
Alarm Processing with Model-Based Diagnosis of Event Discrete Systems

Andreas Bauer, Adi Botea, Alban Grastien, Patrik Haslum, Jussi Rintanen
NICTA and the Australian National University

Canberra, Australia

Abstract
Reliable and informative alarm processing is im-
portant for improving the situational awareness of
operators of electricity networks and other complex
systems. Earlier approaches to alarm processing
have been predominantly syntactic, based on text-
level filtering of alarm sequences or shallow mod-
els of the monitored system. We argue that a deep
understanding of the current state of the system be-
ing monitored is a prerequisite for more advanced
forms of alarm processing.
We use a model-based approach to infer the (un-
observable) events behind alarms and to determine
causal connections between events and alarms.
Based on this information, we propose implemen-
tations of several forms of alarm processing func-
tionalities. We demonstrate and evaluate the result-
ing framework with data from an Australian trans-
mission network operator.

1 Introduction
Many views grouped under the broad Smart Grid umbrella
agree that the power networks of the future will produce very
large volumes of data. Compared to current-day networks,
one source of additional data will be the deployment of more
sensors, including new types of sensors such as smart me-
ters. Furthermore, future networks will change their config-
uration more dynamically, to work with wind turbines and
other variable-output sources, and to handle overload, volt-
age, and phase imbalance issues caused by charging electric
cars [Ipakchi and Albuyeh, 2009]. This dynamic nature of
networks will further increase the volume of data generated.

An alarm is a message that signals a discrete event in
the network, such as automatic protection equipment trigger-
ing or an analog sensor measurement crossing a pre-defined
threshold value. As an example, Figure 1 shows a small ex-
tract from an alarm log generated by a transmission network.
The purpose of alarms is to alert operators to changes, sig-
nifying potential error conditions. However, actual faults fre-
quently give rise to “alarm cascades”, where the original fault
causes a range of secondary abnormalities, all of which gen-
erate multiple alarms, thus quickly overwhelming operators’
attention.

00:00:00 CB 1B A-B –OPEN–
00:00:00 CB 2B A-B –OPEN–
00:00:00 CB 2A A-B –OPEN–
00:00:00 CB 1A A-B –OPEN–
00:00:01 Line A-B KV LIMIT LOW
00:00:04 Line C-D KV LIMIT NORMAL
00:00:15 CB 1A A-B –CLOSED–
00:00:17 Line A-B KV LIMIT NORMAL
00:00:17 CB 1B A-B –CLOSED–
00:00:17 CB 2B A-B –CLOSED–
00:00:20 CB 2A A-B –CLOSED–
00:00:20 Line C-D KV LIMIT HIGH

Figure 1: Excerpt from an alarm log, spanning 20 seconds.
(Names have been simplified.)

This problem is widely recognised, and techniques that aim
to deal with it are collectively known as “intelligent alarm
processing”. Kirschen and Wollenberg [1992] identify three
functions that intelligent alarm processors should provide: re-
duce the number of alarms, provide a clearer idea of the cause
of the alarms, and recommend corrective actions to the oper-
ator. Adopting a similar view, McDonald et al. [1991] argue
that the role of alarm processing is to transform raw alarm
data into a format that is more digestible to a human oper-
ator. The increasing availability of networked sensors, and
the increasing dynamicity of the future power grid, will only
further emphasize the need for intelligent alarm processing
techniques to assist human operators in making sense of the
data that systems provide them with.

In this paper we present a model-based approach to
analysing the evolution of systems like electricity distribution
and transmission networks. We use a discrete-event model
that describes the possible behavior of the network, at an ab-
stract level. An online diagnosis process infers comprehen-
sive information about the (recent) evolution and the current
state of the network. This information is the basis for multiple
alarm processing functions, each of which provides a differ-
ent kind of meaningful summary that can be quickly grasped
by operators. For example, in the log excerpt in figure 1, the
group of alarms relating to the “A–B” line can all be explained
by one single cause (a transient ground fault on the line), and
clearly separated from the independent events (voltage fluc-

tuations) taking place at the same time on the “C–D” line.
The diagnosis engine takes as input a log of alarms, the

model of the network, and the state of the network (e.g.,
closed/open status of switches) at the beginning of the interval
to analyse. Taking the system state into account is essential,
because the causal links between events often depend on the
current status of network components. For instance, where
an electrical fault in one part of the network will propagate,
and thus which alarms it will lead to, depends on the status of
switches. Our model also includes time constraints between
events. Few earlier alarm processing techniques do this, no-
table examples being chronicles [Laborie and Krivine, 1997a;
1997b; Taisne, 2006; Cordier et al., 1998] and temporal con-
straint networks [Guo et al., 2010]. The result of the diagno-
sis process is a scenario, which is an evolution of the system
(i.e., series of states and transitions) that is consistent with
the observed alarms. There may be several scenarios that are
compatible with the observations, and preference is given to
those that contain the fewest unexplained and unlikely events.

The purpose of alarm processing is to extract those pieces
of information that are most relevant to the control room op-
erators in a given situation. This can take the form of com-
pact summaries of long event sequences, or highlighting the
most important events that the operator should be aware of.
The scenarios themselves contain far too much detail to be
presented to operators in raw form. Different filtering meth-
ods are applied to the generated scenarios, each extracting
a different type of summary to be presented to the operator.
In this paper, we present four different techniques, namely
alarm clustering, root cause analysis, fault-independent alarm
highlighting and highlighting of live alarms (cf. Section 4).
However, the result of the diagnosis process can be put to
more uses than these specific alarm processing functions. It
provides a powerful basis for implementing further functions
useful in a control room, such as computing plans for correc-
tive action.

We have developed a prototype system, which we tested on
a real alarm log, provided by TransGrid, the transmission net-
work operator in New South Wales and the Australian Cap-
ital Territory, Australia. In spite of being only a prototype,
the diagnosis engine and alarm processing functions are fast
enough to process all but the largest alarm cascades in less
than a minute. The network model that we developed is also
a highly simplified prototype; in spite of this, the system gen-
erates meaningful summaries in many instances.

2 Related Work
The literature contains a wide variety of techniques ap-
plied to alarm processing and fault diagnosis, including neu-
ral networks [Lin et al., 2004], expert systems [Protopapas
et al., 1991; McDonald et al., 1991], fuzzy logic [Meza
et al., 2001], tabu search [Wen and Chang, 1997], ge-
netic algorithms [Wen et al., 1995], chronicle-based ap-
proaches [Taisne, 2006; Cordier et al., 1998], and temporal
constraint networks [Guo et al., 2010].

Model-based alarm processing is a recurring theme in the
literature. Lin et al. [1998] use a power flow relation model.
Dahlgren et al. [1998] view causal relations between types

alarms

initial state

network
model

diagnosis
engine scenario

filtering
method 1

summarized
data

...
...

filtering
method N

summarized
data

Figure 2: Architecture of the alarm processing system. The
diagnosis engine creates a scenario (cf. Sections 3.2 and 3.3),
which is the basis for multiple filtering methods. Each filter
creates a different kind of summary view of the alarm log,
which is presented to the operator. In Section 4, we describe
four different filtering techniques.

of alarms as model-based knowledge. A similar approach
is followed by Larsson and DeBor [2007; 2002]. More re-
cently, Guo et al. [2010] have used temporal constraint net-
works (TCNs) as a model. This permits specifying temporal
constraints on the occurrence of individual events, as well as
between cause-effect pairs of events. However, this model is
still limited to defining such causal relations statically, i.e.,
whether or not one event causes another does not depend on
the state of the network. This precludes specifying many es-
sential aspects of the behaviour of the network. For example,
a circuit breaker opening may cause automatic shutdown of a
generator, if the opening of that breaker isolated the genera-
tor from a significant part of its load; but whether or not this
is the case clearly depends on the state of other switches.

A notable work in this context is that of Laborie and Kriv-
ine [1997a; 1997b]. They use a more detailed model, very
similar to ours, containing the topology of the network to-
gether with an automata-based description of the behavior of
each component type. The main difference between their ap-
proach and ours lies in how this model is used. They use the
model for an off-line simulation of the system, which is used
to pre-compute a collection of event patterns called chron-
icles. These chronicles are then compared on-line against
the evolving alarm log, and the output of alarm processing
is matching instances of chronicles appearing in the log.

Lin et al. [1998] present a combination of rule-based and
model-based alarm processing. Rule-based reasoning per-
forms message synthesis. A power flow relation model is
used to find relations between alarms. The model contains
the topology of the system (components and connections) to-
gether with information on how changes in the parameters of
one component will affect the parameters of other, adjacent
components. The program is tested on alarms corresponding
to incidents at the Taipei Mass Rapid Transit System.

3 Overview of the Approach
The overall architecture of our alarm processing system is
summarized in Figure 2. In this section we discuss briefly
each of the main components and the way they work together.

3.1 Network Model
The model we use contains all the application-specific knowl-
edge on which the inferences made by the diagnosis and

componenttype Generator {
var status : { on, off };
var status_changing : bool;
var runback : bool;

// output events (observable)
observable event runback_alarm;
observable event runback_reset;
observable event unit_status_ON;
observable event unit_status_OFF;

// output events (for synchronization)
event isolator_open;
event isolator_close;

// shutdown

transition begin_shutdown
status = on and status_changing = false
-> status_changing := true;

transition shutdown_breaker_open
status = on and status_changing = true
-> isolator_open;

transition shutdown_turn_off
status = on and status_changing = true
-> unit_status_OFF;

transition shutdown_complete
status = on and status_changing = true
-> status := off, status_changing := false;

// startup

transition begin_startup
status = off and status_changing = false
-> status_changing := true;

transition startup_breaker_close
status = off and status_changing = true
-> isolator_close;

transition startup_turn_on
status = off and status_changing = true
-> unit_status_ON;

transition startup_complete
status = off and status_changing = true
-> status := on, status_changing := false;

// runback

transition runback_alarm_unexplained
true -> runback := true, runback_alarm;

transition runback_reset_unexplained
true -> runback := false, runback_reset;

// the runback alarm can reset when the generator is off

transition runback_reset_when_off
status = off -> runback := false, runback_reset;

}

Figure 3: MMLD model of the Generator component type.
The model has been slightly simplified for readability. For
example, time constraints have been left out.

alarm processing system are made. The advantage of the
model-based approach is reusability: to adapt the software
to changes in the network, or to deploy it in a new network,
only the model needs to be updated. We designed a speci-
fication language, called MMLD, for describing the model.
Here, we will not discuss the syntax of MMLD, but focus on
the underlying concepts.

The model is a component-based, discrete-event dynam-
ical system [Cassandras and Lafortune, 1999]. (It can be
viewed as a factored description of a very large finite state
machine, augmented with time constraints.) Power grids are
very large, but consist of many instances of the same, rela-

tively few, component types. We separate the model into de-
scriptions of the behavior of component types, and the topol-
ogy, which enumerates the actual components, of each type,
and describes how they are interconnected in the grid. This
separation makes the model specification more compact, and
further improves reusability since component types are also
generic, to some extent. An example of a component type
model, slightly simplified, in MMLD syntax, is shown in Fig-
ure 3. The component type is a power generator.

The model of a component type describes its dynamical
behaviors, both nominal and abnormal, at a relatively high
level of abstraction. At this level of abstraction, a component
(instance of the type) can be in one of a finite set of discrete
states, and changes between states by discrete events. Each
component type has a set of (local) transition rules, which
define under what conditions it may, or must, change its (lo-
cal) state. Causal relations between events are enforced by
the transition rules preconditions and effects on the compo-
nent state, and by time constraints: a minimum time con-
straint specifies that the transition must be enabled for at least
a certain amount of time before it fires; a maximum time con-
straint specifies that the transition must take place if it is con-
tinuously enabled long enough. For example, fault current
through a protection relay not only enables it to trigger cir-
cuit breakers, but forces it to do so within a set time limit.

Components interact by two mechanisms. The first is syn-
chronisation of events. When a certain event takes place
in one component, the synchronised event occurs simultane-
ously in the other component. This is used to model fast inter-
actions, such as, for example, the trip signal from a protection
relay to a circuit breaker. The second is that transition rule
preconditions may refer to variables in neighbouring com-
ponents, and to certain global properties of the state of the
network, such as, for example, the existence of a conducting
path to an active generator.

For the purpose of alarm processing, the most important
distinction in the model is between events that can be ex-
plained, i.e., that follow logically from earlier events (ob-
served or unobserved), and events that have no visible ex-
planation, i.e., that are simply hypothesised to have occured.
These are analogous to the “root cause” events that explain
observed alarms in simpler model-based approaches [Wen
and Chang, 1997; Wen et al., 1995; Dahlgren et al., 1998;
Guo et al., 2010]. Given a log of observations, the diagno-
sis engine will find a scenario that contains the fewest unex-
plained events. We can also assign different likelihoods to
unexplained events, to find the most likely explanation.

The level of detail captured in the model represents a trade-
off between its explanatory power and the complexity of rea-
soning. For example, circuit breakers opening to isolate a line
(perhaps triggered by a protection relay) may cause a change
in the flow of power through other parts of the network, trig-
gering, for instance, a low voltage alarm. Because our model
does not include many detailed aspects of power flow (those
calculations would be too expensive to carry out as part of
the diagnostic reasoning) we may not be able to explain the
voltage alarm. But, we can explain, e.g., an alarm indicating
that voltage has dropped to zero on the isolated line, because
this follows from a simpler, qualitative causal relationship.

[Line C-D KV LIMIT NORMAL] [Line C-D KV LIMIT HIGH]
Line A-B
trans. fault

[CB 1B A-B --OPEN--] [CB 2B A-B --OPEN--] [CB 2A A-B --OPEN--] [CB 1A A-B --OPEN--]

Line A-B
isolated

[CB 1A A-B --CLOSED--] [CB 1B A-B --CLOSED--] [CB 2B A-B --CLOSED--] [CB 2A A-B --CLOSED--]

[Line A-B KV LIMIT LOW]
Line A-B

re-energized

[Line A-B KV LIMIT NORMAL]

Figure 4: Scenario found by the diagnosis engine (simplified for readability). Shaded events are unobservable. Edges represent
causal relationships.

3.2 Diagnosis Engine
We use a generic discrete-event systems diagnosis solver (di-
agnoser). It takes as input 1) a network model in MMLD
format, 2) the (possibly partially known) initial state of the
network describing e.g. which switches are open/closed, and
3) the observations (alarms) generated by network devices.

The reasoning performed by the diagnoser is similar to dis-
crete state estimation under incomplete information [Zanella
and Lamperti, 2003]. It involves finding a discrete state se-
quence that is compatible with the observations and that min-
imizes the occurrence of unlikely events, such as faults and
other spontaneous, inexplicable events. This is a hard com-
binatorial problem, due to the very high number of states the
system may be in. For example, in an electricity network with
n switches, the open/closed status of the switches alone rep-
resents 2n different possible discrete states. This makes the
use of trivial enumerative methods ineffective.

Our diagnoser uses satisfiability (SAT) algorithms as the
search mechanism. The SAT problem involves finding an
assignment of values true and false (equivalently, 1 and 0)
to a number of Boolean variables so that the set of clauses
(Boolean sum of variables and negated variables) represent-
ing a Boolean function is satisfied (evaluates to true). The
Boolean variables correspond to the state variables of the sys-
tem at different time points, representing a sequence of states,
and the events that take place at different time points. Clauses
express dependencies between state variables within one time
point or between consecutive time points and the observation
sequence [Grastien et al., 2007].

A SAT algorithm, enhanced with conflict-directed clause
learning [Moskewicz et al., 2001], is used for finding a value
assignment to the variables. Minimization of unlikely events
is achieved by repeatedly finding solutions with stronger and
stronger constraints on the number of such events.

The SAT approach to diagnosis requires a bound N on the
number of consecutive states. This bound is obtained from

the number of observations made. Then a propositional for-
mula Φ is defined that constrains the value of each state vari-
able after the ith timestep (for all i ∈ {0, . . . , N}) and the
event occurrence at the ith timestep (for all i ∈ {1, . . . , N}).
For instance, if the event cb open can take place only
when the state variable cb state equals closed, then the
formula would include: (¬cb open@1 ∨ (cb state =
closed)@0) which specifies the above property for the first
transition. The formula is augmented to enforce the initial
state and the observations. Any assignment of the variables
satisfying Φ represents a scenario, i.e., a system evolution
consistent with the given observations.

The time constraints require specific treatment. The
timesteps are defined with respect to the alarms and the
alarms are timestamped. Additional constraints are included
in the SAT formula to ensure these time contraints are sat-
isfied. Consider for instance that a specific circuit breaker
requires at least 1s delay to notice an overload; consider
further that the timestep 1 to 6 are stamped as follows:
τ(1) = 0s; τ(2) = 0.2s; τ(3) = 0.5s; τ(4) = 1s; τ(5) =
1.3s; τ(5) = 1.6s. Then the event overload detected
can take place at timestep 5 only if the overload state vari-
able equals true before 0.3s, i.e. at timestep 2. This is
encoded by the following formula for all t ∈ {2, . . . , 5}:
overload detected@5→ (overload = true)@t.

To minimise the number of undesirable (i.e., unexplained
or unlikely) events, we augment the formula Φ with a cardi-
nality constraint on the number of occurrences of such events
[Anbulagan and Grastien, 2009]. This constraint is initially
set to 0 in order to find an explanation with no unlikely event
and it is incremented until the SAT formula becomes satisfi-
able, thus exhibiting a preferred scenario.

3.3 Scenarios
A scenario S = (Σ,Θ) is a double sequence of global states
Σ and global transitions Θ, where a global transition t ∈ Θ
is a collection of synchronized local transitions, and a global

state to a collection of local states. The first state q0 of Σ is
an instantiation of the (possibly partially unspecified) initial
state of the instance. Each transition ti ∈ Θ leads the system
from state qi−1 to state qi. There are several ways a transition
can affect a component state: directly if the triggering event
of the transition takes place in the component, through event
synchronisation if the triggering event forces an event on the
component (for instance, a sensor detecting a fault may force
a circuit breaker to open), or through dependant variables (for
instance, an isolator electrifying all lines in a feeder).

Figure 4 shows a graphical representation of the scenario
found by the diagnosis engine for the small example log in
Figure 1. (The picture shows only the events that occur in the
scenario, not states.)

4 Scenario Filtering
Scenarios computed with model-based diagnosis are a rich
source of information, but are too detailed to present directly
to operators. Further processing is required to obtain sum-
marized data that an operator can quickly understand. In this
section we discuss four alarm processing functions, each pro-
viding different types of information to the operator.

4.1 Alarm Clustering
Alarm clustering partitions an alarm log into causally inde-
pendent subsets which can be understood more easily.

Clustering is performed on all events in a scenario, includ-
ing unobservable ones that have been inferred from entries in
the alarm log. The clustering of the alarm log is then trivially
obtained by filtering away all hidden events. In the rest of
this section, we use the term cluster to refer to collections of
events including unobservable ones.

For example, in the scenario found by the diagnosis engine
for the alarm log in Figure 1, the set of all alarms referring
to the A-B line, together with several inferred unobservable
events, form a cluster. The two alarms referring to the C-D
line, however, are not clustered, because there is no (apparent)
causal relationship between them.

Our clustering is based on partitioning by an equivalence
relation (transitive, reflexive, symmetric), which expresses
causal dependencies between events. Let S = (Σ,Θ) be
a scenario with an ordered set of states and an ordered set
of global transitions. A global transition t ∈ Θ is a collec-
tion of synchronized local transitions. As synchronized local
transitions are interrelated, they will all belong to the same
cluster. Additionally, transitions connected with cause-effect
relations belong to the same cluster.

The clustering algorithm (Algorithm 1) captures both these
types of relations between transitions. It processes global
transitions from Θ in order. When the ith transition t ∈ Θ is
processed, RelatedClusters computes a collection R of zero
or more clusters which we call a support cluster set for t.
By definition, a support cluster set is a subset of the clusters
built so far with the property that applying their transitions in
the same order as in Θ, starting from the initial state, results
in a state where the preconditions of t hold. Furthermore, a
support cluster set is set-inclusion minimal.

Notice that it is possible that several support cluster sets
exist for a transition t. For example, a given precondition of t

could be supported independently by two different transitions
t′ and t′′ belonging to two different clusters c′ and c′′. We
can add either c′ or c′′ to a support cluster set. Our algorithm
builds only one support cluster set per transition t. The imple-
mentation detailed in Algorithms 2 and 3 favors considering
as related to t the most recent of transitions t′ and t′′.

Depending on the size ofR, one of the following outcomes
can happen in MergeClusters: (i) If |R| = 0, a new cluster is
created and t is added to the new cluster. Since t doesn’t need
any of the previous transitions in the scenario to support its
preconditions, t is considered independent from the previous
transitions. In this case, t becomes the seed of a new cluster.
(ii) When only one cluster is sufficient to support t’s precon-
dition, t is added to that cluster (|R| = 1). (iii) When two
or more existing clusters are required to support t’s precondi-
tions (|R| > 1), all those clusters are merged and t is added
to the resulting cluster.

Algorithm 1 Clustering(Σ,Θ)
C ← ∅ {initialize set of clusters}
for all t ∈ Θ do
R ← RelatedClusters(C, t) {return zero or more clusters
related to transition t}
c← MergeClusters(R) {return one (possibly empty) clus-
ter}
extend c to include t
c→ C {add c to set of clusters}
C ← C \ R {remove previously merged clusters}

return C

Algorithm 2 RelatedClusters(C, t)
R ← ∅ {initialize set of clusters related to t}
T ← C {copy the contents of C into temporary data structure}
for all c ∈ C do

if Related(T , c, t) then
c→ R

else
T ← T \ {c}

return R

Algorithm 3 Related(C, c, t)
T ← C \ {c} {initialize temporary data structure}
θ ← all transitions from T in order
σ ← γ(σ0, θ) {apply transitions contained in θ starting in
initial state σ0 and store resulting state σ}
if t is applicable in σ then

return false {t is independent from c}
else

return true {t depends on c}

4.2 Root Cause Analysis
Root cause events are the unexplained spontaneous events,
whose preconditions do not necessarily depend on other
events. For example, in the scenario depicted in Figure 4,

the transient fault on line A-B is the root cause of the entire
large cluster of events. Root cause idenfication is immediate
from the scenario: we simply select those spontaneous events
labelled as unexplained or faults.

The combination of alarm clustering and root cause anal-
ysis offers an additional option, allowing to focus root cause
analysis on a subset of the alarms.

4.3 Alarms Independent of Catastrophic Events
A catastrophic fault can create a cascade of many follow-up
alarms. Such follow-up alarms get mixed in the alarm log
with alarms that are independent from the catastrophic event.
As a result, incident-independent alarms could get lost unless
they can be automatically filtered from the alarm log.

Alarm clustering is well suited to provide such function-
ality. Once a scenario is partitioned into clusters, the set of
incident-independent alarms can be computed as the set of
alarms from the clusters that do not contain the incident event.

4.4 Live Alarms
Our fourth alarm filtering technique is highlighting what we
call “live” alarms. Intuitively, live events are part of a pro-
cess that has started but not yet converged back to the normal
(nominal) state of the involved network components. For ex-
ample, the alarm “Line C-D KV LIMIT HIGH” in Figure 1 is
a live alarm, since it indicates that the component is not in its
nominal state. However, subsequence “Line A-B KV LIMIT
LOW” followed by “Line A-B KV LIMIT NORMAL” is not
live, since the component is at the end back in its nominal
state.

Model based reasoning followed by scenario clustering of-
fers a good basis for highlighting live alarms. Selecting only
the alarms from clusters whose current last state is not a nom-
inal state will provide the desired functionality.

5 Experiments
TransGrid, the operator of the transmission network in New
South Wales, provided us with the topology of their network
(i.e., the list of components and connections between compo-
nents), and a log containing 2246 entries (alarms and com-
mands). The log covers roughly fifteen hours: the first two
thirds are routine operation, then a major fault situation arises
and the rest of the log chronicles the operators’ efforts to re-
configure the network to restore service.

Based on this data we built a model of the TransGrid
network, including a discrete state/transition model of each
component type, and the network topology which determines
event synchronisations between components, as discussed in
Section 3.1. We focused on a subset of alarm types, mainly
those related to the primary electrical system (e.g., switch
gear state changes, high/low voltages, etc). Restricted to
these types, the total number of observations (alarms and
commands) is only 731.

For the purpose of experimentation, we split the alarm log
into (a) fixed size (one minute) time windows, and (b) vari-
able sized windows separated by periods of at least one min-
utes silence (i.e., where no alarm is generated). This gave us

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

R
un

tim
e

in
 m

s

Number of unexpected events

Figure 5: Runtime wrt the number of unexplained events.

129 problem instances. For each of those we extract a cor-
responding model, which contains only the parts of the net-
work that are potentially relevant to reasoning about this set
of alarms. This subnetwork is computed iteratively, starting
with the components that emitted the alarms in the instance
alarm log. Components that may influence (according to the
model) components already in the subnetwork are added, un-
til a fixpoint is reached.

For each problem instance, we ran the diagnoser to gener-
ate a preferred scenario, and then used the methods presented
in the previous section to generate clusters of alarms. We set
a limit of one minute for the entire process (scenario gener-
ation and filtering). This is somewhat generous, as operators
would probably prefer an answer within a few seconds, but
our implementation being only a prototype, we believe it can
be easily improved by a factor of 10 or more.

Out of 129, 16 instances were not solved within the time
limit. The most difficult of these instances involves 105 com-
ponents and 146 alarms, and the SAT problem was so large (in
terms of boolean variables and clauses in the SAT formula)
that it could not even be read by the SAT solver; the simplest
one involves 36 components and 16 alarms. However, what
really makes the problem hard is the number of unexplained
events. Remember that the preferred scenario is defined as
the path in the model that matches the observations and min-
imizes the number k of unexplained events. Therefore, the
problem is much simpler when k is small. This is illustrated
Figure 5. The model we used in the experiments is quite sim-
ple, and in many cases is not able to link a single unexplained
event to as many alarms as it should. A more precise model
would decrease k, and hence improve both the runtimes and
the quality of scenarios.

There are no metrics to determine how good a filtering is:
on the one hand, having few clusters shows that many alarms
are related, while on the other, having many clusters shows
that unrelated events have been successfully taken apart. Nev-
ertheless, the usefulness of the filtering method is obvious in
several cases. For the example log in Figure 1, for exam-

ple, a large cluster of related alarms (the four circuit breakers
opening to isolate a line and later reclosing), and a single root
cause for this cluster, is identified, and the second of the re-
maining two of unrelated alarms (showing voltage fluctuating
in a different part of the network) is highlighted as live. An
unrelated event like this can be quite important, while being
very easy to miss in the flood of alarms. Our alarm processor
can draw the operator’s attention to it.

6 Conclusions
Intelligent alarm processing tools are important for control
room operators who supervise and manage large-scale sys-
tems, such as power networks. Scalable and accurate alarm
processing capabilities are becoming even more critical as
increasing instrumentation of networks generates a dramat-
ically larger volume of alarm data.

Earlier approaches to alarm processing have been predom-
inantly syntactic, based on text-level filtering or shallow sys-
tem models. We have presented an approach that uses a com-
prehensive model of a network, including functional models
of all components as well as the global behavior that emerges
from intercomponent interactions. Online model-based di-
agnosis ensures that important information, such as the cur-
rent state of the network, is taken into account when applying
alarm processing algorithms. We demonstrated our ideas on a
model representing the network of a leading Australian trans-
mission company.

Future work includes developing a more refined and de-
tailed network model, and analysing several scenarios at a
time, for a more comprehensive diagnosis. We are also inter-
ested in performing alarm processing incrementally, updating
the output as new alarms arrive.

Acknowledgments
We thank TransGrid for permission to use their data.

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
[Anbulagan and Grastien, 2009] Anbulagan and A. Grastien.

Importance of variables semantic in CNF encoding of car-
dinality constraints. In Symposium on Abstraction, Refor-
mulation and Approximation, 2009.

[Cassandras and Lafortune, 1999] C. Cassandras and
S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

[Cordier et al., 1998] M.-O. Cordier, J.-P. Krivine, P. La-
borie, and S. Thiebaux. Alarm processing and reconfig-
uration in power distribution systems. In Tasks and Meth-
ods in Applied Artificial Intelligence, volume 1416, pages
230–241. Springer, 1998.

[Dahlgren et al., 1998] R. Dahlgren, G. Rosenwald, C. C.
Liu, S. Muchlinski, A. Eide, and D. Sobajic. Model-based
synthesis and suppression of transformer alarms in a con-
trol center environment. Power Delivery, IEEE Transac-
tions on, 13(3):843–848, 1998.

[Grastien et al., 2007] A. Grastien, Anbulagan, J. Rintanen,
and E. Kelareva. Diagnosis of discrete-event systems using
satisfiability algorithms. In 22nd Conference on Artificial
Intelligence (AAAI-07), 2007.

[Guo et al., 2010] W. Guo, F. Wen, Z. Liao, L. Wei, and
J. Xin. An analytic model-based approach for power sys-
tem alarm processing employing temporal constraint net-
work. Power Delivery, IEEE Transactions on, 25(4):2435–
2447, 2010.

[Ipakchi and Albuyeh, 2009] A. Ipakchi and F. Albuyeh.
Grid of the future. IEEE Power and Energy Magazine,
7:52–62, 2009.

[Kirschen and Wollenberg, 1992] D. S. Kirschen and B. F.
Wollenberg. Intelligent alarm processing in power sys-
tems. Proceedings of the IEEE, 80(5):663–672, 1992.

[Laborie and Krivine, 1997a] P. Laborie and J-P. Krivine.
Automatic generation of chronicles and its application to
alarm processing in power distribution systems. In Inter-
national Workshop on Principles of Diagnosis (DX’97),
pages 61–68, 1997.

[Laborie and Krivine, 1997b] P. Laborie and J.-P. Krivine.
Gemo: A model-based approach for an alarm processing
function in power distribution networks. In International
Conference on Intelligent System Application to Power
Systems (ISAP’97), pages 135–141, 1997.

[Larsson and DeBor, 2007] J. E. Larsson and J. DeBor. Real-
time root cause analysis for complex technical systems. In
IEEE 8th Human Factors and Power Plants and HPRCT
13th Annual Meeting, pages 156–163, 2007.

[Larsson, 2002] J. E. Larsson. Diagnostic reasoning based
on means-end models: experiences and future prospects.
Knowledge-Based Systems, 15(1-2):103–110, 2002.

[Lin et al., 1998] Y.-K. Lin, M.-S. Tsai, Y.-Y. Hong, and Y.-
C. Tsuei. Application of model based intelligent alarm
processor for the power supply system of the mass rapid
transit system of taipei. pages 387–392, 1998.

[Lin et al., 2004] W.-M. Lin, C.-H. Lin, and Z.-C. Sun.
Adaptive multiple fault detection and alarm processing for
loop system with probabilistic network. Power Delivery,
IEEE Transactions on, 19(1):64–69, 2004.

[McDonald et al., 1991] J. R. McDonald, G.M. Burt, and
D. J. Young. Alarm processing and fault diagnosis using
knowledge based systems for transmission and distribution
network control. Transmission and Distribution Confer-
ence, Proceedings of the IEEE Power Engineering Society,
pages 280–286, 1991.

[Meza et al., 2001] E. M. Meza, J. C. S. de Souza, M. T.
Schilling, and M. B. Do Coutto Filho. Exploring fuzzy
relations for alarm processing and fault location in elec-
trical power systems. In IEEE Power Tech Proceedings,
2001.

[Moskewicz et al., 2001] M. W. Moskewicz, C. F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an ef-
ficient SAT solver. In Proceedings of the 38th ACM/IEEE

Design Automation Conference (DAC’01), pages 530–
535. ACM Press, 2001.

[Protopapas et al., 1991] C. A. Protopapas, K. P. Psaltiras,
and A. V. Machias. An expert system for substation fault
diagnosis and alarm processing. Power Delivery, IEEE
Transactions on, 6(2):648–655, 1991.

[Taisne, 2006] J. Taisne. Intelligent alarm processor based
on chronicle recognition for transmission and distribution
system. Power Systems Conference and Exposition PSCE
’06. IEEE PES, pages 1606–1611, 2006.

[Wen and Chang, 1997] E. S. Wen and C. S. Chang. Tabu
search approach to alarm processing in power systems.
Generation, Transmission and Distribution, IEE Proceed-
ings, 144(1):31–38, 1997.

[Wen et al., 1995] F. Wen, C. S. Chang, and D. Srinivasan.
Alarm processing in power systems using a genetic al-
gorithm. Evolutionary Computation, IEEE International
Conference on, 1995.

[Zanella and Lamperti, 2003] M. Zanella and G. Lamperti.
Diagnosis of active systems. Kluwer Academic Publish-
ers, 2003.

