
Model-Based Deployment in Automotive
Embedded Software:

From a High-Level View to Low-Level
Implementations

Andreas Bauer, Jan Romberg
Institut für Informatik, Technische Universität München

Boltzmannstr. 3, D-85748 Garching b. München, Germany
{baueran|romberg}@in.tum.de

Abstract

The electronic components in present-day automobiles are based on
networks of electronic control units (ECU) running embedded software.
The development of distributed, concurrent software applications based
on such ECU networks is becoming increasingly complex and error-prone.
In current practice, system-level views of the network are merely used to
characterise technical constraints such as performance requirements, and
to choose the hardware and software components accordingly. In contrast,
the semantic integration of the distributed functions is typically deferred
to later points in the development process, yielding a high effort for inte-
grating and validating such distributed functions. To address in particular
this issue, our paper advocates a more stringent use of high-level mod-
els based on distinct abstractions and a well-defined behavioural seman-
tics. We introduce the corresponding notations and tools, and the overall
methodology developed to support a stepwise development ofdistributed
automotive applications. The paper then details on the issues of using
such high-level models to facilitate deployment, and to obtain low-level
implementations from integrated system models.

1 Introduction

Until recently, the electronic control system in a vehicle was mostly concerned
with light switches, windshield wipers, or starter motors all of which were, more
or less, realised as isolated systems provided from independent suppliers. Tra-
ditionally, the software for such embedded systems was implemented in a rel-
atively low-level fashion as C, or Ada programs, and often directly in terms of
native machine code. The last decade, however, saw an increasing use of in-
tegrated development toolkits such as ASCET [1], or the Simulink Real-Time

1

Workshop [2] which facilitate reuse and provide retargetable generation of code
based on dataflow models.

However, the nowadays increasing number of distributed ECUs in vehicles
imposes fundamentally different problems for the automotive industry which
is not tackled by the existing tool support alone. The sharing of data between
ECUs that communicate via dedicated busses and bus protocols (e. g. CAN,
MOST) allows the integration of additional functionality at lower costs. Con-
sequently, this domain now requires different abstractionlevels to be able to
capture the actual dataflow between distributed ECUs insidevehicles as well.

Such higher-level models are also necessary to simulate andverify the be-
haviour and communication between ECUs to guarantee for safety and reliabil-
ity of the deployed software. Ideally, the abstract models also facilitate reuse on
various levels of abstraction. In a distributed system, isolated solutions at the
level of programming languages are clearly not suitable forthese requirements.
However, high-level models raise a number of other issues though: for exam-
ple, is it feasible to use them directly for code generation in a domain which,
traditionally, confronts its users with limited computational resources?

Therefore in§ 2, this paper first outlines such a typical target platform for
(safety critical) embedded software as we encounter it prominently in the auto-
motive domain. The actual partitioning and deployment issues are described in
§ 5 for which we first introduce abstractions and system descriptions that will
also help classify the presented concepts in a realistic automotive industry con-
text. Additionally, we briefly sketch the synchronously clocked computational
model underlying our modelling formalism.

Application

Operating System

Device Driver

Communication Layer

ECU 1

Application

Operating System

Device Driver

Communication Layer

ECU 2

Frames

Signals

Network / BUS

Functionality / Function

Figure 1: A distributed target architecture.

2 An Abstract Target Platform

Our abstract target consists of a network of ECUs connected via a bus. As can
be seen in Fig. 1, each ECU is embedded into ahost nodewhich consists of the
ECU itself, an operating system, a device driver module for interfacing the bus,
one or many application tasks, and a dedicated communication layer.

2

The horizontal bar at the bottom of Fig. 1 indicates that the functional-
ity contained within a high-level system model may be arbitrarily distributed
among the nodes of the network, i. e. distribution of a functionality is transparent
in a top-down systems view. (Note that the terms “function” and “functionality”
are used as synonyms in this context to describe a certain ability, or property of
the system.)

The dedicated communication layer is merely a wrapper around the inter-
task communication between applications of spatially separated ECUs. Its main
purpose is to manage resources needed to buffer signals whenever necessary
(see also§5.1). Communication itself, however, is handled by the device drivers
which can be automatically generated for each ECU and protocol variant.

3 Abstraction & System Description

With the ongoing shift in the automotive industry towards distributed — and
ideally reusable — software components, practitioners arenot faced with a uni-
form system view anymore, e. g. source code. Components are now designed to
beautomaticallydeployed in a range of different vehicle types within a single
class many of which offer, say, varying on-board electroniccontrollers as well
as a different number of available ECUs for deployment. On a more abstract
level, the behavioural view of the rather differently deployed components is ex-
pected to remain constant though. Fig. 2 illustrates how different abstract views
on automotive software components can be assimilated to a common integrated
system model.

Functional Dependencies

D
et

ai
ls

Integrated System Model

Component View
(Communication, Behaviour, Simulation)

Operational View
(Partitioning & Deployment)

P
ossibility to R

euse

Figure 2: Abstract system views.

The view on functional dependencies is, typically, the mostabstract model
of an automotive software system. It captures the structureas well as the func-
tional dependencies common to a class of vehicles by the samemanufacturer.
A component view, on the other hand, contains the internal interaction patterns
of individual software components in terms of dataflow, communication and
behaviour. This is already sufficiently expressive and detailed to allow for vali-
dation and simulation of designs, while an operational view, typically, contains

3

aspects which are unique to the actual target platform. Naturally, reuse of com-
ponents gets increasingly difficult with a decreasing levelof abstraction.

Each level needs to be associated with a number of custom description tech-
niques, first to allow for independent top-down systems design, e. g. abstract
definition of sensor and actuator components, and secondly for a subsequent
refinement down to a mapping onto actual hardware.

Functional Dependencies: Common to this view are structure oriented views,
i. e. system structure diagrams (SSD), to describe the overall structure of
a system. Typically, SSDs are specified as hierarchical component net-
works where components communicate viatypedanddirected channels
and typedports, similar to the visual representation of UML-RT [3] and
some Architecture Description Languages.

Component View: In this abstraction, we require a description of the indi-
vidual software components to be complete with respect to behaviour.
Therefore, the employed description techniques, typically, include state
transition diagrams (STD), low-level dataflow diagrams (DFD), or more
message-oriented diagrams (see also [4]). DFDs can be viewed upon as
a refinement of SSDs and describe the algorithmic dataflow occurring
during a computation. They consist of components performing the com-
putation (i. e. blocks), interface elements of those components (i. e. ports),
and connections between those interface elements (i. e. channels).

Operational Model: The operational model employs a similar visual represen-
tation as the component view — cluster communication diagrams (CCD) —
but it is an implementation-driven refinement containing those details
essential for deployment. CCDs then represent the main computational
units (i. e. clusters, abstract tasks) that interactdirectly with the real-time
operating system (scheduler) and the dedicated computational layer; that
is, clusters are the least distributable units from the integrated system
model: clusters are not split across two tasks and are alwaysconnected
using explicit signal sampling operators (see§ 4 and§5.2). In this con-
text, however, clusters must not be confused with TTP-clusters [5].

Note, at this point, we abstain from giving a more detailed description of
the individual visual representations and their exact properties as the important
graphical notations relevant for this paper are introducedin §4 and§ 5 by prac-
tical examples, respectively.

4 Computational Model & System Behaviour

The behavioural model of the systems described in this paperis that of current
AUTOFOCUS [6, 4] models. It is based on thesynchrony hypothesisusing a

4

discrete notion of time. The synchronous paradigm [7, 8] basically states that a
system reacts to external stimuli within one instant, i. e. the delay between in-
ternal computations cannot be observed. This approach has enjoyed widespread
acceptance in the control and hardware design domains, and is largely compat-
ible with the commercially established tools such as ASCET,or Simulink. As
opposed to several other approaches used for real-time specification and pro-
gramming, the discrete-time semantics and deterministic concurrency keep be-
havioural evaluation of large designs manageable. The AUTOFOCUSframework
is based on such a deterministic time-synchronous interpretation: components
communicate through timedstreams, where each stream uses the same global
time base.

In order to support the multiform event patterns and frequencies observed
in typical real-time systems, each stream of signals is associated with aclock.
Similar to other synchronous dataflow languages [7], an AUTOFOCUSclock can
be thought of as a boolean stream that merely indicates whether a value is cur-
rently present (tt), or not (ff). Clocks characterise streams both external, such
as frequencies imposed by surrounding actors or real-time constraints, and in-
ternal to the system: by using clock inference properties the internal clocks can
be inferred from the according inputs, respectively. (Think of the integration of
black-box “legacy components”, for example.)

Our current tool prototypes provide both automated inference of internal
clocks and static checking of well-formedness of the model,i. e. detecting ab-
sence of causal cycles and a soundness verification of clocks. The implementa-
tion is very similar to that of a static type system in strongly typed programming
languages.

In AUTOFOCUS, each clock is defined w. r. t. abase clock, k, which is the
fastest clock in and underlying a system; that is, the most fine-grained time
scale upon which a system reacts to external stimuli. The base clock itself is
represented by the boolean expressiontt, i. e. the expression that evaluates to
true at any instance ofk. A model’s clock expressions are typically ordered
using a≤-relation.

Furthermore, in AUTOFOCUS it is not only possible to infer clocks, but also
to make up new ones based on other clock expressions. The DFD given in Fig. 3
bears an explicitwhen operator which samples the input streama to the rate of
boolean streamb; that is,a′ = a wheneverb evaluates tott. The output and
input ports are depicted by black and white rectangles, respectively.

In accordance with the notion of using clock expressions, all of a system
model’s entities can be represented using a dedicated language based on expres-
sions. Consequently,expressionsin AUTOFOCUS range over channels, ports,
and combinations thereof using dedicated operators.

5

when

F

b

a

c

a’

d
A

k mod 2 = 0

B

Figure 3: Explicit signal sampling in DFDs.

Let Exp be the set of all such expressions used in a system model and
let ExpB denote the set of all boolean expressions. We can now introduce a
functionck which gives us the actual clock of anye ∈ Exp:

ck : Exp → ExpB.

Example. To illustrate how clocks are put into practice, let’s assumethat the
following virtual values are being transmitted in the modelas it is given in Fig. 3
whereτ denotes an absent signal/value:

a: 1 2 3 4 5 6 7 8 ...
b: tt ff tt ff tt ff tt ff ...

a′ = a when b: 1 τ 3 τ 5 τ 7 τ ...
c: 0 τ 1 τ 2 τ 4 τ ...

Obviously, a never yieldsτ , indicating that its clock is exactly the system’s
base clock. Here, sampling is necessary sinceF expects its inputs both at the
same pace asc: every second “tick” relative to the base clock. Hence, thewhen

operator projects the streama to the slower clock explicitly defined by boolean
streamb. Note, however, up sampling works accordingly and is achieved using
the same operator. �

In order to allow for well-defined feedback loops and to provide memory
slots holding temporary values, explicit delay operators are necessary. Fig. 4
depicts a model which makes use of an explicit delay block (black and white
diamond shape) that behaves as follows: a value is held for one clock period
respectively; the period is determined by the clock speed ofthe stream setting
that value.

Here, the delay is used to “feed back” a previous value ofF ’s computation,
b. Each delay block is associated with an initial value. Note that the clock of the
delayed signal equals the clock of the original signal. Thatis, the clock ofa′ is
that ofb, and ifck(a) = ck(b), thenck(a) = ck(b) = ck(a′).

6

F

a

a’
b

Figure 4: DFD with delayed signal.

5 Partitioning and Deployment

One inherent property of SSDs in AUTOFOCUS is the underlying assumption
that communication between components is always delayed (i. e. each connect-
ing channel contains exactly one implicit delay operator).This property of SSDs
enforces the introduction of “predefined breaking points”,which will be needed
on the Operational View level to partition the design into individual tasks. From
a methodological point of view, this definition facilitatesthe individual and also
more independent development of each specified component. In the graphical
notation, delayed communication is expressed with roundedports (see Fig. 5).

A

B

C

D

Delayed
communication

SSD
Components

Figure 5: Example SSD.

We will show in the following that the introduction of explicit delays in early
stages of development in our time-synchronous system modelare prerequisites
for deploying a distributed application across several tasks, or even across net-
work of ECUs.

5.1 Communication Layer

Instead of dealing directly with inter-task communication, data-consistency, and
I/O handling, we define an abstract communication layer that“wraps” all read
and write accesses, respectively (see§2). This layer acts as a kind of middle-
ware providing basic communication services and data integrity to the appli-
cation’s tasks running on it. In particular, the middlewareprovides awrite
handler (similar toSendMessage() service in OSEK COM [9]), and aread

7

handler for messages (similar toReceiveMessage() in OSEK COM).
Effectively, the layer constitutes a transparent communication model for

each node and the tasks running on it, i. e. its technical realisation ensures
that sufficient heap (register, or buffer) space is allocated when messages need
buffering as is the case, for instance, when tasks with different clock speeds
exchange signal frames. The following prerequisites are essential for the com-
munication layer to yield the desired behaviour in practice:

• Execution of an accurate static analysis for minimal message allocation,

• and predetermination of an appropriate task scheduling algorithm.

Our AUTOFOCUS-based prototypes already provide for the former by al-
lowing the static analysis and by associating appropriate memory with each de-
lay operator in the model. Theexactrequired amount of temporary space in total
is then determined by a subsequent “clock comparison” of thecommunicating
tasks (see§ 5.2).

For the remainder of the paper, we assume a rate-monotonic scheduling
policy, based on an operating system with a fixed-priority preemptive scheduler,
where task priorities may be statically assigned; the latter limitation is, for in-
stance, imposed by the OSEK standard [10] for automotive operating systems.
Rate monotonicity simply asserts that tasks with smaller periods are assigned
higher priorities than tasks with greater periods [11].

5.2 Variables and Message Slots

The operational system abstraction/view, as sketched in§ 3, contains the transi-
tion from the hierarchic and connected SSD components to aclusteredsystem
view yielding all delay and sampling operators; that is, relevant implementation
details.

The CCDs then present aflat description of the time-synchronous system
model which allows for the static analysis of the heap (register, or buffer) con-
sumption in terms of message buffers as well as for (almost) arbitrary partition-
ing variants: unlike SSDs which are grouped according to conceptual coherency
and as reusable units, CCDs are typically partitioned to either

• yield a maximum of technical efficiency in the implementation,

• to account for physical proximity of an application part to sensors and
actuators, or

• to adapt the software structure to other non-functional requirements, such
as fault tolerance requirements.

There are also cases where it is required to partition CCD clusters along the
same boundaries as SSD components. For instance, if componentsA andB are

8

known to be always mapped to different processors, then the clustersA andB

should be fully disjoint, i. e. there exists no cluster containing parts of bothA’s
andB’s functionalities.

Note that the semantics of SSD composition, i. e. every channel incorpo-
rates a delay, ensures that the following delay constraintsfor CCDs are met
given rate-monotonic scheduling and when communication follows the bound-
aries of the SSD components. LetA andB be a sending and a receiving cluster,
respectively:

ck(A) = ck(B), i. e. equally fast clocks. In this case, the priority ofA’s and
B’s tasks are the same, so communication occurs delayed; in effect, the
communication layer needs to provide two message copies to avoid data
inconsistencies.

ck(A) < ck(B). When the clock ofA is faster than the clock ofB, i. e. the pe-
riod is smaller, we may use undelayed communication; only one message
copy is needed.

ck(A) > ck(B). Communication is delayed, when the clock ofA is slower
than the clock ofB; in this case, two message copies are needed.

Obviously, the above comparison of task periods and static memory analysis
is only possible by extending the clock associations from individual ports, or
channels to the entire clusters themselves. Therefore, forperiodic designs, a
cluster clockis inferred as the “greatest common divisor” (gcd) of its individual
clock periods. Note that internal clocks cannot — by definition of blocks and
DFDs — be faster than the fastest external clock, so considering the clocks of
incoming channels/ports in order to determine a cluster clock is fully sufficient.
The following examples elaborate on that.

Example (fast cluster → slow cluster). In Fig. 6(a) an example CCD con-
sisting of two clustersA and B is depicted. For the sake of simplicity, we
only consider periodic clocks, and write the clock periods next to the corre-
sponding ports. By attaching a labelx : 6, we indicate that a portx holds a
value every 6th tick relative to the base clock; that is, in our case we obtain
ck(A) = gcd(6, 3, 3) = 3. A writes signala, which is sampled by awhen-
operator and read as signalb by clusterB. Communication betweenA andB is
not delayed.

Furthermore, let’s assume that clusterA corresponds to a taskTA with a
period and deadline of 30ms, and that clusterB corresponds to a taskTB with
a period and deadline of 60ms. In other words,TA andTB are each released
periodically at the beginning of their respective cycles which are indicated in
Fig. 6(b) by black horizontal lines.

9

A

when

k mod 6 = 0

B

a:3 b:6

x:6

y:3

z:18

(a) Undelayed CCD.

TA

TB

TA

TB

0ms 30ms 60ms t

write(ak)

read(bk)

ak

bk

TA

write(ak+1)

k k+1
period TB

need b

provide a

period TA

(b) Copped need-provide interference-polygon
(grey).

Figure 6: Fast cluster writes to slower cluster.

10

Both tasks are executed on the same ECU, and are scheduled according to
the rate monotonic policy, i. e.TA has a higher priority thanTB . In order to
avoid data inconsistencies, for any stepk, TB needs a stable valuebk during
the whole duration of its period. In the time scale, this is indicated by the grey
“needb” bar.

A new value for porta is provided periodically byTA, indicated by the
“provide a” bar. Note, for any stepk of B, the “provideak” bar starts chrono-
logically after the “needbk” bar.

Because ofTA’s higher priority,bk will never actually be read beforeTA has
finished its computation, andak has been written. We indicate this by a dashed
bar for “needb” during TA’s activation. Therefore, we can safely associateak

with bk, which corresponds to immediate communication in the model. Since
the written variable and the read variable correspond to thesame memory lo-
cation, the communication layer does not have to perform an explicit message
copy operation. This example has shown that communication from fast to slow
clusters does not require the introduction of additional delays in the model. �

A

when

k mod 2 = 0

B

a:6 b:2

x:16

y:13

z:2

(a) CCDs connected using a delay.

TA

TB

TA

0ms 20ms 60ms t

write(ak)

read(bk)

40ms

TB

read(bk)

TB

TA

read(bk)

TB

read(bk+1)

bk

k k+1

ak-1 ak

(b) Bent need-provide interference-
polygon (grey).

Figure 7: Slow cluster writes to faster cluster.

11

Example (slow cluster → fast cluster). Fig. 7(a) depicts a CCD with two
clustersA andB. The overall cluster clock ofA is 6,B’s is 2. Now the slower
clusterA writes to the faster cluster, and the clocks are in a relationshipck(A) >

ck(B). According to the rules on page 8, an explicit delay is imposed in such
cases, indicated by the diamond-shaped operator betweena andb.

Fig. 7(b) shows how the delay relates to the time scale of two associated
tasksTA (period/deadline 60ms) andTB (period/deadline 20ms). Sinceck(A) >

ck(B), the “need b” period can be safely extended toTA’s period of 60ms.
This illustrates that if all tasks meet their respective deadlines, for any stepk,

TB will never readbk beforeak−1 has been written. We can, therefore, safely as-
sociateak−1 with bk for anyk, corresponding to a delay in the model. The black
double-headed arrows indicate explicit message copy operations performed by
the communication layer. �

6 Conclusions & Summary

In this paper we have shown that deployment related issues inthe develop-
ment of distributed automotive controlling software, likeinsertion of explicit
delays in a time-synchronous system model, must not necessarily be driven in a
bottom-up manner, but can also be asserted high-level and from a top-down
perspective. Given the underlying assumptions regarding schedulability and
the various static analyses, the introduction of delay operators in early devel-
opment stages through the use of SSDs yields several advantages: firstly, the
delays constitute predetermined breaking points in subsequent refinement and
implementation processes, and secondly upon partitioningand clustering of the
components, delays must not be added manually, i. e. the original communica-
tion structure remains mostly unchanged. The latter is particularly important,
because essentially it means that a formerly verified behavioural model of the
system, remains stable in the final implementation; all the implementation’s de-
lays have been present in the structural view as well. This lowers the validation
and verification efforts drastically and increases the reusability of components.

Although, as we have sketched in§ 5.2, delays are not always essential to
support, say, the writing of a fast cluster to a slower cluster. However, early
assertion of a delay does not alter the communication’s behaviour if inserted
after the down sampling operator that lies in between the CCD clusters. What
is more, in that case it is theoretically possible to assert an arbitrary amount
of delay operators after the down sampling occurs; the result being a higher
memory consumption due to excessive message buffering.

On the other hand, this example illustrates that top-down asserted delay op-
erators do not necessarily guarantee for the most efficient implementation of a
distributed application. In fact, this paper comprises a trade-off between these
very aspects of optimisation and the advantages of having separate, reusable

12

and verifiable system components. In other words, using the presented method-
ology results in lower verification efforts on the one hand, and in a less efficient
implementation on the other.

Furthermore, in§3 we have introduced and sketched several graphical no-
tations to support the presented development process of distributed embedded
systems: a hierarchical SSD description to capture a system’s overall structure,
DFDs to express a component’s computation and dataflow, and CCDs to explic-
itly visualise deployment details and to facilitate partitioning according to, say,
“clock boundaries”, or SSD component boundaries. (Compared to SSD-driven
partitioning, a clock-driven strategy groups clusters according to common clock
speeds which often results in faster implementations.)

Editors for the discussed notations, the key algorithms underlying the anal-
ysis (e. g. clock inference and well-formedness checks) andthe various abstract
system views are already supported by a tool prototype basedon the existing
AUTOFOCUS framework.

Acknowledgements

We would like to thank Timothy Bourke, National ICT Australia, Sydney, who
read and gave valueable feedback on early drafts of this paper.

References

[1] ETAS Engineering Tools GmbH.ASCET-SD Benutzerhandbuch, 2001.

[2] The MathWorks Inc.Using Simulink, 2000.

[3] B. Selic and J. Rumbaugh. Using UML for Modelling ComplexReal-Time
Systems.ObjecTime Limited/Rational Software White Paper, 1998.

[4] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies.
AutoFOCUS: A Tool for Distributed Systems Specification. InFormal
Techniques in Real-Time and Fault-Tolerant Systems, pages 467–470,
1996.

[5] H. Kopetz and G. Grünsteidl. TTP — A Protocol for Fault-Tolerant Real-
Time Systems.IEEE Computer, 27(1), 1994.

[6] The AUTOFOCUS Homepage. http://autofocus.informatik.tu-muenchen.
de/.

[7] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. LeGuernic, and
R. De Simone. The Synchronous Languages Twelve Years Later.Pro-
ceedings of the IEEE, 91(1):64–83, 2003.

13

[8] M. Broy and K. Stølen.Specification and Development of Interactive Sys-
tems:FOCUSon Streams, Interfaces, and Refinement.Springer, 2001.

[9] OSEK VDX consortium.OSEK/VDX Communication Version 3.01, 2003.

[10] OSEK VDX consortium.OSEK/VDX Operating System Version 2.2, 2001.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment.Journal of the ACM, 20(1), 1973.

14

