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Abstract

The electronic components in present-day automobiles asedoon
networks of electronic control units (ECU) running embetideftware.
The development of distributed, concurrent software apfithns based
on such ECU networks is becoming increasingly complex arat-g@rone.
In current practice, system-level views of the network asgety used to
characterise technical constraints such as performanoé@esents, and
to choose the hardware and software components accordingigntrast,
the semantic integration of the distributed functions @Edglly deferred
to later points in the development process, yielding a hffgrtefor inte-
grating and validating such distributed functions. To &ddrin particular
this issue, our paper advocates a more stringent use ofléghmod-
els based on distinct abstractions and a well-defined beheliseman-
tics. We introduce the corresponding notations and toold the overall
methodology developed to support a stepwise developmetisoibuted
automotive applications. The paper then details on theegssdi using
such high-level models to facilitate deployment, and taobtow-level
implementations from integrated system models.

1 Introduction

Until recently, the electronic control system in a vehiclaswmostly concerned
with light switches, windshield wipers, or starter motdi®awhich were, more
or less, realised as isolated systems provided from indigpersuppliers. Tra-
ditionally, the software for such embedded systems wasemehted in a rel-
atively low-level fashion as C, or Ada programs, and oftaedly in terms of
native machine code. The last decade, however, saw an siegease of in-
tegrated development toolkits such as ASCET [1], or the 8ikiReal-Time



Workshop [2] which facilitate reuse and provide retargit@eneration of code
based on dataflow models.

However, the nowadays increasing number of distributed &€@Wehicles
imposes fundamentally different problems for the autoweothdustry which
is not tackled by the existing tool support alone. The slgadhdata between
ECUs that communicate via dedicated busses and bus pret@eal. CAN,
MOST) allows the integration of additional functionality lawer costs. Con-
sequently, this domain now requires different abstraclamels to be able to
capture the actual dataflow between distributed ECUs instiecles as well.

Such higher-level models are also necessary to simulateexifg the be-
haviour and communication between ECUs to guarantee fetysahd reliabil-
ity of the deployed software. Ideally, the abstract modkds &acilitate reuse on
various levels of abstraction. In a distributed systemlaieal solutions at the
level of programming languages are clearly not suitabléHese requirements.
However, high-level models raise a number of other issueggi: for exam-
ple, is it feasible to use them directly for code generatiom idomain which,
traditionally, confronts its users with limited computatal resources?

Therefore in§ 2, this paper first outlines such a typical target platform fo
(safety critical) embedded software as we encounter it prently in the auto-
motive domain. The actual partitioning and deploymentassare described in
§ 5 for which we first introduce abstractions and system dgsaoris that will
also help classify the presented concepts in a realistanzative industry con-
text. Additionally, we briefly sketch the synchronously aked computational
model underlying our modelling formalism.
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Figure 1: A distributed target architecture.

2 An Abstract Target Platform

Our abstract target consists of a network of ECUs connedted faus. As can
be seen in Fig. 1, each ECU is embedded intmst nodevhich consists of the
ECU itself, an operating system, a device driver modulerf@rfacing the bus,
one or many application tasks, and a dedicated communickayer.



The horizontal bar at the bottom of Fig. 1 indicates that tinecfional-
ity contained within a high-level system model may be agbily distributed
among the nodes of the network, i. e. distribution of a fuorlity is transparent
in a top-down systems view. (Note that the terms “functiomd &unctionality”
are used as synonyms in this context to describe a certdity,adni property of
the system.)

The dedicated communication layer is merely a wrapper ardbe inter-
task communication between applications of spatially spd ECUs. Its main
purpose is to manage resources needed to buffer signalsewdrenecessary
(see als@ 5.1). Communication itself, however, is handled by the devdrivers
which can be automatically generated for each ECU and pobtaciant.

3 Abstraction & System Description

With the ongoing shift in the automotive industry towardstdbuted — and
ideally reusable — software components, practitionerqatéaced with a uni-
form system view anymore, e. g. source code. Componentoareesigned to
be automaticallydeployed in a range of different vehicle types within a sing|
class many of which offer, say, varying on-board electramintrollers as well
as a different number of available ECUs for deployment. Onoaenabstract
level, the behavioural view of the rather differently dgg@dd components is ex-
pected to remain constant though. Fig. 2 illustrates hofermdint abstract views
on automotive software components can be assimilated toanom integrated
system model.
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Figure 2: Abstract system views.

The view on functional dependencies is, typically, the natisttract model
of an automotive software system. It captures the structaneell as the func-
tional dependencies common to a class of vehicles by the sassmnefacturer.
A component view, on the other hand, contains the interriatdction patterns
of individual software components in terms of dataflow, camination and
behaviour. This is already sufficiently expressive anditbetdo allow for vali-
dation and simulation of designs, while an operational yigpically, contains



aspects which are unigue to the actual target platform. fslureuse of com-
ponents gets increasingly difficult with a decreasing lefelbstraction.

Each level needs to be associated with a number of custonmiptéast tech-
nigues, first to allow for independent top-down systemsgiese. g. abstract
definition of sensor and actuator components, and secondlg Subsequent
refinement down to a mapping onto actual hardware.

Functional Dependencies. Common to this view are structure oriented views,
i. e. system structure diagrams (SSD), to describe the ibetmacture of
a system. Typically, SSDs are specified as hierarchical coemt net-
works where components communicate tyipedanddirected channels
and typedports similar to the visual representation of UML-RT [3] and
some Architecture Description Languages.

Component View: In this abstraction, we require a description of the indi-
vidual software components to be complete with respect t@adieur.
Therefore, the employed description techniques, typicalclude state
transition diagrams (STD), low-level dataflow diagrams [DFor more
message-oriented diagrams (see also [4]). DFDs can be diep@n as
a refinement of SSDs and describe the algorithmic dataflowrdog
during a computation. They consist of components perfagrtiire com-
putation (i. e. blocks), interface elements of those corapts(i. e. ports),
and connections between those interface elements (i. enels.

Operational Model: The operational model employs a similar visual represen-
tation as the component view — cluster communication diagrgCCD) —
but it is an implementation-driven refinement containingsth details
essential for deployment. CCDs then represent the main atatipnal
units (i. e. clusters, abstract tasks) that intedictly with the real-time
operating system (scheduler) and the dedicated compugiiiayer; that
is, clusters are the least distributable units from thegirsteed system
model: clusters are not split across two tasks and are ale@ysected
using explicit signal sampling operators (Spgand§5.2). In this con-
text, however, clusters must not be confused with TTP-etsg5].

Note, at this point, we abstain from giving a more detailedcdption of
the individual visual representations and their exact ertigs as the important
graphical notations relevant for this paper are introdung® and§ 5 by prac-
tical examples, respectively.

4 Computational Model & System Behaviour

The behavioural model of the systems described in this pagbat of current
AuTOFocus [6, 4] models. It is based on th&/nchrony hypothesigsing a
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discrete notion of time. The synchronous paradigm [7, 8idadly states that a
system reacts to external stimuli within one instant, ihe. delay between in-
ternal computations cannot be observed. This approachmimeed widespread
acceptance in the control and hardware design domainssdadyely compat-
ible with the commercially established tools such as ASGETimulink. As
opposed to several other approaches used for real-timdfispgon and pro-
gramming, the discrete-time semantics and deterministicarrency keep be-
havioural evaluation of large designs manageable. Titeokocusframework
is based on such a deterministic time-synchronous intexgwa: components
communicate through timestreams where each stream uses the same global
time base.

In order to support the multiform event patterns and freqgigsnobserved
in typical real-time systems, each stream of signals iscist®nl with aclock
Similar to other synchronous dataflow languages [7], am@Focusclock can
be thought of as a boolean stream that merely indicates whattalue is cur-
rently presenttf), or not (f). Clocks characterise streams both external, such
as frequencies imposed by surrounding actors or real-tonstaints, and in-
ternal to the system: by using clock inference propertiesrternal clocks can
be inferred from the according inputs, respectively. (Khofithe integration of
black-box “legacy components”, for example.)

Our current tool prototypes provide both automated infeeeaf internal
clocks and static checking of well-formedness of the model, detecting ab-
sence of causal cycles and a soundness verification of cldtiksimplementa-
tion is very similar to that of a static type system in strgrtybed programming
languages.

In AuToFocus, each clock is defined w.r. t.laase clock k£, which is the
fastest clock in and underlying a system; that is, the mostdiined time
scale upon which a system reacts to external stimuli. The bkek itself is
represented by the boolean expressign. e. the expression that evaluates to
true at any instance ok. A model's clock expressions are typically ordered
using a<-relation.

Furthermore, in ATOFOCuUSiIt is not only possible to infer clocks, but also
to make up new ones based on other clock expressions. The DéDig Fig. 3
bears an explicitvhen operator which samples the input strearo the rate of
boolean stream; that is,a’ = a whenevern evaluates tdt. The output and
input ports are depicted by black and white rectangles eisely.

In accordance with the notion of using clock expressionsofah system
model’s entities can be represented using a dedicateddgeduased on expres-
sions. Consequenthgxpressionsn AuToFocusrange over channels, ports,
and combinations thereof using dedicated operators.



Figure 3: Explicit signal sampling in DFDs.

Let Exp be the set of all such expressions used in a system model and

let Expp denote the set of all boolean expressions. We can now irteodu
function ck which gives us the actual clock of anye Exp:

ck : Exp — Expg.

Example. To illustrate how clocks are put into practice, let's assuhs the
following virtual values are being transmitted in the moaklt is given in Fig. 3
wherer denotes an absent signal/value:

a: 1 2 3 4 5 6 7 8

b: tt ff t ff t ff tt ff
¢ =awhenb: 1 7 3 7 5 7 7 7

cc 0 1 » 2 7 4 7

Obviously, a never yieldsr, indicating that its clock is exactly the system’s
base clock. Here, sampling is necessary sifcexpects its inputs both at the
same pace as every second “tick” relative to the base clock. Hence vihen
operator projects the streadrto the slower clock explicitly defined by boolean
streamb. Note, however, up sampling works accordingly and is acdeaysing
the same operator. O

In order to allow for well-defined feedback loops and to pdevimemory
slots holding temporary values, explicit delay operataes reecessary. Fig. 4
depicts a model which makes use of an explicit delay blocidbland white
diamond shape) that behaves as follows: a value is held ferctotk period
respectively; the period is determined by the clock spedti@ftream setting
that value.

Here, the delay is used to “feed back” a previous valug’sfcomputation,
b. Each delay block is associated with an initial value. Nbt the clock of the
delayed signal equals the clock of the original signal. Thahe clock ofd’ is
that ofb, and ifck(a) = ck(b), thenck(a) = ck(b) = ck(d’).
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Figure 4: DFD with delayed signal.

5 Partitioning and Deployment

One inherent property of SSDs inuAkoFocusis the underlying assumption
that communication between components is always delayedgach connect-
ing channel contains exactly one implicit delay operat®dhis property of SSDs
enforces the introduction of “predefined breaking poimigijch will be needed
on the Operational View level to partition the design intdiudual tasks. From
a methodological point of view, this definition facilitatébge individual and also
more independent development of each specified componelhe Igraphical
notation, delayed communication is expressed with roupdets (see Fig. 5).

Delayed
communication

) SSD
Components

Figure 5: Example SSD.

We will show in the following that the introduction of expiicielays in early
stages of development in our time-synchronous system naodeqdrerequisites
for deploying a distributed application across severadsasr even across net-
work of ECUs.

5.1 Communication Layer

Instead of dealing directly with inter-task communicatidata-consistency, and
I/0 handling, we define an abstract communication layer ‘theaps” all read
and write accesses, respectively (§&3. This layer acts as a kind of middle-
ware providing basic communication services and data iityetp the appli-
cation’s tasks running on it. In particular, the middlewarevides awr i t e
handler (similar tcsendMessage( ) service in OSEK COM [9]), and eead



handler for messages (similarRecei veMessage() in OSEK COM).

Effectively, the layer constitutes a transparent commatioa model for
each node and the tasks running on it, i.e. its technicalseg@n ensures
that sufficient heap (register, or buffer) space is allatatben messages need
buffering as is the case, for instance, when tasks with reiffeclock speeds
exchange signal frames. The following prerequisites aserdtl for the com-
munication layer to yield the desired behaviour in practice

e Execution of an accurate static analysis for minimal messdigcation,
e and predetermination of an appropriate task schedulingyigthgn.

Our AuToFocusbased prototypes already provide for the former by al-
lowing the static analysis and by associating appropriamory with each de-
lay operator in the model. Thexactrequired amount of temporary space in total
is then determined by a subsequent “clock comparison” ottmmunicating
tasks (se¢ 5.2).

For the remainder of the paper, we assume a rate-monotohédsling
policy, based on an operating system with a fixed-priorigepnptive scheduler,
where task priorities may be statically assigned; theddittgtation is, for in-
stance, imposed by the OSEK standard [10] for automotiveabipg systems.
Rate monotonicity simply asserts that tasks with smalleiope are assigned
higher priorities than tasks with greater periods [11].

5.2 Variablesand Message Slots

The operational system abstraction/view, as sketché@®jrrontains the transi-
tion from the hierarchic and connected SSD componentsctasteredsystem
view yielding all delay and sampling operators; that isgvaht implementation
details.

The CCDs then presentflat description of the time-synchronous system
model which allows for the static analysis of the heap (tegi®r buffer) con-
sumption in terms of message buffers as well as for (almaostirary partition-
ing variants: unlike SSDs which are grouped according te@eptual coherency
and as reusable units, CCDs are typically partitioned tweeit

¢ yield a maximum of technical efficiency in the implementatio

e to account for physical proximity of an application part #nsors and
actuators, or

¢ to adapt the software structure to other non-functionaliregqnents, such
as fault tolerance requirements.

There are also cases where it is required to partition CCEtels along the
same boundaries as SSD components. For instance, if comgohand B are
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known to be always mapped to different processors, thenltistecsA and B
should be fully disjoint, i. e. there exists no cluster camitey parts of bothA’s
and B’s functionalities.

Note that the semantics of SSD composition, i. e. every allaimcorpo-
rates a delay, ensures that the following delay constrdont&£CDs are met
given rate-monotonic scheduling and when communicatiiovis the bound-
aries of the SSD components. Létand B be a sending and a receiving cluster,
respectively:

ck(A) = ck(B), i.e. equally fast clocks. In this case, the priority 4% and
B'’s tasks are the same, so communication occurs delayedieict,ethe
communication layer needs to provide two message copiegid data
inconsistencies.

ck(A) < ck(B). When the clock of4 is faster than the clock a8, i. e. the pe-
riod is smaller, we may use undelayed communication; ong/raessage
copy is needed.

ck(A) > ck(B). Communication is delayed, when the clock 4fis slower
than the clock ofB; in this case, two message copies are needed.

Obviously, the above comparison of task periods and stagimany analysis
is only possible by extending the clock associations frodividual ports, or
channels to the entire clusters themselves. Thereforepeibodic designs, a
cluster clockis inferred as the “greatest common divisog¢q) of its individual
clock periods. Note that internal clocks cannot— by definitof blocks and
DFDs — be faster than the fastest external clock, so consgl¢ne clocks of
incoming channels/ports in order to determine a clustarkde fully sufficient.
The following examples elaborate on that.

Example (fast cluster — dow cluster). In Fig. 6(a) an example CCD con-
sisting of two clustersd and B is depicted. For the sake of simplicity, we
only consider periodic clocks, and write the clock perioéstrto the corre-
sponding ports. By attaching a label: 6, we indicate that a port holds a
value every 6th tick relative to the base clock; that is, in case we obtain
ck(A) = gcd(6,3,3) = 3. A writes signala, which is sampled by ahen-
operator and read as sigraby clusterB. Communication betweeA andB is
not delayed.

Furthermore, let's assume that clustércorresponds to a task, with a
period and deadline of 30ms, and that clugBecorresponds to a taskz with
a period and deadline of 60ms. In other wordg, andTz are each released
periodically at the beginning of their respective cyclesaolhare indicated in
Fig. 6(b) by black horizontal lines.
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Figure 6: Fast cluster writes to slower cluster.
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Both tasks are executed on the same ECU, and are schedutediagcto
the rate monotonic policy, i. €4 has a higher priority thafi’z. In order to
avoid data inconsistencies, for any stepl’s needs a stable valug during
the whole duration of its period. In the time scale, this @i¢gated by the grey
“needd” bar.

A new value for porta is provided periodically byl'4, indicated by the
“provide a” bar. Note, for any stef of B, the “providea;” bar starts chrono-
logically after the “need;,” bar.

Because of 4’s higher priority,b; will never actually be read befof&y has
finished its computation, and, has been written. We indicate this by a dashed
bar for “needb” during T'4’s activation. Therefore, we can safely associgte
with b, which corresponds to immediate communication in the mo8aice
the written variable and the read variable correspond tas#me memory lo-
cation, the communication layer does not have to performxatioit message
copy operation. This example has shown that communicatan fast to slow
clusters does not require the introduction of additiondhykein the model. O

(a) CCDs connected using a delay.

A ] [ [

oms 20ms 40ms 60ms

(b) Bent need-provide interference-
polygon (grey).

Figure 7: Slow cluster writes to faster cluster.
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Example (dow cluster — fast cluster). Fig. 7(a) depicts a CCD with two
clustersA and B. The overall cluster clock ofl is 6, B’s is 2. Now the slower
clusterA writes to the faster cluster, and the clocks are in a relatigrek(A) >
ck(B). According to the rules on page 8, an explicit delay is impasesuch
cases, indicated by the diamond-shaped operator betwapdb.

Fig. 7(b) shows how the delay relates to the time scale of tseweiated
tasksT 4 (period/deadline 60ms) arig; (period/deadline 20ms). Sineg(A) >
ck(B), the “need b” period can be safely extendedigs period of 60ms.

This illustrates that if all tasks meet their respectivediieas, for any steg,

T will never read;, beforea;_, has been written. We can, therefore, safely as-
sociateay,_ 1 with by, for anyk, corresponding to a delay in the model. The black
double-headed arrows indicate explicit message copy tipesaperformed by
the communication layer. O

6 Conclusions& Summary

In this paper we have shown that deployment related issuéseirdevelop-
ment of distributed automotive controlling software, likesertion of explicit
delays in a time-synchronous system model, must not nadgdsadriven in a
bottom-up manner, but can also be asserted high-level amal & top-down
perspective. Given the underlying assumptions regardimgdulability and
the various static analyses, the introduction of delay afjpes in early devel-
opment stages through the use of SSDs yields several adeantéirstly, the
delays constitute predetermined breaking points in suks#gefinement and
implementation processes, and secondly upon partiticenmagclustering of the
components, delays must not be added manually, i. e. thenakigpmmunica-
tion structure remains mostly unchanged. The latter isquéatly important,
because essentially it means that a formerly verified beheaai model of the
system, remains stable in the final implementation; all thglémentation’s de-
lays have been present in the structural view as well. Thigils the validation
and verification efforts drastically and increases theabilisy of components.

Although, as we have sketched §%.2, delays are not always essential to
support, say, the writing of a fast cluster to a slower clustéowever, early
assertion of a delay does not alter the communication’s\belaif inserted
after the down sampling operator that lies in between the CCD elastWhat
is more, in that case it is theoretically possible to asseraritrary amount
of delay operators after the down sampling occurs; the trdmihg a higher
memory consumption due to excessive message buffering.

On the other hand, this example illustrates that top-dowerésd delay op-
erators do not necessarily guarantee for the most effigieplieimentation of a
distributed application. In fact, this paper comprisesaadroff between these
very aspects of optimisation and the advantages of havipgrage, reusable
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and verifiable system components. In other words, usingrésepted method-
ology results in lower verification efforts on the one hantj & a less efficient
implementation on the other.

Furthermore, irf 3 we have introduced and sketched several graphical no-
tations to support the presented development processtabdied embedded
systems: a hierarchical SSD description to capture a systmrarall structure,
DFDs to express a component’s computation and dataflow, &idk@o explic-
itly visualise deployment details and to facilitate pastiing according to, say,
“clock boundaries”, or SSD component boundaries. (Contparé&SSD-driven
partitioning, a clock-driven strategy groups clustersoading to common clock
speeds which often results in faster implementations.)

Editors for the discussed notations, the key algorithmsetlgpthg the anal-
ysis (e. g. clock inference and well-formedness checks)tamaarious abstract
system views are already supported by a tool prototype basdbe existing
AuToFocusframework.
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