
Simplifying diagnosis using LSAT: a
propositional approach to reasoning from first

principles

Andreas Bauer

Institut für Informatik
Technische Universität München

D-85748 Garching b. München, Germany
baueran@in.tum.de

Abstract. In face of the unwieldiness of non-monotonic logic solving
engines, or meta interpreters usually authored in Prolog/CLP as they
are commonly used for model-based reasoning and diagnosis, this paper
proposes a simple, but effective improvement for performing the complex
diagnostic task. The chosen approach is twofold: firstly, the problem of
contradicting first order system descriptions with a set of observations
is reduced to propositional logic using the notion of symptoms, and sec-
ondly, the determination of conflict sets and minimal diagnoses is mapped
to a problem whose technical solution has experienced a sheer boost over
the past years, namely k-satisfiability using state-of-the-art SAT-solvers.
Since the involved problems are (mostly) NP-complete, the ideas for ad-
ditional improvements for a more diagnosis-specific SAT-solver are also
sketched and their implementation by means of a non-destructive solver,
LSAT, evaluated.

Keywords: model-based reasoning, model-based diagnosis, SAT-solving,
system monitoring, formal specification.

1 Introduction

Ever since Reiter’s seminal work on diagnosis from first principles [19], the au-
tomated reasoning and model-based diagnosis communities have spawned a lot
of work on the implementation and improvement of the proposed as well as on
related ideas. Amongst these, probably the most influential ones have been Re-
iter’s own HS-algorithm and default logic [19, 4], the concept of abduction [20],
or even McCarthy’s notion of circumscription [16]. While reference implemen-
tations such as the General Diagnostic Engine [6] (GDE) realise some of these
ideas, many of these are still faced with time and space complexity problems,
mainly due to the sheer complexity of the underlying decision problems; see, for
instance, [22, 23].

Given a system S, the diagnostic task is to identify those parts or components
ci ∈ S which are assumed to be faulty in order to explain an observed behaviour
of S. If no such set of components can be isolated, then the system is assumed

to work according to its specification, i. e. is correct. According to the logic- and
consistency-based approaches to diagnosis, this task is performed by detecting a
contradicting behaviour of a system S when compared to its expected behaviour
which is captured by a system description SD ⊂ S. Such a contradiction is then
expressed in terms of a set of conflicts or diagnoses.

Moreover, in order to determine practically useful sets of conflicts and di-
agnoses that would allow hinting to specific, faulty parts of a system, all the
proposed diagnosis methods involve a subsequent task minimising the solutions
which, in itself, is a computationally complex undertaking. In Reiter’s case, for
instance, this task is not separable from the initial determination of conflicts.
However, his method relies on the availability of a suitable first order theorem
prover for finding at least a single conflict set to execute an algorithm for finding
minimal hitting sets of conflicts that constitute the diagnoses.

The hitting set problem, on the other hand, also known as the transversal
problem, is one of the key problems in the combinatorics of finite sets and the
theory of diagnosis per se. It turns out to be a hard problem which also helps to
explain the continuing hesitation of a broader industrial application of model-
based diagnosis techniques. Further, partly empirical, results from other authors
regarding the wieldiness of implementations for non-monotonic reasoning (i. e.
default logic, circumscription, etc.) second this conclusion (see § 5, for further
details on non-monotonic reasoning).

Contribution

This paper will show that the recent achievements in solving the k-satisfiability
problem with heuristic search algorithms and pruning using state-of-the-art SAT-
solvers can also be used for consistency based diagnosis and even for those cases
where the task is not related to merely boolean circuits and the likes. More so,
empirical results will show that, using a SAT based approach to diagnosis, one
can handle several thousand variables (i. e. abstract system components) at ease
and — when constrained to an appropriate n-fault assumption (see § 4.1) — even
tens and hundreds of thousands. Clearly, this is much more than non-monotonic
reasoning engines can currently handle in reasonable time and space.

Therefore the contribution of this paper is to introduce an alternative method-
ology (based on simple propositional logic) for diagnosing technical systems,
regardless as to whether these are software- or hardware-based, or both. Specif-
ically, LSAT is presented which is a prototype SAT solver tailored to perform
system’s diagnosis.

Outline

After a brief overview over the theory of consistency- and logic-based diagnosis
using system models in § 2, the transformation of the (non-monotonic) diagnostic
reasoning from first principles to propositional logic is then described in § 3.
LSAT, the main implementation vehicle for the concepts presented in this paper,
is outlined in greater detail in § 4, and an evaluation of the deployed algorithms

w. r. t. processing large combinatorical benchmarks is given in § 4.2. A section on
related work (§ 5) describes other recent results in complexity measures regarding
non-monotonic reasoning which seconds an important claim of this paper; that
is, diagnosis should be tackled using modern SAT-solvers with specific, problem-
oriented heuristics. Finally, § 6 presents some conclusions.

2 Consistency based diagnosis

In model and consistency based diagnosis1, the system to be diagnosed, S, is
determined by a tuple (SD,COMP), where SD constitutes a finite set of first
order sentences comprising a system description, and COMP a finite set of
components in S. The set of components can be of almost arbitrary granularity;
depending on the properties of the system to be diagnosed, COMP may refer to,
say, Java threads, user session objects within a web application, or even physical
entities such as sensors, actuators, or entire nodes of a computer network. The
overall system behaviour is then defined in terms of the components’ behaviours
and their causal dependencies, represented as shared variables/predicates.

2.1 Definitions

In this section, let us recall some notions, notations and terminology used later
in the paper.

Definition 1 (Observation). An observation for a system S = (SD,COMP)
is a finite set of first order sentences each comprising a mapping of in- and
outputs of S to actual/observed values: inputi, outputi : c ∈ COMP → Num.
The index i denotes the i-th input (resp. output) for component c, whereas Num
represents the class of all numerical sorts. An observation OBS for S is denoted
by (SD,COMP,OBS).

Example 1. The example system S depicted in Fig. 1 contains two multiplication
components, M1 and M2, and two summation components, A1, A2. We use the
more compact representation of an n-tuple 〈i1, . . . , i4,m1,m2, o1, o2〉 to capture
the model’s observed in- and output values in N. Hence, S = (SD, {M1,M2, A1,
A2}), with OBS = 〈2, 3, 4, 5, 6, 20, 26, 26〉. Without going much into further
detail at this point, SD basically captures the behaviour and causality of each
component. ♦

Diagnosis can be understood as the process of finding and isolating differences
between a system’s model, i. e. the intended behaviour, and reality, i. e. observed
behaviour. Typically, in order to reason about system models, at least one pred-
icate needs to be introduced for the mere purpose of representing “normal” and
1 From this point forward, the terms consistency-, logic-, and model-based are used

synonymously due to the similarities of these approaches and their common problems
w. r. t. complexity of their realisations.

i4

i3

i2

i1
M1

M2

m1

A1

A2 o2

o13

4

5

26

26

m2 20

6
2

SD = {mult(X) ∧ ¬AB(X)⇒
(output1(X) = input1(X) ·
input2(X)),
mult(M1),
output1(M1) = input1(A1), . . .},

COMP = {M1, M2, A1, A2},

OBS = 〈2, 3, . . .〉, short for
input1(M1) = i1 = 2,
input2(M1) = i2 = 3, . . .

Fig. 1. A simple system description for a multiplier and adder example.

“abnormal” parts of the system: ¬AB(c) denotes a component which works ac-
cording to its specification, while AB(c) denotes an abnormal component. A
diagnosis can now be defined w. r. t. to these predicates which help explain an
observed behaviour.

Definition 2 (Diagnosis). A diagnosis for a system S = (SD,COMP) is a
minimal set ∆ ⊆ COMP such that

SD ∪OBS ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMP\∆}

is consistent.

Proposition 1. ∅ is a diagnosis (and the only diagnosis) for (SD,COMP,OBS),
iff

SD ∪OBS ∪ {¬AB(c) | c ∈ COMP}
is consistent, i. e. iff the observation does not conflict with what the system should
do if all its components were behaving correctly. (For a proof, see [19, § 3].)

Using this definition and continuing with what is presented in Ex. 1, it is
self evident that substituting o1 with anything but 26 will lead to the conclusion
∆ = {A1}, i. e. ¬AB(M1), ¬AB(M2), ¬AB(A2), and AB(A1).

Definition 3 (Conflict Set). A conflict set for (SD,COMP,OBS) is a set
{ci, . . . , cj} ⊆ COMP with 1 ≤ i ≤ j such that

SD ∪OBS ∪ {¬AB(ci), . . . ,¬AB(cj)}

is inconsistent.

Hence, {M1, M2, A1, A2}, would be a conflict set for our example, given
o1 6= 26. Further, a conflict set for (SD,COMP,OBS) is called minimal, iff no
proper subset of it is a conflict set for (SD,COMP,OBS) at the same time.
That is, {A1} is a minimal conflict set. Diagnoses are then minimal conflict sets.

2.2 Reasoning with incomplete information

For those cases where obviously only a single component is at fault, finding
minimal conflict sets seems a straightforward task under the gross assumption
that OBS contains all relevant in- and outputs of the system, or its respective
diagnosis model. However, in practice, one cannot always rely on the availability
of complete information, but rather — and more realistically — on a black or grey
box view yielding partial information.

i4

i3

i2

i1
M1

M2

m1

A1

A2 o2

o1
27

26

m2

2

3

4

5

Fig. 2. Example of a black/grey box view where the values for m1 and m2 cannot be
observed. According to qualitative measures, o1 is faulty.

Example 2. If the network depicted in Fig. 1 is modified according to Fig. 2,
there is already a significantly larger amount of possible conflict sets — implicitly
depending on the values of {m1,m2} * OBS:

{M1,M2}, {M1, A1}, {M1}, {M2, A1}, {M2}, {A1}, {M1,M2, A1}.

Obviously, incomplete information creates a lot of diagnosis candidates, but
as the above example demonstrates, these are entangled with assumptions re-
garding the missing elements of OBS. In other words, {M2} is a conflict set, iff
the assignment for at least one unobservable connection contradicts the system
specification according to the set SD, e. g. m2 6= 20. ♦

3 A propositional solution

Of course, the traditional diagnosis approaches such as applications of default
logic, or abduction, although specifically tailored for dealing with incomplete and
inconsistent information, face increasing difficulties the more in- and outputs
remain unobservable. Reducing this problem to propositional logic, however,
suits this situation perfectly, given a number of prerequisites are fulfilled.

3.1 Combining qualitative and logical measures

Let us assume we have two different models of the system under consideration,
a) a qualitative model for reasoning about in- and output values of components,
and b) an abstract model representing only causality; we can then use predicates
that indicate whether an observation has been correct, or in error: ok(m1), for
instance, would indicate that a result of M1 is correct according to the qualitative
assertion. Such “micro-evaluations” are realistic in many real-world scenarios,
e. g. where sensor values are checked and compared, sometimes even multiple
times to rule out tampered results due to jitter.

Qualitative assertions are typically made by dedicated monitors which con-
tinuously interpret a system component’s in- and output values w. r. t. aberra-
tions from the specification. However, monitors are not part of SD themselves,
but rather constitute safety properties which ought to be fulfilled by single com-
ponents ci ∈ COMP , respectively.

In our case, these monitors are represented as predicates. That is, if the pred-
icate holds, an observed value is assumed correct, otherwise it hints to existing
aberrations. For example, the result of the boolean monitor β(output1(M1)) =
ok(output1(M1)) would indicate conformance of the observed value output1(M1)
to its specification.

Definition 4 (Symptom). Let S = (SD,COMP,OBS) be a system under
diagnosis. The ok-predicate is then defined over a subset of all in- and outputs,
of a component c ∈ COMP . A negative evaluation of ok(i ∈ OBS) is then called
a symptom for an error in S.

In other words, a negative result of a boolean monitor does not necessarily
indicate that the monitored component is at fault. It merely hints to the fact
that some component is faulty as captured in the following proposition:

¬ok(i ∈ OBS)⇒ ∃c∈COMP¬AB(c)2.

Unlike the AB-predicate which is defined only over ci ∈ COMP , ok is defined
w. r. t. to observable system values. This notion of a symptom is then used to
contradict the merely causal system specification and in order to distil a finite
set of negative AB-predicates; that is, faulty components.

3.2 Reduction of SD

An alternative and, foremost, only causal first order system description for Ex. 1
and 2 could be expressed as follows:

SD = {ok(i1) ∧ ok(i2) ∧ ¬AB(M1)⇒ ok(m1),
ok(i3) ∧ ok(i4) ∧ ¬AB(M2)⇒ ok(m2),
ok(m1) ∧ ok(m2) ∧ ¬AB(A1)⇒ ok(o1),
ok(m1) ∧ ok(m2) ∧ ¬AB(A2)⇒ ok(o2)}

2 Of course, c may be the monitored component, but this reasoning is part of the
deductive diagnosis process.

Assuming we can evaluate and thus know when at least some observables
w. r. t. ok hold, we can rewrite SD in terms of boolean variables and without
any predicates:

SD′ = {ok i1 ∧ ok i2 ∧ ¬AB M1 ⇒ ok m1,

ok i3 ∧ ok i4 ∧ ¬AB M2 ⇒ ok m2, . . .}
Notice, both system descriptions SD and SD′ are now comprising only causal

and structural information, contrary to the literature of consistency based diag-
nosis, where SD always includes the behavioural part which we have “sourced
out” in a separate, qualitative model which the monitors are based upon. Notice,
monitor generation itself is an active field of research and not directly scope of
this paper (see § 5).

Obviously, the mapping, Φ : pred ∈ (PL(Σ) → B) → var ∈ B, where
PL(Σ) denotes a first order predicate logic formula defined over a signature
Σ, is straightforward: each respective predicate, pred, is mapped to exactly one
distinctive variable vari of type B.

3.3 Hitting sets and minimality

Finding conflict sets due to contradictions between expected and observed be-
haviour is crucial for failure diagnosis. However, in accordance to Definition 2,
only the minimal diagnoses are of real, practical value. For this purpose, Reiter
proposes a hitting set algorithm which constructs a so called HS-tree [19] that
carries the minimal diagnoses, such that no diagnosis which is already included
as a subset of a previously found diagnosis is chosen.

Formally, the problem addressed by Reiter’s algorithm is as follows: a col-
lection of non-empty sets C = {C1, . . . , Cn} of a set C, representing conflicts, is
given. A hitting set (or transversal) of C is a subset H ⊆ C that meets every set
in the collection C. We call a hitting set minimal, if no proper subset of H is a
hitting set. More in depth information on the algorithm, specific optimisations,
and analyses may also be found in § 5.

Despite well known improvements [8, 19, 14], the minimal hitting set problem
remains generally NP-complete, and it is practically undesirable to perform a
thorough analysis when applied to diagnosis. Therefore, the chosen approach of
this paper is to define a maximum “failure threshold” instead which is reflected
in the diagnosis algorithm laid out in § 4.1. A diagnosis is then determined based
upon minimal cardinality of occurring AB-predicates in the solution set, rather
than upon the theory of set inclusion. Essentially, this allows us to improve on
the determination of conflicts and still yields practically relevant diagnoses using
the same algorithm; no subsequent procedure for minimalisation is required.

4 LSAT

In the previous section we have demonstrated how diagnosis related tasks such
as fault isolation and conflict set minimalisation are basically reducible to propo-
sitional logic, under the premise that a qualitative model, which can be used to

monitor symptoms, is available. Although the complexity of the involved deci-
sion problems has not shrunk to polynomial time, propositional (system) models
exhibit the advantage of being manageable by using SAT-solvers.

The purpose of a SAT-solver is to accept a formula, P , in clause normal form
(CNF), and to return a variable assignment {α(p1 ∈ P), . . . , α(pn ∈ P)}, such
that P evaluates to true. If no such assignment can be found, P is not satisfiable.

In recent years, the area of SAT-solving has advanced dramatically: CNF
formulas of hundreds of thousands or even millions of literals can now be handled
by state-of-the-art solvers, such as (z)Chaff [17], or SATO [24] to name just
two of the most popular solvers. These programs more or less are based on
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5] which constructs
semantic trees of CNF formulas. Normally, DPLL is a “destructive” algorithm in
a sense that it recursively splits the semantic tree — based on some heuristics —
and descends until a valid assignment has been found; many SAT-solvers indeed
work this way.

In contrast, LSAT3 is a SAT-solver which uses a non-destructive implemen-
tation of DPLL based on mutually linked lists of atoms and clauses (see Fig. 3)
where variable assignments are not recursively pushed on the runtime stack, but
are encoded in the global data structure itself, similar to [13, 15]. This way, LSAT
comes up with more than one truth assignment, if applicable.

Atoms

Clauses

neg-clauses:List<Clause>

value:int

abnormal:bool

pos-clauses:List<Clause>

Clause

pos-literals:List<Variable>

neg-literals:List<Variable>

inact:Variable

literals:int

. . .

cm

vnv1

c1

. . .

. . .

Variable

index:int

Fig. 3. LSAT’s internal CNF representation visualised with vi:Variable and ci:Clause.

3 LSAT has been released under the GPL open source license and is available in terms
of C++ code from the author’s home page at http://home.in.tum.de/∼baueran/
lsat/.

In general, other solvers may be modified likewise, e. g. by explicitly mar-
shalling the data on the runtime stack with each truth assignment, but by using
globally linked lists, the determination of a single solution set is equal in terms of
memory consumption to finding all possible solution sets. Thus, having a single
global data structure reduces the overall space complexity of the algorithm: only
linear space for the main data structure is required.

The flag ‘abnormal’ denotes a component c ∈ COMP , and ‘inact’ contains
a pointer to the variable which inactivated the current clause (NULL otherwise).
Initially all clauses are active, i. e. no truth assignment has been made. ‘pos-
clauses’ (resp. ‘neg-clauses’) is a list of pointers to clauses where the variable
occurs with positive sign. ‘pos-literals’ (resp. ‘neg-literals’) is a list of pointers to
variables which occur with positive sign in the clause. The rest is self explaining;
further details can be found in the implementation.

4.1 Computing single and multiple fault diagnoses

Due to its non-destructive nature and the linear space complexity, LSAT is well
suited for performing the diagnosis task based on propositional models. More
so, if LSAT is able to conclude one diagnosis for a model, it is able to conclude
all possible diagnoses, i. e. there is no need for a subsequent access to a theorem
prover in order to determine conflict sets, or the likes.

In contrast, the diagnosis related literature frequently proposes the so called
single fault assumption for two reasons: a) it is often realistic to assume merely
single components at fault, rather than a total failure of a whole set of com-
ponents, and b) most operations in non-monotonic reasoning approaches are
sufficiently expensive such that the occurrence of a single fault is often used
as (premature) exit condition. Naturally, the counterpart of the single fault as-
sumption is the multiple fault assumption [6, 12].

Generally speaking, LSAT supports the n-fault assumption (where n ≥ 0)
and uses the ‘abnormal’ flag in the data type Variable in order to determine
which diagnoses are useful, i. e. which are of a minimal cardinality w. r. t. the
number of faulty components. That is, ‘abnormal’ determines the set of potential
faults that are not symptoms (see Definition 4).

If defined, LSAT adheres to the n-fault assumption by keeping track of the
positively assigned “AB-atoms/predicates” and by cutting off the semantic tree
iff AB(ci)+. . .+AB(cj) > n. Trivially, n = 1 selects the single fault assumption,
n > 1 the multiple fault assumption.

Example 4. Given a system and observations S = (SD,COMP,OBS), as it is
depicted in Fig. 2, and an according propositional logic system description similar
to Ex. 3, we may use the presented concepts so far to explain o1 ∈ OBS = 27
as follows:

SD′′ = {¬[1/ok i1] ∨ ¬[2/ok i2] ∨ [9/AB M1] ∨ [5/ok m1],
¬[3/ok i3] ∨ ¬[4/ok i4] ∨ [10/AB M2] ∨ [6/ok m2],

¬[5/ok m1] ∨ ¬[6/ok m2] ∨ [11/AB A1] ∨ [7/ok o1],
¬[5/ok m1] ∨ ¬[6/ok m2] ∨ [12/AB A2] ∨ [8/ok o2], . . .}

SD′′ is obtained by applying Φ(SD) and performing a subsequent CNF con-
version which can be achieved in polynomial time [18]. Hence, SD′′ represents
the causal dependencies as well as possible states of our system using only natu-
ral numbers for each respective variable; 9, 10, 11, and 12 represent components
in S. Although of no particular semantic value, the substitutions with natural
numbers will be necessary for expressing SD′′ in terms of an extended DIMACS
format.

2-fault assumption: A snapshot of the semantic tree decision procedure for
our example is depicted in Fig. 4. In each “step”, the variables of (SD, COMP ,
OBS) are assigned and the set of models expanded. Here, α(AB(11)) = 1 ≡
α(11) = 1 violates the 2-fault assumption since α(9) = 1 and α(10) = 1 on
the same branch. The rounded arrow indicates one backtracking step in order
to continue the algorithm using an alternative assignment, α(11) = −1, i. e.
¬AB(11). In other words, the n-fault assumption is the pruning criterion for the
semantic tree procedure.

α(AB(9)) = 0

α(1) = 0

α(AB(11)) = 0

α(1) = 1

2-fault assumption
violated

α(AB(10)) = 1

α(AB(9)) = 1

α(AB(11)) = 1

Fig. 4. Semantic tree for the system of Ex. 2: α(x) are the truth assignments; bold
arrows indicate a valid assignment path, while the left-most path shows a violation of
the 2-fault assumption.

Using LSAT’s extended DIMACS format, this example could be encoded and
automatically solved as follows:

01 p cnf 12 18 Standard DIMACS header.

02 9 -1 -2 5 SD: causal dependencies of S.

03 10 -3 -4 6 (10 ∨ −3 ∨ −4 ∨ 6)

04 11 -5 -6 7
∧

(11 ∨ −5 ∨ −6 ∨ 7)

05 12 -6 -5 8
∧

. . .

06 -5 -9
07 -6 -10
08 -7 -11
09 -8 -12
10 a 9 10 11 12 COMP: the directive a defines the components in S.

11 1 OBS: ok(1)

12 2 . . .

13 3
14 4
15 -7 Symptom: ¬ ok(7). (Notice, {5, 6} * OBS.)

16 8
17 -9 9 Our hypotheses, i. e. all components may either be

18 -10 10 normal, or abnormal.

19 -11 11
20 -12 12

Similarly to the procedure shown in Fig. 4, LSAT is then able to determine
all models for S with at most two faulty components; symptoms are underlined,
“real” faults framed:

01 9 10 -11 -12 8 -7 -6 -5 4 3 2 1

02 9 -10 11 -12 8 -7 6 -5 4 3 2 1

03 9 -10 -11 -12 8 -7 6 -5 4 3 2 1

04 -9 10 11 -12 8 -7 -6 5 4 3 2 1

05 -9 10 -11 -12 8 -7 -6 5 4 3 2 1

06 -9 -10 11 -12 8 -7 6 5 4 3 2 1

Each of these six results encodes one valid truth assignment for S, such
that the contradicting observation, i. e. o1 = 27 can be explained under the
assumption that no more than two components are responsible for the failure.
Result #1, for instance, assumes AB(9) ∧AB(10) ∧ ¬AB(11) ∧ ¬AB(12). ♦

4.2 Evaluation

Clearly, the emphasis of LSAT is on model-based reasoning and diagnosis, rather
than trying to outperform programs like SATO or (z)Chaff. However, LSAT does
contain a couple of optimisations such as unit propagation and an implementa-
tion of the purity rule in order to deal with far bigger examples than shown in
this paper so far. In order to elaborate on the feasibility of the chosen approach,
a number of more or less standard benchmarks originating from the area of cir-
cuit design are shown in this section. This ISCAS set of benchmark circuits is
widely used by the ECAD community for testing several digital design tools.
The respective combinatorical tests range from several hundred to ca. 20,000
“components” and ca. 60,000 clauses.

Table 1. Modified ISCAS‘89 benchmarks under the n-fault assumption.

∞-fault 5-fault
Name: #COMP : #Var.: #Cl.: #Steps: CPU: #Steps: CPU:

s208.1 66 122 389 84 0.17 sec 60 0.25 sec
s298 75 136 482 27 0.11 sec 58 0.32 sec
s444 119 205 714 20 0.18 sec 105 0.91 sec
s526n 140 218 833 − timeout 295 0.23 sec
s820 256 312 1,335 − timeout 562 0.59 sec
s1238 428 540 2,057 38 0.97 262 0.21 sec
s13207 2,573 8,651 27,067 − timeout 17 0.57 sec
s15850 3,448 10,383 33,189 − timeout 41 0.17 sec
s35932 12,204 17,828 60,399 2,339 11.16 sec 29 0.21 sec

Table 1 summarises the results of applying a selection of tests to LSAT on a
Pentium 4 architecture with 512 MB of RAM using either the 5-fault assumption,
or no restriction at all. If a test could not be finished within 60 seconds, it was
considered to be a timeout.

Not surprisingly, the numbers substantiate the appropriateness of the pre-
sented concepts. Four tests could not be finished using the ∞-fault assumption,
while LSAT had no problems solving these tasks when constrained to five faults.
The variance between CPU time and the performed number of algorithmic steps
can be explained by the heuristic approach and variantly efficient accessor func-
tions in the LSAT tool.

5 Related work

There are recent works which have used SAT-solvers in order to diagnose and
debug the design of digital circuits, e. g. [1, 23]. However, research in this area
treats the solvers foremost as mere tools, disregarding a) the cardinality of the
models, and b) the adaption of the underlying algorithms and concepts. More
so, in the “digital world”, there is no need to reduce first order problems to
propositional logic, since a circuit is already digestible by the solver as is.

Closer to the ideas presented in this paper is research undertaken by Baum-
gartner et al. such as [2], for instance. They describe the DRUM-2 system which
is based on first order hypertableaux, and can be used for model-based reasoning
in the above sense. Their system is capable of finding minimal diagnoses based
on “abnormal components”, similar as it is implemented in LSAT. But the (sys-
tem) descriptions used by Baumgartner et al. are first order, and the results
suggest that the hypertableaux-based algorithms, therefore, do not scale to the
same extent as SAT-solving does, especially in light of recent developments in
this area [17]. In fact, the benchmarks indicate that the propositional approach
taken by LSAT performs quite well even without optimising any heuristics which
would help determining the most suitable free variable in a given CNF formula
for each computational step (e. g. similar benchmarks for hypertableaux with

only a 2-fault assumption applied are presented in [3] where, regardless of the
number of clauses (ca. 1,600–16,000), no solution set could be determined in less
than two seconds, and a notably high number of computational steps (between
160–1,500,000)).

Of course, first order systems are far more expressive than LSAT models,
but usually less efficient for the diagnosis algorithms. This becomes especially
apparent in non-monotonic logic. Recall, a logic is called monotonic if the truth
of a proposition does not change when new information, i. e. axioms, are added
to the knowledge base. In contrast, a logic is non-monotonic, if the truth of a
proposition may change when new information is added to or old information is
deleted from the base. Abduction, default logic, and the closed world assumption
of Prolog and CLP systems are examples for applications of non-monotonic logic.

Recent complexity results for abductive reasoning and default logic as origi-
nally considered for diagnosis by McCarthy and Reiter (amongst others) indicate
that only specific subsets and “sub-problems” can be dealt with in an efficient
manner [7, 4]. Diagnosis based on these prominent concepts remains subject to
restrictions which do not exist when using a reduced (but less expressive) propo-
sitional model of a diagnosable system along with suitable monitoring mecha-
nisms.

Both diagnosability, i. e. strategic placement of sensors, and generation of
monitors — often called observers — are active fields of research today; see, for
example, [21], [11], [10], and [9]. Hence, the diagnosis approach shown in this
paper should be considered an addition to these activities in order to complement
the reasoning about system failure and corresponding causes for it.

6 Conclusions

This work has presented an efficient approach to model-based diagnosis based on
k-satisfiability and models of minimal cardinality. The beauty of the proposed
solution lies in its simplicity, because it combines the advantages of state-of-
the-art SAT-solving and deals with large designs by pruning the search space
according to user defined criteria, i. e. n-fault assumption on AB-predicates.

The evaluation in § 4.2 hints to the scalability of this approach and its poten-
tial impact on system diagnosis and monitoring. More so, the algorithms used
require at most polynomial space and can be examined and tested in detail using
the freely available implementation of the presented LSAT program (see p. VIII).

Unlike many other SAT-solvers, LSAT is able to come up with all models
(under the n-fault assumption) yielding sensible conflict sets, hence diagnoses.
Although this notion of minimality is not correlated to Reiter’s original HS-
tree [19], thus set theory, it provides for technically useful diagnoses.

Depending on the system under consideration, the generation of monitors,
however, may vary dramatically. Possible realisations may be purely in software,
e. g. monitoring threads and middleware, or mostly in hardware, e. g. intelligent
sensors as increasingly used in the automotive domain, for instance. Although
this paper has focussed mainly on aspects of diagnosis, the combination with

monitoring techniques provides potential for a broader application of these tech-
niques, especially in scenarios where quality and safety properties are increas-
ingly important, e. g. embedded systems.

Acknowledgements

The author thanks his colleagues Gernot Stenz and Reinhold Letz for insightful
discussions regarding SAT-solving and for their comments on the technicalities
of the implementation. Martin Leucker, Martin Wildmoser, and the anonymous
referees provided valuable feedback on an earlier version of this paper.

References

1. M. Ali, A. Veneris, S. Safarpour, M. Abadir, R. Drechsler, and A. Smith. Debugging
Sequential Circuits Using Boolean Satisfiability. In 5th International Workshop on
Microprocessor Test and Verification (MTV’04), Austin, 2004.

2. P. Baumgartner, P. Fröhlich, U. Furbach, and W. Nejdl. Tableaux for Diagnosis
Applications. Technical Report 23–96, Universität Koblenz-Landau, Institut für
Informatik, Rheinau 1, D-56075 Koblenz, 1996.

3. P. Baumgartner, P. Fröhlich, U. Furbach, and W. Nejdl. Semantically Guided
Theorem Proving for Diagnosis Applications. In M. E. Pollack, editor, 15th In-
ternational Joint Conference on Artificial Intelligence (IJCAI 97), pages 460–465,
Nagoya, 1997. Morgan Kaufmann.

4. R. Ben-Eliyahu-Zohary. Yet some more complexity results for default logic. Arti-
ficial Intelligence, 139(1):1–20, 2002.

5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

6. J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97–130, 1987.

7. T. Eiter and T. Lukasiewicz. Complexity results for explanations in the structural-
model approach. Artif. Intell., 154(1-2):145–198, 2004.

8. R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction to the algorithm in
Reiter’s theory of diagnosis. Artificial Intelligence, 41:79–88, 1989.

9. J. H̊akansson, B. Jonsson, and O. Lundqvist. Generating online test oracles from
temporal logic specifications. STTT, 4(4):456–471, 2003.

10. K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer.
Electronic Notes Theoretical Computer Science, 55(2), 2001.

11. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Tools
and Algorithms for Construction and Analysis of Systems, pages 342–356, 2002.

12. Y. C. Kim, K. K. Saluja, and V. D. Agrawal. Multiple faults: Modeling, simulation
and test. In Proceedings of the 2002 conference on Asia South Pacific design
automation/VLSI Design, page 592. IEEE Computer Society, 2002.

13. C. M. Li and Anbulagan. Look-ahead versus look-back for satisfiability problems.
In G. Smolka, editor, CP, volume 1330 of Lecture Notes in Computer Science,
pages 341–355. Springer, 1997.

14. L. Li and Y. F. Jiang. Computing minimal hitting sets with genetic algorithms.
Algorithmica, 32(1):95–106, 2002.

15. I. Lynce and J. P. Marques-Silva. Efficient data structures for backtrack search
SAT solvers. In Proceedings of the 5th International Symposium on the Theory and
Applications of Satisfiability Testing (SAT), May 2002.

16. J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial
Intelligence, 13:27–39, 1980.

17. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), 2001.

18. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 6, pages 335–367. Elsevier Science B.V., 2001.

19. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

20. P. Torasso, L. Console, L. Portinale, and D. T. Dupré. On the role of abduction.
ACM Comput. Surv., 27(3):353–355, 1995.

21. Y. L. Traon, F. Ouabdesselam, C. Robach, and B. Baudry. From diagnosis to diag-
nosability: axiomatization, measurement and application. J. Syst. Softw., 65(1):31–
50, 2003.

22. F. Vatan. The complexity of the diagnosis problem. Technical Support Package
(TSP) NPO-30315, NASA Jet Propulsion Laboratory, Apr. 2002.

23. A. Veneris. Fault Diagnosis and Logic Debugging Using Boolean Satisfiability. In
Fourth International Workshop on Microprocessor Test and Verification Common
Challenges and Solutions, Austin, Texas, May 2003.

24. H. Zhang. SATO: an efficient propositional prover. In Proceedings of the Inter-
national Conference on Automated Deduction (CADE’97), volume 1249 of LNAI,
pages 272–275, 1997.

