algorithm’s behaviour. Given
the previously used event σ = {login(1, 2.3.4.1), login(2, 2.3.4.2), send(3, 2.3.4.3),
send(1, 2.3.4.1)}, Mϕ creates two instances Tϕ and T¬ϕ, respectively. Note that
there is no explicit valuation passed as an argument as ϕ, being the original user-
specification, can be assumed a sentence. We have illustrated this in Fig. 2 (see
level 2).
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Level 0

Mψ′=eq(u,u
′ )⇒eq(ip,ip

′ ),v′′

Tψ′ ,v′′
T¬ψ′ ,v′′

Mψ′ ,v′′
′

Tψ′ ,v′′′
T¬ψ′ ,v′′′

Mψ′ ,v∗

Tψ′ ,v∗
T¬ψ′ ,v∗

Mψ′ ,v∗∗

Tψ′ ,v∗∗
T¬ψ′ ,v∗∗

v′′ = {u → 1, ip → 2.3.4.1,

u′ → 3, ip
′ → 2.3.4.3}

v′′′ = {u → 1, ip → 2.3.4.1,

u′ → 1, ip
′ → 2.3.4.1}

v∗ = {u → 2, ip → 2.3.4.2,

u′ → 3, ip
′ → 2.3.4.3}

v∗∗ = {u → 2, ip → 2.3.4.2,

u′ → 1, ip
′ → 2.3.4.1}

Level 1

Mψ=∀(u′ ,ip′ ):send.
ψ′Ulogout(

u,ip),v

Tψ,v
T¬ψ,v

Mψ,v′

Tψ,v′
T¬ψ,v′

v = {u → 1, ip → 2.3.4.1}
v′ = {u → 2, ip → 2.3.4.2}

Level 2
Mϕ=G∀(u,ip):login.

ψ

Tϕ
T¬ϕ

Fig. 2 Monitor processing the event {login(1, 2.3.4.1), login(2, 2.3.4.2), send(3, 2.3.4.3),
send(1, 2.3.4.1)}.

Both Tϕ and T¬ϕ then create their respective SAs, Aϕ and A¬ϕ. To be precise,
in this very step, they create only the topmost level of respective SAs which, in case
of Aϕ, coincides with level 2 of the SA depicted in Fig. 1, and similarly for A¬ϕ,
although we omit details for brevity. Instead of naively unfolding the respective
SAs, Algorithm T has a local buffer B, which keeps track of potentially locally
accepting runs; that is, Tϕ initialises B with (q0, [δ↓(q0, (A, σ)) = Aψ,v ∧ Aψ,v′ ]),
where q0 denotes the one and only state of Aϕ on level 2 and v, v′ are the valuations
reflecting the contents of σ. In other words, instead of unfolding Aϕ (resp. A¬ϕ)
directly, we store δ↓(q0, (σ,A)) (resp. for A¬ϕ) in B and then let another monitor
deal with its results.

So, as far as Tϕ (resp. T¬ϕ) is concerned, it treats the quantified part of ϕ (resp.
¬ϕ) as a proposition, say, p, whose truth value is determined by some oracle (i.e.,
other monitor); that is, ϕ is basically of the form Gp, for which a corresponding
GBA only has a single looping state over proposition p. Hence, Tϕ (resp. T¬ϕ)
needs to remember only one potentially locally accepting run inside B—the one
that loops over p. From this point of view, the name “potentially locally accepting”
seems quite fitting, in that a positive answer by the oracle (i.e., submonitor) will,
indeed, confirm that the run is a suitable prefix of a satisfying run, if only it
continued like that.

Consequently—in a mutually recursive manner—Tϕ then creates monitors, one
for Aψ,v and one for Aψ,v′ , which we refer to as Mψ,v and Mψ,v′ , respectively (see
Fig. 2, level 1). To stick with our analogy: these monitors serve as the oracles for the
simple Gp automaton. (The same process is happening for T¬ϕ, of course, which we
disregard for brevity.) By their recursive definition, these new monitors behave like
Mϕ, except that they do not start with an empty valuation. Moreover, the mutual
recursion comes eventually to an end, once there are no further quantifiers to create
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new T s and Ms for. It is therefore obvious that Algorithm M terminates, but not
necessarily that the respective buffers are not growing unboundedly with increasing
trace lengths (and therefore potentially unbounded number of potentially locally
accepting runs). The following discussion shall help illustrate this point.

Let us consider the newly created Tψ,v on level 1, Fig. 2, whose buffer is initially
as follows: (q0, [δ↓(q0, (A, σ)) = Aψ′,v′′ ∧ Aψ′,v′′′ ]), where Aψ′,v′′ and Aψ′,v′′′ are a
reference to the two leftmost SAs on level 0 in Fig. 1. Again, if we interpret
these as propositions, we need two further monitors that yield their truth value,
which are Mψ′,v′′ and Mψ′,v′′′ , respectively. These, in turn, yield four instances
of Algorithm T, Tψ′,v′′ , T¬ψ′,v′′ , Tψ′,v′′′ , and T¬ψ′,v′′′ , respectively (four leftmost
instances on level 0, Fig. 2). But as we have reached the end of our recursion and
there are no further quantifiers left, the respective buffers of these four instances
will never grow and, in fact, both T¬ψ′,v′′ and T¬ψ′,v′′′ will have no locally accepting
runs. Therefore, δ↓(q0, (A, σ)) = >, and the buffer becomes (q0, []). Note that we
have, again, omitted some details for the negated specification for brevity. However,
the point we would like to make here is that potentially locally accepting runs,
stored inside the respective buffers, do not necessarily have to be memorised over
the entire lifetime of a monitor and can be removed in a process akin to garbage
collection known from modern programming languages.

6 Implementation

Now that we have developed also an intuitive understanding of how our monitoring
algorithm works, a potential for optimisation should become more or less obvious.
In particular, we can easily exploit the idea that the individual levels of an SA
are, but GBAs of effectively propositional LTL formulae and are therefore able to
use well-known transformations on automata to reduce the overall state space of
our monitor. In what follows, we detail on some of these optimisations and then
report on experimental results of their implementation.

6.1 Optimisations

We have seen, in particular, in Example 3 that monitoring a formula, such as
ϕ = G∀(u, ip) : login. ψ, corresponds to building a hierarchy of submonitors, one
for each quantified subformula (and observed action, naturally). On the highest
level of this hierarchy, the corresponding monitor will effectively use two GBAs,
one for a formula of the form Gp and one for a formula of the form ¬(Gp), where
we use p merely as a reference to the submonitors checking the ∀(u, ip) : login. ψ
part of the original formula, and so forth. In other words, on the topmost level,
we have two GBAs for propositional specifications, Gp and ¬(Gp), and on the next
level down, one for ψ and one for ¬ψ (as well as for each observed action), and so
forth.

This opens up the door to a multitude of possible automata optimisations,
which will also help make our monitor more efficient, and some of which were
presented also in the context of runtime verification in [9]. Namely, we first con-
vert the individual GBAs into BAs, using the well-known counting construction
(cf. [21]). Let Ãϕ = (Σ,Q,Qo, δ, F ) denote a complete BA obtained this way for
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ϕ, where Σ corresponds to the propositional alphabet of the automaton (thus,
completely ignoring the fact that it is used within the context of an SA), Q is its
set of states, Q0 ⊆ Q a set of initial states, δ ⊆ Q × Σ × 2Q the transition rela-
tion and F ⊆ Q the set of final states. Then we turn Ãϕ into a nondeterministic
finite state automaton (NFA), Âϕ = (Σ,Q,Q0, δ, F̂ ), where F̂ ⊇ F is the set of

states for which there exists a path in Ãϕ, s.t. a strongly connected component
can be reached, which contains at least one state from F . In [9], it was shown that

L(Âϕ) = {u ∈ Σ∗ | there exists a w ∈ Σω s.t. uw ∈ L(Ãϕ)}. In other words, Âϕ
accepts prefixes of elements in L(Ãϕ); that is:

Proposition 1 Every u ∈ L(Âϕ), has a potentially locally accepting run in Aϕ.

Proof Follows straight from the definitions.

Needless to say, since Âϕ is but an ordinary NFA, it can be made deterministic
and minimal in a language-preserving manner (cf. [24]). Moreover, we can build
the same automaton for ¬ϕ, and instead of using two automata in parallel, one for
ϕ and one for ¬ϕ, we can build the synchronous product of these two (cf. [24]) and
use only this one automaton per submonitor—which on top of it all is minimal and
deterministic. Let Pϕ = (Σ,Qϕ × Q¬ϕ, Qϕ0 × Q

¬ϕ
0 , δ′) be the product automaton

obtained this way and δ′ defined as expected. Then the following formally sums
up and puts forth an argument for soundness of this optimisation.

Proposition 2 If a run reaches a state (p, q) ∈ Qϕ × Q¬ϕ, s.t. q 6∈ F̂¬ϕ, then it is

potentially locally accepting only in Aϕ; if p 6∈ F̂ϕ, then it is potentially locally accepting

only in A¬ϕ; and if p ∈ F̂ϕ and q ∈ F̂¬ϕ holds, it is potentially locally accepting in

Aϕ and A¬ϕ.

Proof Follows from Proposition 1 and soundness of the product construction.

The concrete changes to our algorithms, resulting from these optimisations, are
now relatively straightforward to describe. Algorithm M, instead of creating two
instances of Algorithm T, merely creates one and interprets its result accordingly
(see below). Since for a given ϕ, Algorithm M no longer calls Algorithm T for both
ϕ and ¬ϕ, Algorithm T does not build Aϕ in T1, but Pϕ. Moreover, it performs
subsequent operations on this product automaton instead of Aϕ. Finally, in T10
and in accordance with Proposition 2, if all runs (q, [oblnew, obl1 . . . , obln]) ∈ B are
s.t. that they are only locally accepting in A¬ϕ, Algorithm T sends “no runs in
Aϕ”; if they are only locally accepting in Aϕ, it sends “no runs in A¬ϕ”; and if
neither holds, it sends “runs in Aϕ and Aϕ.” Algorithm M, in instruction M3, then
prints ⊥, >, ? in either event, respectively.

6.2 Experimental results

To demonstrate feasibility of our algorithm and to get an intuition on its run-
time performance (i.e., space consumption at runtime), we have implemented the
above.4 As far as the implementation of the unoptimised version of our algorithm
goes, the only liberty we took in deviating from our description so far is that we

4 Available as open source Scala project on https://github.com/jckuester/ltlfo2mon
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G∀x : w. ¬p(x)

G(∃x : w. q(x)⇒ G∀y : w. ¬p(y))

G∀x : w. ((s(x) ∧ (¬r(x) ∧ (Fr(x))))⇒ (¬p(x)Ur(x)))

G∀x : w. (s(x)⇒ (F(q(x) ∧ (Fr(x)))))

G∀x : w. ((s(x) ∧ (¬r(x) ∧ (Fr(x))))⇒ (u(x)Ur(x)))

G∀x : w. p(x)⇒ (¬q(x) ∧ ¬r(x))U(r(x)∨
((q(x) ∧ ¬r(x))U(r(x) ∨ ((¬q(x) ∧ ¬r(x))U(r(x) ∨ ((q(x) ∧ ¬r(x))U(r(x) ∨ (¬q(x)Wr(x) ∨ Gq(x)))))))))

G∀x : w. ((q(x) ∧ ¬p(x))⇒ (¬p(x)U∃y : w. (t(x, y) ∧ ¬p(x))))

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

-1000 -100 -50 -10 -1 0 1 10 50 100 1000 10000

Trace length
100
1000
10000

Fig. 3 Difference in space consumption at runtime: SA-based monitor vs. progression.

do not manually construct the GBAs according to the rules laid out in §5.2. We
have argued above that the GBAs are basically ordinary propositional automata,
hence there is no reason why we cannot employ an “off the shelf” GBA generator,
such as lbt5. Similarly, for the optimised version, we used the LTL3-Tools6 to con-
struct the product automata as described in §6.1. It should be obvious that this
does not change any of the results, but instead makes our approach a lot easier
to implement. Moreover, our algorithms bear the advantage that it is possible to
precompute all the SAs (resp. product automata) that are required at runtime
(i.e., we replaced step T1 in Algorithm T with a look-up in a precomputed table
of SAs (resp. product automata) and merely use a new valuation each time).

First, we compared our unoptimised implementation with the somewhat naive
(but, arguably, easier to implement) approach of monitoring LTLFO formulae, de-
scribed in [7]. There, we used the well-known concept of formula rewriting, some-
times referred to as progression (cf. [2]): a function, P , continuously “rewrites” a
formula ϕ ∈ LTLFO using an observed event, σ, s.t., σw |= ϕ⇔ w |= P (ϕ, σ) holds.

As a benchmark for all of our tests, we have used several formulae derived
from the well-known specification patterns [17], and added quantification to crucial
positions in the formulae.

Some of the results of the comparison between progression and our unopti-
mised monitor are visualised in Fig. 3. For each LTLFO formula corresponding to
a pattern, we randomly generated 20 traces of lengths 100, 1000, and 10000, re-
spectively, and passed them to both algorithms. The number of actions per event

5 http://www.tcs.hut.fi/Software/maria/tools/lbt/
6 http://ltl3tools.sourceforge.net/
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G∀x : w. ¬p(x)

G(∃x : w. q(x)⇒ G∀y : w. ¬p(y))

G∀x : w. ((s(x) ∧ (¬r(x) ∧ (Fr(x))))⇒ (¬p(x)Ur(x)))

G∀x : w. (s(x)⇒ (F(q(x) ∧ (Fr(x)))))

G∀x : w. ((s(x) ∧ (¬r(x) ∧ (Fr(x))))⇒ (u(x)Ur(x)))

G∀x : w. p(x)⇒ (¬q(x) ∧ ¬r(x))U(r(x)∨
((q(x) ∧ ¬r(x))U(r(x) ∨ ((¬q(x) ∧ ¬r(x))U(r(x) ∨ ((q(x) ∧ ¬r(x))U(r(x) ∨ (¬q(x)Wr(x) ∨ Gq(x)))))))))

G∀x : w. ((q(x) ∧ ¬p(x))⇒ (¬p(x)U∃y : w. (t(x, y) ∧ ¬p(x))))

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

-50 -10 -1 0 1 10 50 100 1000

Trace length
100
1000
10000

Fig. 4 Difference in space consumption at runtime: optimised vs. unoptimised SA-based mon-
itor.

is uniquely distributed between 0 and 5 and the domain values of ground terms
log-normal distributed.7

We measured the average space consumption of each algorithm (that is, size
of the monitor) at different trace lengths. For progression this is measured simply
in terms of the length of the formula at a given time, whereas for the unoptimised
SA-based monitor Mϕ,v it is determined recursively as follows: Recall, Mϕ,v first
creates two instances of Algorithm T, Tϕ,v and T¬ϕ,v, each of which creates a
buffer, call it Bϕ, resp. B¬ϕ. Let B = Bϕ ∪ B¬ϕ, and (qi, [obli,0, . . . , obli,n]) be

the i-th element of B, then |Mϕ,v| =
∑|B|−1
i=0 |(qi, [obli,0, . . . , obli,n])| =

∑|B|−1
i=0 (1 +

|õbli,0|+ . . .+ |õbli,n|), where |õbli,j | = |obli,j |+
∑
Aψ,v∈obli,j |Mψ,v|, i.e., the sum of

the top-level monitor’s constituents as well as that of all of its submonitors. Finally,
we also need to add the total size of the precomputed GBA look-up table. This is
measured as |Aϕ|+|A¬ϕ|+

∑
∀x:p.ψ∈sf(ϕ)(|Aψ|+|A¬ψ|), where |Aψ′ | is the size of the

obtained GBA when we run lbt on input ψ′ with quantified subformulae interpreted
as propositions; that is, the sum of the number of its states and transitions as well
as the number of literals contained in states. The absolute size of the look-up table
for each formula is represented as a black coloured bar in Fig. 5, respectively. We
find the smallest look-up table with size 17 for our shortest of all formulae, ϕ1,
which contains GBAs of the form Gp, ¬Gp, p and ¬p. On the other hand, the

7 All traces used in this chapter, the definitions of I-operators appearing in for-
mulae, as well as the experiments’ results in its full extent can be found on
https://github.com/jckuester/ltlfo2mon/tree/master/experiments.
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Fig. 5 Size of precomputed look-up tables.

biggest look-up table is the one for ϕ7 with size 1785, which is also the longest
formula of the patterns used in our experiments.

The end markers on the left of each horizontal bar show how much bigger in
the worst case an SA-based monitor is for a given formula compared to the cor-
responding progression-based monitor (and vice versa for the right markers). The
small shapes in the middle denote the average size difference of the two monitors
over the whole length of a trace. This difference is most striking for ϕ2 on longer
traces (e.g., ∆ ≥ 10000 for traces of length 10000), where the average almost co-
incides with the worst case. As such, this example brings to surface one of the
potential pitfalls of progression, namely that a lot of redundant information can
accumulate over time: If ∃x : w. q(x) ever becomes true, then P , which operates
purely on a syntactic level, will produce a new conjunct G∀y : w. ¬p(y) for each
new event, even though semantically it is not necessary (or, to use our analogy of
before: progression is not very good at garbage collection). Hence, the longer the
trace, the greater the average difference in size (similar in case of ϕ3 and ϕ4).

At first glance, it may seem a curious coincidence that the left markers of each
bar align perfectly, because this indicates that for all three traces that belong to
a given formula, the SA-based monitor is in the worst case by exactly the same
constant k bigger than the progression-based one, irrespective of the trace. How-
ever, it makes sense if we consider when this worst case occurs; that is, whenever
the SA-based monitor (and consequently also the progression-based one) does not
have to memorise any data at all, in which case the size of the SA-based monitor’s
look-up table weighs the most; that is, the size of the look-up table is almost equal
to k. Usually this happens when monitoring commences, hence, there is a perfect
alignment on all traces. On the other hand, the worst case for progression arises
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whenever the amount of data to be memorised by the monitor has reached its
maximum. As this depends not only on the formula, but also on the content of the
randomly generated traces (and in some of the examples also on their lengths, as
seen in the previous example), we generally don’t observe alignment on the right.

For those examples that, on average, favour progression, note that the dif-
ference in size is less dramatic—a fact, which may be slightly obfuscated by the
pseudo-logarithmic scale of the x-axis. Again, the differences in these examples (ϕ1,
ϕ5, ϕ6, and ϕ7) can be mostly explained by the fact that an SA-based monitor
generally wastes more space for “book keeping”. Naturally, all examples are also
exposed to a degree of randomness due to the generated traces, which would also
deserve closer investigation. Hence, these tests are indicative as well as promising,
but certainly not yet conclusive.

Second, we ran the optimised version of our monitor described in §6.1 on the
same set of formulae and traces as discussed above to hold it against the unop-
timised version. Fig. 4 shows the results in the same type of diagram, which we
have used to compare ourselves with a progression-based monitor. Again, as we
measure the difference between both monitor implementations at runtime, positive
values on the x-axis mean that the optimised monitor is smaller in size than the
unoptimised one (and vice versa for negative values). One can clearly see that the
optimised monitor, in the majority of cases, is on average much smaller than the
unoptimised one. However, in the worst case (left markers) it tends to be often
bigger than the unoptimised one, as we can observe for formulae ϕ3, ϕ4, ϕ5, ϕ6

and ϕ8. The perfect alignment of markers on the left, which we have seen before in
Fig. 3, again indicate that the worst case occurs independently of the trace-length;
that is, the optimised monitor is bigger by a constant k. In this case k correlates
exactly with the difference in size of the precomputed look-up table for the opti-
mised and unoptimised monitor, which can be obtained from the numbers given
in Fig. 5. Sizes for the GBA look-up tables are shown as black coloured bars and
have been discussed above, whereas the look-up tables of product automata are
presented in grey. In contrast to former, the latter size is measured as following:
|Pϕ| +

∑
∀x:p.ψ∈sf(ϕ)(|Pψ|), where |Pψ′ | is the size of the product automaton ob-

tained from the LTL3-Tools on input ψ′. We establish |Pψ′ | equal to |Aψ′ | with the
only difference being that Pψ′ is a transition-based automaton, and therefore we
count the number of propositional literals labelling transitions instead of states.
On the other hand, for formulae ϕ1, ϕ2 and ϕ7, the difference in size is posi-
tive, meaning that the optimised monitor is smaller at any point in time during
monitoring.

As was the case in our previous comparison, we get the best results when traces
are longer; that is, the optimised monitor is considerably smaller on longer traces
as the average size and the right markers almost coincide. This suggests that the
unoptimised monitor accumulates a lot of data over time, which the optimised one
doesn’t. This is due to the fact that on the lowest level, the LTL3-Tools generate
propositional and therefore minimal finite state machines of which the optimised
monitor only needs to store a single state at runtime. This becomes even more
apparent when looking at the average number of runs per monitor on the lowest
level for the different formulae: for ϕ3 = 4, ϕ4 = 5.6, ϕ5 = 4, ϕ6 = 13.8 and
ϕ7 = 52.7.
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Finally, let us consider results for ϕ1 and ϕ2, for which average and worst cases
(left and right markers) are identical. We know for these formulae that no “book
keeping” is required, and the results show that, indeed, none of our algorithms
does. Recall, we have observed the same phenomena in Fig. 3 only for ϕ1, as
progression accumulates redundant information for ϕ2.

7 Towards a hierarchy of effectively monitorable languages

The experimental results of the previous section, although not comprehensive, have
demonstrated that one can build an LTLFO monitor for a large variety of formulae,
such as those on which the popular software specification patterns are based upon;
hence, practically useful ones. However, as both the satisfiability as well as the
prefix problem are undecidable in our logic (or any other extension of LTL towards
full first-order logic), it is natural to ask what properties a language/formula needs
to exhibit, s.t. it is effectively monitorable; that is, by a monitor (ours or otherwise)
which does not have to store unnecessary or even unbounded amounts of observed
data, or by one which does not return ? until the end of time, and so forth.

Due to the undecidability results, there are obviously boundaries to what a
monitor can do, irrespective of the algorithm it is based upon. In this section,
we will outline and formalise some of these boundaries and thereby provide a
first classification towards a kind of hierarchy of monitorable languages or rather:
languages, for which practically useful monitors can be built.

Pnueli and Zaks [32] were the first to formalise a notion of monitorability in the
setting of propositional LTL, which can be concisely expressed in terms of good
and bad prefixes as follows.

Definition 10 Some formula ϕ ∈ LTL(AP) is monitorable, if for all u ∈ (2AP)∗

there exists a v ∈ (2AP)∗ s.t. uv ∈ good(ϕ) or uv ∈ bad(ϕ) holds.

Conversely, this definition asserts that a monitor (ours or otherwise) cannot sen-
sibly monitor a language that does not have a good or a bad prefix, because these
are exactly what the monitor detects. Consider, for example, the propositional
LTL formula G(r ⇒ Fa): it describes a typical liveness property, in that always
every request is eventually answered some time in the future. This clearly has no
good or bad prefix; hence, a monitor adhering to our semantics could only return
? ad infinitum.

For LTL, monitorability can be decided in ExpSpace [5], but the undecidability
of the satisfiability (and therefore prefix) problem of LTLFO means that for LTLFO

monitorability is also undecidable by way of a similar reduction already used in
the proof of Theorem 5.

However, assuming we have a monitorable LTLFO formula in the above sense8,
it does not automatically mean, there exists an efficient monitor for it. Unlike in
the setting of propositional LTL, a first-order monitor may have to store parts of
or even the entire trace—depending on the formula. For example, an arithmetic

8 Or rather: one for which monitorability is even obvious as, indeed, there are many, such
as the class of all safety and therefore co-safety properties. As a reminder: safety properties
are those of which all counterexamples exhibit a bad prefix, whereas a co-safety property is
obtained by taking the complement of a safety property (cf. [5]).
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LTLFO formula such as G∃x : p. XG∃y : q. x 6= y requires storing all the different
elements p(l) occurring in the trace over time. On the other hand, a monitor
for a formula, such as G∀x : p. x ≥ k for some constant k, does not need to
accumulate any information over time at all, as for every new addition to the
trace of observations it can be decided whether all occurring p(l) are, s.t. l ≥ k

holds. Then, if they are, the monitor will continue, and if at least one of them
isn’t, the monitor has detected a bad prefix and can stop. Since, intuitively, the
complexity of monitoring such formulae does not depend on the length of the trace,
we refer to them as being trace-length independent.

Definition 11 A formula ϕ ∈ LTLFO is trace-length independent, if there are con-
stants k, c ∈ N and a sound and anticipatory monitor for ϕ, Mϕ, s.t. for any trace,
where no individual event σ is, s.t. |σ| > c, we have that |Mϕ| ≤ k.

By |Mϕ|, we refer to the size / space consumption of the monitor (see, for example,
§6.2).

The constant c serves merely as a bound on the individual events, which in prac-
tice always exists, even if one chooses c to be of an extremely large value. Without
considering c, however, one could always construct a trace which contains individ-
ual events whose cardinality is sufficiently large, s.t. the corresponding monitor’s
size has to exceed k. Hence, if a k exists, it always exists wrt. a given c.

The reason for demanding a sound and anticipatory monitor for a given ϕ is due
to the fact that one could always come up with a monitor that, say, returns ⊥ to the
user, thus completely ignoring the LTLFO semantics, but whose space consumption
is bounded by 1, for example. But assuming that we are, in fact, dealing with a
sound monitor, it could still return ? for all eternity and thus render the monitoring
process useless. Hence, we demand that Mϕ also be anticipatory, although this
constraint (unlike soundeness) could also have been weakened somewhat: all we
really need here is that the monitor whenever it reads a good (resp. bad) prefix for
ϕ informs the user about it as soon as possible. In other words, a sound monitor
that doesn’t return the correct result until some exponential time in the future,
could be as useless as the naive, incorrect one we just outlined.

Finally, note that the monitor construction for propositional LTL formulae
given in [9] provides a formal argument to our intuition, namely that every moni-
torable propositional LTL formula is also trace-length independent. Therefore, we
have not defined this notion first for LTL and then lifted it to first-order logic,
as we have done it earlier in the text, but stated it immediately in the context of
LTLFO.

However, Definition 11 is not sufficiently distinctive for our purposes, which
becomes obvious when we consider yet another simple (but admittedly practically
rather useless) example, the LTLFO formula G(∃x : p. x ≥ rU∃y : q. x = y), which
helps to illustrate the following point: It is not a priori clear, whether or not a
corresponding monitor needs to accumulate trace information over time, because
it depends on the actual data inside the trace; that is, if every new event that is
added to the trace is s.t. it contains a p(l), s.t. l ≥ r, where r is some arbitrary
constant, and a q(k) with k = l, then it is clearly not necessary to keep any of
this information around. If, on the other hand, the trace is s.t. it contains different
p(l), with l ≥ r, in each new addition, but no corresponding q(k)s (or, at least,
for a very long time), then the monitor needs to memorise the individual p(l)

22



until the corresponding q(k) show up. Clearly, if the q(k) never show up, then the
monitor will have to remember an unbounded amount of trace information. And if
they do show up, its memory consumption increases until that point (after which
“garbage collection” will clean up again), which we cannot determine in advance.
This is different from the trace-length dependent example given earlier, where
the corresponding monitor’s space consumption was bound to grow ad infinitum,
irrespective of the data in the trace (unless, of course, the monitor finds a bad
prefix, in which case it can stop altogether).

Definition 12 Let |Mϕ(t)| denote the space consumption of monitor Mϕ after
processing prefix t. Then, ϕ is called strongly trace-length dependent, if it is trace-
length dependent and for any such t, there exists a suffix t′, s.t. |Mϕ(tt′)| > |Mϕ(t)|,
but no suffix t′′, s.t. |Mϕ(tt′′)| < |Mϕ(t)|.

To be absolutely clear: the formula G(∃x : p. x ≥ rU∃y : q. x = y) is merely
trace-length dependent, but not strongly trace-length dependent, whereas G∃x :
p. XG∃y : q. x 6= y is strongly trace-length dependent. Clearly, one can monitor
the former, but not the latter, or at least, not for a very long time, because then
the monitor will necessarily run out of space. Both formulae, however, satisfy the
conditions of monitorability (see Definition 10).

Open problems. Unfortunately, it is currently not known whether these notions of
trace-length dependence are decidable, although we strongly suspect that they
are not. An intuitive argument for this can be given by the theorem of Rice (cf.
[24]), which intuitively asserts that nontrivial properties of Turing machines are
not decidable, and the ability to simulate computations of Turing machines in
first-order logic. However, to formally apply this argument, one would need to
establish if our decision problems do, indeed, pose nontrivial properties, which is
equivalent to proving the statement as such. Hence, we leave this as open problem
for now.

8 Related work

This is by no means the first work to discuss monitoring of first-order specifications.
Motivated by checking temporal triggers and temporal constraints, the monitoring
problem for different types of first-order logic has been widely studied, e.g., in
the database community. In that context, Chomicki [11] presents a method to
check for violations of temporal constraints, specified using (metric) past temporal
operators. The logic in [11] differs from LTLFO, in that it allows natural first-order
quantification over a single countable and constant domain, whereas quantified
variables in LTLFO range over elements that occur at the current position of the
trace (see also [22,6]). Presumably, to achieve the same effect, [11] demands that
policies are what is called “domain independent”, so that all statements refer to
known objects. As such, domain independence is a property of the policy and
shown to be undecidable. In contrast, one could say that LTLFO has a similar
notion of domain independence already built-in, because of its quantifier. Like
LTLFO, the logic in [11] is also undecidable; no function symbols are allowed and
relations are required to be finite. However, despite the fact that the prefix problem
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is not phrased as a decision problem, its basic idea is already denoted by Chomicki
as the potential constraint satisfaction problem. In particular, he shows that the
set of prefixes of models for a given formula is not recursively enumerable. On the
other hand, the monitor in [11] does not tackle this problem and instead solves
what we have introduced as the word problem, which, unlike the prefix problem,
is decidable.

Basin et al. [4] extend Chomicki’s monitor towards bounded future operators
using the same logic. Furthermore, they allow infinite relations as long as these
are representable by automatic structures, i.e., automata models. In this way,
they show that the restriction on formulae to be domain independent is no longer
necessary. LTLFO, in comparison, is more general, in that it allows computable
relations and functions. On the other hand, LTLFO lacks syntax to directly specify
metric constraints.

The already cited work of Hallé and Villemaire [22] describes a monitoring
algorithm for a logic with quantification identical to ours, but without function
symbols or arbitrary computable relations. The resulting monitors are generated
“on the fly” by using syntax-directed tableaux. In our approach, however, it is
possible to pre-compute the individual BAs for the respective subformulae of a
policy/levels of the SA, and thereby bound the complexity of that part of our
monitor at runtime by a constant factor.

Sistla and Wolfson [34] also discuss a monitor for database triggers whose
conditions are specified in a logic, which uses an assignment quantifier that binds
a single value or a relation instance to a global, rigid variable. Their monitor is
represented by a graph structure, which is extended by one level for each updated
database state, and as such proportional in size to the number of updates.

Finally, there are works dealing with so called parametric monitoring which,
although not based on first-order logic, offer support for monitoring traces carrying
data (cf. [1,35,10]). The approach followed by [10] is to “slice” a trace according
to the parameters occurring in it and then to forward the n (effectively propo-
sitional) subtraces to n monitor instances of the same specification; for example,
one per logged-in user or per opened file. In [1], a similar technique is applied
for matching regular expressions with the program trace, when restricted to the
symbols declared in an expression. All approaches allow the user to add variables
to a specification, but only [35] offers quantifiers. However, to restrict their scope,
they must directly precede a positive so called parameterised proposition, which
is ensured by syntactic rules that prohibit arbitrary nesting or use of negation
that could otherwise help to get around this constraint. None of the approaches
support arbitrary nesting of quantifiers and temporal operators, use of negation,
or function symbols to name just some important restrictions. However, on the
plus side, one is able to use optimised monitoring techniques, developed in the
propositional domain, and apply them—with these restrictions in mind—to traces
carrying data. For Java, a widely used such implementation is JavaMOP [25].

More recently, since the conference version of this article got published, some
further related works appeared in the literature, two of which are as follows. Med-
hat et al. [30] present an LTL4 extension towards first-order temporal logic, where
quantifiers can have metric constraints. It differs to LTLFO in that nested quan-
tifiers are restricted to appear leftmost in a formula without being mixed with
temporal operators. Their monitoring algorithm, much like ours, also constructs
submonitors to evaluate quantifiers at runtime inspired by a divide and conquer
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algorithm. They then present an implementation using MapReduce (cf. [14]), ca-
pable to run in parallel on GPUs, which leads to almost negligible monitoring
overhead at runtime.

Moreover, [15] introduced an algorithm that supports the monitoring of first-
order logic formulae without restricting to a closed-world assumption as we have
done. In their work, the authors argue that this allows for a more natural specifica-
tion of properties in some cases. However, since their proposed logic differentiates
between a foreground and a background part, their monitoring solution for a cho-
sen background logic depends on the availability of a corresponding theory solver.
In practice, this means that this approach is targetting those domains, where so
called SMT-solvers have made an impact in recent years (e.g., using linear inte-
ger inequalities, arrays, etc.), whereas ours is general in that regard. Also see, for
example, [31] for an overview on techniques and logics currently used in SMT-
solving.

9 Conclusions

To the best of our knowledge, our algorithm is the first to devise impartial moni-
tors, i.e., address the prefix problem instead of a (variant of the) word problem, for
policies given in an undecidable first-order temporal logic. Moreover, unlike other
approaches, such as [34,22] and even [7], we are even able to precompute most of
the state space required at runtime as the different levels of our SAs correspond to
standard GBAs that can be generated before monitoring commences. As required,
our monitor is monotonic and in principle trace-length independent. Although, we
have identified formulae for which a monitor (which is sound and anticipatory) is
bound to grow, since it will need to memorise an increasing amount of trace infor-
mation over time. While our definitions allow for a classification of formulae and
languages according to how efficient a monitor we can build for them, we currently
do not know whether or not (strong) trace-length dependence is decidable. Having
said that, in many practical scenarios the user knows whether or not a formula is
monitorable and trace-length independent, s.t. this is not really a show stopper
for first-order monitoring per se, but more of theoretical interest.

Given a ϕ ∈ LTLFO of which we know that it can be monitored in a trace-length
independent manner, our monitor’s size at runtime at any given time is bounded
by O(|σ|depth(ϕ) · 2|ϕ|), where σ is the current input to the monitor: Throughout
the depth(ϕ) levels of the monitor, there are a total of O(|σ|depth(ϕ)) submonitors,
which are of size O(2|ϕ|), respectively. In contrast, the size of a progression-based
monitor, even for obviously trace-length independent formulae, such as ϕ2 in Fig. 3
is, in the worst case, proportional to the trace length. Essentially this also means
that, for a given formula and a trace, a progression-based monitor has to memorise
at least as much data as an SA-based one, but never the other way round (although
the SA-based monitor may start with a comparably larger overall overhead).

In Table 1 we have summarised the main results of §2–§4, highlighting again the
differences of LTL compared to LTLFO. Note that as far as trace-length dependence
goes, for LTL it is always possible to devise a trace-length independent monitor,
irrespective of the specification at hand (cf. [9]).
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Table 1 Overview of complexity results.

LTL LTLFO

Satisfiability PSpace-complete Undecidable

Word problem < Bilinear-time PSpace-complete

Model checking PSpace-complete ExpSpace-membership,
PSpace-hard

Prefix problem PSpace-complete Undecidable

Monitorability ExpSpace-membership,
PSpace-hard

Undecidable

Trace-length
independence

(By definition) (Open question)
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A Detailed proofs

Lemma 1. Let ϕ be a sentence in first-order logic, then we can construct a corresponding
ψ ∈ LTLFO s.t. ϕ has a finite model iff ψ is satisfiable.

Proof We construct ψ as follows. We first introduce a new unary U-operator d whose arity is
τ and that does not appear in ϕ. We then replace every subformula in ϕ, which is of the form
∀x. θ, with ∀x : d. θ (resp. for ∃x. θ). Next, we encode some restrictions on the interpretation
of function and predicate symbols:

• For each constant symbol c in ϕ, we conjoin the obtained ψ with d(c).
• For each function symbol f in ϕ of arity n, we conjoin the obtained ψ with ∀x1 : d. . . . ∀xn :
d. d(f(x1, . . . , xn)).

• For each predicate symbol p in ϕ of arity n, we conjoin the obtained ψ with ∀(x1, . . . , xn) :
p. d(x1) ∧ . . . ∧ d(xn).

• We conjoin ∃x : d. d(x) to the obtained ψ to ensure that the domain is not empty.

Finally, we fix the arities of symbols in ψ appropriately to one of the following τ , τ × . . .× τ ,
τ × . . .× τ → τ .

Obviously, the formula ψ, constructed by the procedure above, is a syntactically correct
LTLFO formula. Now, if ψ is satisfiable by some (A′, σ), where A′ = (|A′|, I′) and σ ∈ (A′)- Ev,
it is easy to construct a finite model A = (|A|, I) s.t. A |= ϕ holds in the classical sense of

first-order logic: set |A| = dI
′
, cI = cI

′
, fI = fI

′ |
dI

′×...×dI′ , pI = pI
′
, respectively. By an

inductive argument one can show that the LTLFOsemantics is preserved. The other direction,

if ϕ is finitely satisfiable, is trivial: set |A′| = τI
′

= |A|, cI′ = cI , fI
′

= fI , respectively, and
σ = {(p, e) | e ∈ pI} ∪ {(d, e) | e ∈ |A|}. ut

Theorem 3. The word problem for LTLFO is PSpace-complete.

Proof To evaluate a formula ϕ ∈ LTLFO over some linear Kripke structure, K, we can basically
use the inductive definition of the semantics of LTLFO: If used as a function, starting in the
initial state of K, s0, it evaluates ϕ in a depth-first manner with the maximal depth bounded
by |ϕ|.

To show hardness, we reduce the following problem, which is known to be PSpace-complete:
Let F = Q1x1. Q2x2. . . . Qnxn. E(x1, x2, . . . , xn), where Q ∈ {∀,∃} and E is a Boolean
expression over variables x1, x2, . . . , xn. Does F evaluate to > (cf. [19])? The reduction of this
problem proceeds as follows. We first construct a formula ϕ ∈ LTLFO in prenex normal form,

ϕ = Q1x1 : d. Q2x2 : d. . . . Qnxn : d. E(px1 (x1), px2 (x2), . . . , pxn (xn)).

Then, using an U-operator pxi for every variable xi, we construct a singleton Kripke structure,
K, s.t. λ(s0) = (A, {(d, 0), (d, 1), (px1 , 1), (px2 , 1), . . . , (pxn , 1)}), where |A| = {0, 1} and I
defined accordingly. It can easily be seen that F evaluates to > iff K is a model for ϕ. Moreover,
this construction can be obtained in no more than a polynomial number of steps wrt. the size
of the input. ut

Theorem 4. The model checking problem for LTLFO is in ExpSpace.

Proof For a given ϕ ∈ LTLFO and (A)-Kripke structure K defined as usual, where A = (|A|, I),
we construct a propositional Kripke structure K′ and ϕ′ ∈ LTL, s.t. L(K) ⊆ L(ϕ) iff L(K′) ⊆
L(ϕ′) holds. Assuming variable names in ϕ have been adjusted so that each has a unique name,
the construction of ϕ′ proceeds as follows.

Wlog. we can assume |A| to be a finite set {d0, . . . , dn}. We first set ϕ′ to ϕ and extend the
corresponding Γ by the constant symbols cd0 , . . . , cdn , s.t. cIdi

= di, respectively; that is, we

add the respective interpretations of each cdi to I. This step obviously does not require more
than polynomial space. We then replace all subformulae in ϕ′ of the form ν = Qx : p. ψ(x)
exhaustively with the following constructed ψ′:

• Set ψ′ = >.
• For each state s ∈ S do the following:

– Let T = {d | λ(s) = (A′, σ),A′ ∼ A and (p,d) ∈ σ}.
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– If Q = ∀, then

ψ′ = ψ′ ∧ (s̃⇒
∧
d∈T

ψ(x)[c /x]),where c is s.t. cI = d,

otherwise
ψ′ = ψ′ ∧ (s̃⇒

∨
d∈T

ψ(x)[c /x]),where c is s.t. cI = d,

where s̃ is a fresh, unique predicate symbol meant to represent state s.

Then, for all subformulae in ϕ′ of the form s̃⇒ ψ we do the following:

• For each r(t) occurring in ψ, where r ∈ R and t are terms, let d = tI , and replace r(t)
by a fresh, unique predicate symbol rd.

It is easy to see that, indeed, ϕ′ is a syntactically correct standard LTL formula, where all
quantifiers have been eliminated. In terms of space complexity, note that in the first loop, we
replace each quantified formula by an expression at least |K| times longer than the original
quantified formula. In the worst case, the final formula’s length will be exponential in the
number of quantifiers.

We now define the propositional Kripke structure K′ = (S′, s′0, λ
′,→′) as follows. Let

S′ = S, s′0 = s0, and →′=→. In what follows, let s be a state and λ(s) = ((|A|, I), σ).

(Note, this is the labelling function of K.) The alphabet of K′ is given by 2AP, where AP =
{rd | r ∈ R and d ∈ |A|} ∪ {s̃ | s ∈ S}. Finally, we define the labelling function of K′ as
λ′(s) = {s̃} ∪ {rd | r ∈ R and rI(d) is true}. It is easy to see that, indeed, K′ preserves all
the runs possible through K.

One can show by an easy induction on the structure of ϕ′ that, indeed, L(K) ⊆ L(ϕ) iff
L(K′) ⊆ L(ϕ′) holds. ut

Lemma 2. Let A be a first-order structure and ϕ ∈ LTLFO, then L(ϕ)A = {(A, w) | A ∼
A, w ∈ Evω , and (A, w) |= ϕ}. Testing if L(ϕ)A 6= ∅ is generally undecidable.

Proof Let K = (x1, y1), . . . , (xk, yk) be an instance of Post’s Correspondence Problem over
Σ = {0, 1}, where xi, yi ∈ Σ+, which is known to be undecidable in this form. Let us now de-
fine a formula ϕK = ∃γ : z. pcp(γ), a structure A = (Σ+, I), s.t. pcpI(u)⇔ u = xi1 . . . xin =

yi1 . . . yin , where u ∈ Σ+ and pcp is of corresponding arity. Obviously, pcpI(u) can be com-
puted in finite time for any given u. Let us now show that L(ϕK)A 6= ∅ iff K has a solution.

(⇒:) Because L(ϕK)A 6= ∅, let’s assume there is a word u ∈ Σ+ st. (z, u) ∈ σ and
(A, σ) ∈ L(ϕK)A. By the choice of pcpI , there exists a sequence of indices, i1, . . . , in, st.
u = xi1 . . . xin = yi1 . . . yin , i.e., K has a solution.

(⇐:) Let’s assume K has a solution, i.e., there exists a word u ∈ Σ+ and a sequence of
indices, i1, . . . , in, st. u = xi1 . . . xin = yi1 . . . yin . We now have to show that L(ϕK)A 6= ∅.
For this purpose, set σ = {(z, u)}, then (A, σ) ∈ L(ϕK)A and, consequently, L(ϕK)A 6= ∅. ut

Theorem 5. The prefix problem for LTLFO is undecidable.

Proof By way of a similar reduction used in Theorem 1 already, i.e., for any ϕ, A, and σ ∈ Ev
we have that (A, σ) ∈ bad(Xϕ) iff L(ϕ)A = ∅. The ⇐-direction is obvious. For the other
direction:

(A, σ) ∈ bad(Xϕ)

⇒ for all A ∼ A and w ∈ Evω , we have that (AA, σw) 6|= Xϕ
⇒ for all A ∼ A and w ∈ Evω , we have that (A, w) 6|= ϕ
⇒ L(ϕ)A = ∅ (which is generally undecidable by Lemma 2).

ut

Lemma 3. Let ϕ ∈ LTLFO (not necessarily a sentence) and v be a valuation. For each

accepting run ρ in Aϕ,v over input (A, w), ψ ∈ cl(ϕ), and i ≥ 0, we have that ψ ∈ ρ(i) iff

(A, w, v, i) |= ψ.

Proof We proceed by a nested induction on depth(ϕ) and the structure of ψ ∈ cl(ϕ). For the

base case let depth(ϕ) = 0: We fix ρ to be an accepting run in Aϕ,v over (A, w), and proceed
by induction over those formulae ψ ∈ cl(ϕ) which are of depth zero (i.e., without quantifiers)
since depth(ϕ) = 0. Therefore, this case basically resembles the correctness argument of Büchi
automata for propositional LTL (cf. [3, §5]). For an arbitrary i ≥ 0, we have
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• ψ = r(t):

r(t) ∈ ρ(i) ⇔ tIi ∈ rIi (by the definition of δ→),
where, as before, for any variable x in t, by xIi we mean v(x)

⇔ (A, w, v, i) |= r(t) (by the semantics of LTLFO)

• ψ = p(t): analogous to the above.
• ψ = ¬ψ′:

¬ψ′ ∈ ρ(i) ⇔ ψ′ 6∈ ρ(i) (by the completeness assumption of all q ∈ Q)

⇔ (A, w, v, i) 6|= ψ′ (by induction hypothesis)

⇔ (A, w, v, i) |= ¬ψ′ (by the semantics of LTLFO)

• ψ = ψ1 ∧ ψ2:

ψ1 ∧ ψ2 ∈ ρ(i) ⇔ {ψ1, ψ2} ⊆ ρ(i) (by the completeness assumption of all q ∈ Q)

⇔ (A, w, v, i) |= ψ′1 and (A, w, v, i) |= ψ2 (by induction hypothesis)

⇔ (A, w, v, i) |= ψ1 ∧ ψ2 (by the semantics of LTLFO)

• ψ = Xψ′:

Xψ′ ∈ ρ(i) ⇔ ψ′ ∈ ρ(i+ 1) (by the definition of δ→)

⇔ (A, w, v, i+ 1) |= ψ′ (by induction hypothesis)

⇔ (A, w, v, i) |= Xψ′ (by the semantics of LTLFO)

• ψ = ψ1Uψ2: we first show the ⇒-direction. For this, let us first show that there is a
j ≥ i, such that (A, w, v, j) |= ψ2 holds. For suppose not, then for all j ≥ i, we have that

(A, w, v, j) 6|= ψ2 and, consequently, by induction hypothesis ψ2 6∈ ρ(j). By definition of
δ→, since ψ1Uψ2 ∈ ρ(i) and there isn’t a j s.t. ψ2 ∈ ρ(j), we have that ψ1Uψ2 ∈ ρ(j)
for all j ≥ 0. On the other hand, ρ is accepting in Aϕ, thus there exist infinitely many
j ≥ i, s.t. ψ1Uψ2 6∈ ρ(j) or ψ2 ∈ ρ(j) by the definition of the generalised Büchi acceptance
condition F , which is a contradiction. Let us, in what follows, fix the smallest such j. We
still need to show that for all i ≤ k ≤ j, (A, w, v, k) |= ψ1 holds. As j is the smallest such
j, where ψ2 ∈ ρ(j) it follows that ψ2 6∈ ρ(k) for any such k. As ψ1Uψ2 ∈ ρ(i), it follows by
definition of δ→ that ψ1 ∈ ρ(i) and ψ1Uψ2 ∈ ρ(i+ 1). We can then inductively apply this
argument to all i ≤ k < j, such that ψ1 ∈ ρ(k) and ψ1Uψ2 ∈ ρ(k+ 1) hold. The statement
then follows from the induction hypothesis.

Let us now focus on the ⇐-direction, i.e., suppose (A, w, v, i) |= ψ1Uψ2 implies that

ψ1Uψ2 ∈ ρ(i). By assumption, there is a j ≥ i, such that (A, w, v, j) |= ψ2 and for all

i ≤ k < j, we have that (A, w, v, k) |= ψ1. Therefore, by induction hypothesis, ψ2 ∈ ρ(j)
and ψ1 ∈ ρ(k) for all such k. Then, by the completeness assumption of all q ∈ Q, we also
get ψ1Uψ2 ∈ pj , and if j = i, we are done. Otherwise with an inductive argument similar
to the previous case on k = j − 1, k = j − 2, . . . , k = i, we can infer that ψ1Uψ2 ∈ ρ(k).

Let depth(ϕ) = n > 0, i.e., we suppose that our claim holds for all formulae with quantifier
depth less than n. We continue our proof by structural induction, where the quantifier free
cases are almost exactly as above. Therefore, we focus only on the following case.

• ψ = ∀x : p. ψ′: for this case, as before with the U-operator, we will first show the ⇒-
direction, i.e., for all i ≥ 0 we have ∀x : p. ψ′ ∈ ρ(i) implies (A, w, v, i) |= ∀x : p. ψ′. By the

semantics of LTLFO, the latter is equivalent to for all (p,d) ∈ wi, (A, w, v ∪{x 7→ d}, i) |=
ψ′. If there is no (p,d) ∈ wi the statement is vacuously true. Otherwise, there are some
actions (p,d) ∈ wi and

δ↓(ρ(i), (Ai, wi)) = B ∧
∧

(p,d)∈wi

Aψ′,v∪{x7→d},

where B is a Boolean combination of SAs corresponding to the remaining elements in ρ(i).
As ρ is accepting in Aϕ,v , there exists a Yi satisfying δ↓(ρ(i), (Ai, wi)), s.t. all A ∈ Yi have

an accepting run on input (A
i
, wi). It follows that Yi contains an automaton Aψ′,v∪{x 7→d}
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for each action (p,d) ∈ wi that has an accepting run ρ′. As the respective levels of these
automata is n− 1, we can use the induction hypothesis and note that the following holds
true for each of the Aψ′,v∪{x7→d} ∈ Yi:

for all: ν ∈ cl(ψ′) and l ≥ 0, ν ∈ ρ′(l) iff (A, w, v ∪ {x 7→ d}, i+ l) |= ν,

We can now set ν = ψ′, respectively, and l = 0, from which it follows that ψ′ ∈ ρ′(0)

iff (A, w, v ∪ {x 7→ d}, i) |= ψ′, respectively. As by construction of an SA the initial
states of runs contain the formula which the SA represents, we have ψ′ ∈ ρ′(0) and

hence (A, w, v ∪ {x 7→ d}, i) |= ψ′, respectively. As this holds for all Aψ′,v∪{x7→d}, where

(p,d) ∈ wi, it follows by semantics of LTLFO that (A, w, v, i) |= ∀x : p. ψ′.

Let us now consider the ⇐-direction, i.e., (A, w, v, i) |= ∀x : p. ψ′ implies ∀x : p. ψ′ ∈
ρ(i), which we show by contradiction. Suppose ∀x : p. ψ′ 6∈ ρ(i), which implies by the
completeness assumption of all q ∈ Q that ¬∀x : p. ψ′ ∈ ρ(i) holds. If there is no (p,d) ∈
wi, then δ↓(ρ(i), (Ai, wi)) is equivalent to ⊥ and ρ could not be accepting. Therefore there
must be some (p,d) ∈ wi, s.t.

δ↓(ρ(i), (Ai, wi)) = B ∧
∨

(p,d)∈wi

A¬ψ′,v∪{x 7→d},

where B is a Boolean combination of SAs corresponding to the remaining elements in ρ(i).
Because ρ is accepting in Aϕ,v , there exists a Yi, such that Yi |= δ↓(ρ(i), (Ai, wi)), and
there is at least one SA, A′ = A¬ψ′,v∪{x7→d} ∈ Yi, with corresponding (p,d) ∈ wi, s.t.

(A
i
, wi) is accepted by A′ as input; that is, A′ has an accepting run, ρ′, on said input. As

this automaton’s level is n− 1, we can apply the induction hypothesis and obtain

for all: ν ∈ cl(¬ψ′) and l ≥ 0, ν ∈ ρ′(l) iff (A, w, v ∪ {x 7→ d}, i+ l) |= ν.

We can now set ν = ¬ψ′ and l = 0, and since ν belongs to the initial states in accepting
runs, we derive (A, w, v ∪ {x 7→ d}, i) |= ¬ψ′, which is a contradiction to our initial
hypothesis. ut

Theorem 6. The constructed SA is correct in the sense that for any sentence ϕ ∈ LTLFO,
we have that L(Aϕ) = L(ϕ).

Proof ⊆: Follows from Lemma 3: let ρ be an accepting run over (A, w) in Aϕ. By definition

of an (accepting) run, ϕ ∈ ρ(0), and therefore (A, w) ∈ L(ϕ).
⊇: We show the more general statement: Given a (possibly not closed) formula ϕ ∈ LTLFO

and valuation v. It holds that {(A, w) | (A, w, v, 0) |= ϕ} ⊆ L(Aϕ,v). We define for all i ≥ 0

the set ρ(i) = {ψ ∈ cl(ϕ) | (A, w, v, i) |= ψ} for some arbitrary but fixed formula ϕ ∈ LTLFO

and valuation v, and arbitrary but fixed (A, w), where (A, w, v, 0) |= ϕ. Let us now show that

ρ = ρ(0)ρ(1) . . . is a well-defined run in Aϕ,v over (A, w): Firstly, from the construction of Q,

it follows that for all i, ρ(i) ∈ Q. Secondly, since ϕ ∈ cl(ϕ) and (A, w, v, 0) |= ϕ, ρ(0) always
contains ϕ. Thirdly, ρ(i+ 1) ∈ δ→(ρ(i), (Ai, wi)) holds for all i. The latter is the case iff

• for all Xψ ∈ cl(ϕ): Xψ ∈ ρ(i) iff ψ ∈ ρ(i+ 1), and
• for all ψ1Uψ2 ∈ cl(ϕ): ψ1Uψ2 ∈ ρ(i) iff ψ2 ∈ ρ(i) or (ψ1 ∈ ρ(1) and ψ1Uψ2 ∈ ρ(i+ 1)).

The first condition can be shown as follows:

Xψ ∈ ρ(i) ⇔ (A, w, v, i) |= Xψ (by definition of ρ(i))

⇔ (A, w, v, i+ 1) |= ψ (by the semantics of LTLFO)
⇔ ψ ∈ ρ(i+ 1) (by the definition of ρ(i+ 1)).

The second can be shown as follows:

ψ1Uψ2 ∈ ρ(i) ⇔ (A, w, v, i) |= ψ1Uψ2 (by definition of ρ(i))

⇔ (A, w, v, i) |= ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2))

⇔ (A, w, v, i) |= ψ2 or ((A, w, v, i) |= ψ1 and (A, w, v, i+ 1) |= ψ1Uψ2)
⇔ ψ2 ∈ ρ(i) or (ψ1 ∈ ρ(1) and ψ1Uψ2 ∈ ρ(i+ 1)) (by definition of ρ).
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It remains to show that ρ is also accepting in Aϕ,v . We proceed by induction on depth(ϕ). In
what follows, let depth(ϕ) = 0, i.e., we are showing local acceptance only. By the definition
of acceptance we must have that for all ψ1Uψ2 ∈ cl(ϕ), there exist infinitely many i ≥ 0, s.t.
ρ(i) ∈ Fψ1Uψ2

, where Fψ1Uψ2
∈ F . For suppose not, i.e., there are only finitely many such i,

then there is a k ≥ 0, s.t. for all j ≥ k we have ρ(j) 6∈ Fψ1Uψ2
and therefore ψ1Uψ2 ∈ ρ(j) and

ψ2 6∈ ρ(j) by definition of Fψ1Uψ2
. In particular, from ψ1Uψ2 ∈ ρ(k) we derive by construction

of ρ(k) that there must be some g ≥ k, s.t. (A
g
, wg) ∈ L(ψ2) and thus ψ2 ∈ ρ(k) with g ≥ k.

Contradiction.

Let us now assume the statement holds for all formulae with depth strictly less than n
and assume depth(ϕ) = n, where n > 0. We don’t show local acceptance of ρ as it is virtually
the same as in the base case, and instead go on to show that for all i ≥ 0, there is a Yi, s.t.

Yi |= δ↓(ρ(i), (Ai, wi)) and all A ∈ Yi are accepting (A
i
, wi). Let us define the following two

sets:
Y ∀i = {Aψ,v∪{x 7→d} | ∀x : p. ψ ∈ ρ(i) and (p,d) ∈ wi}

and
Y ∃i = {A¬ψ,v∪{x 7→d} | ¬∀x : p. ψ ∈ ρ(i), (p,d) ∈ wi,

and (A, w, v ∪ {x 7→ d}, i) 6|= ψ}.

Set Yi = Y ∀i ∪Y ∃i , which by construction satisfies δ↓(ρ(i), (Ai, wi)). We still need to show that

every automaton in this set accepts (A
i
, wi). Now for Aν,v∪{x 7→d} ∈ Yi we have either ν = ψ

for some ∀x : p. ψ ∈ ρ(i) and (p,d) ∈ wi, or ν = ¬ψ for some ¬∀x : p. ψ ∈ ρ(i) and (p,d) ∈ wi
s.t. (A, w, v ∪ {x 7→ d}, i) 6|= ψ holds. In either case by definition of ρ(i) and semantics of

LTLFO, it follows that (A, w, v∪{x 7→ d}, i) |= ν. Since the level of Aν,v∪{x7→d} is strictly less

than n, we can apply the induction hypothesis and construct an accepting run for (A
i
, wi),

where (A, w, v ∪ {x 7→ d}, i) |= ν, in Aν,v∪{x7→d}. The statement follows. ut

Theorem 7. Mϕ(A, u) = > ⇒ (A, u) ∈ good(ϕ) (resp. for ⊥ and bad(ϕ)).

Proof We prove the more general statement Mϕ,v(A, u) = > ⇒ (A, u) ∈ good(ϕ, v), where ϕ
possibly has some free variables and v is a valuation, by a nested induction over depth(ϕ).

• For the base case let depth(ϕ) = 0, where ϕ possibly has free variables, (A, u) be an

arbitrary but fixed prefix and v a valuation. Suppose Mϕ,v(A, u) returns > after processing

(A, u), but (A, u) 6∈ good(ϕ, v). By M3 and T10, the buffer of T¬ϕ,v is empty, i.e., B¬ϕ,v =

∅. By T3 and because A¬ϕ,v has an accepting run ρ over (A, u) with some suffix, B¬ϕ,v
contains (ρ(|u|), [>]) after processing (A, u). Furthermore, because δ↓ yields > for any
input iff depth(¬ϕ) = 0, no run in the buffer is ever removed in T7. Contradiction.

• Let depth(ϕ) > 0, (A, u) be an arbitrary but fixed prefix and v a valuation. Under the
same assumptions as above, we will reach a contradiction showing that after processing
(A, u), there is a sequence of obligations (ρ(|u|), [obl0, . . . , obln]) in buffer B¬ϕ,v , which

corresponds to an accepting run ρ in A¬ϕ,v over (A, u) with some suffix (A
′
, w′). That is,

Mϕ,v cannot return >, after B¬ϕ,v is empty, and B¬ϕ,v containing the above mentioned
sequence at the same time. By T3, B¬ϕ,v contains a sequence (ρ(|u|), [obl0, . . . , obln]) that

was incrementally created processing (A, u) wrt. δ→, eventually with some obligations
removed if they were detected to be met by the input. We now show that this sequence is
never removed from the buffer in T7. Suppose the run has been removed, then there was
an oblj = δ↓(ρ(j), (Aj , uj)), that is ∧

∀x:p.ψ∈ρ(j)

 ∧
(p,d)∈uj

Aψ,v′

 ∧
 ∧
¬∀x:p.ψ∈ρ(j)

 ∨
(p,d)∈uj

A¬ψ,v′′

 ,

with v′ = v ∪ {x 7→ d} and v′′ = v ∪ {x 7→ d}, evaluated to ⊥ after l steps, with
0 ≤ j ≤ l < |u|. That is, at least one submonitor corresponding to an automaton in the
second conjunction has returned ⊥ (or all submonitors corresponding to automata in a
disjunction, for which the following argument would be similar). Wlog. let ∀x : p.ψ ∈ ρ(j),
(p,d) ∈ uj , and Mψ,v′ (Aj , . . . ,Al, uj , . . . , ul) = ⊥, i.e., Mψ,v′ is the submonitor corre-
sponding to Aψ,v′ . As level(ψ) < level(ϕ), from the induction hypothesis follows that
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(Aj , . . . ,Al, uj , . . . , ul) ∈ bad(ψ, v′), i.e., (Aj , . . . ,AlA
′′
, uj , . . . , ulw

′′) |= ψ with evalua-

tion v′ for any (A
′′
, w′′), and therefore (Aj , . . . ,AlA

′′
, uj , . . . , ulw

′′) |= ¬∀x : p.ψ under

valuation v. But as ρ over (AA
′
, uw′) is an accepting run in A¬ϕ,v and ∀x : p.ψ ∈ ρ(j),

it follows that (A
j
A
′
, ujw′) |= ∀x : p.ψ. Now, we choose (A

′′
, w′′) to be (Al+1, . . . ,A|u|A

′
,

ul+1, . . . , u|u|w
′). Contradiction.

As for our second statement above, it can be shown similar as before. ut
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