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Abstract

Automotive software development is inherently
complex and involves different stakeholders, phases,
and disciplines. The AutoMoDe approach to auto-
motive software development defines distinct levels of
abstraction for integrated development. To facilitate
the design and evolution of heterogeneous automotive
software, suitable views for each level are supported,
targeting development steps like instantiation, cluster-
ing, or deployment of functions. Analysis and synthe-
sis steps enabling a consistent development process
across these areas are integrated. The techniques de-
scribed have been integrated into the tool prototype
AutoFOCUS.

1. Introduction
The growing number of functionalities offered by

embedded systems and the increased need to combine
these functionalities into inter-operating networks has
drastically increased the complexity of automotive
software. Applying design and implementation tech-
niques for monolithic embedded software for these
rather different class of systems has lead to a rising
number of problems especially during the integration
phase.

Here, costly redesign cycles can be avoided by
using models for inter-operating functions, covering
early modeling as well as deployment, and supporting
a modular development across phases and organisa-
tions.

AutoMoDe is based on the AutoFOCUS tool-based
approach [4] targeting the modular development of re-
active, component-oriented systems. The AutoMoDe
approach specifically addresses the development of

∗This work has been supported by the German Bundesminis-
terium für Bildung und Forschung (BMBF) under reference number
01ISC08.

embedded control software. Therefore modular views
of the system under development for functional, log-
ical, and technical architectures, from early design to
deployment are introduced. Each of these architec-
tural levels is tailored toward the specific purposes as-
sociated with the level, like functional analysis, func-
tional design, or component clustering. By adding au-
tomated analysis and synthesis techniques, like clock
analysis or component construction, both within and
between these levels, a consistent and efficient devel-
opment process is supported.

Section 2 starts with a short overview of the Au-
toMoDe development process. Section 3 describes
the operational model which is the base for our work
in AutoMoDe. Section 4 briefly presents the nota-
tions together with the levels of abstraction which
we use. Our approach allows seamless modeling of
structure and behaviour of automotive software across
three levels of abstraction: from the capture of func-
tional dependencies, through a complete behavioural
and platform-independent representation, to a more
deployment-oriented structure. In Section 5 a sim-
ple example for modeling a traction control system
is sketched. Based on this example the necessary
steps for the translation and further refinement into an
ASCET/INTECRIO model is described in Section 6.
Section 7 gives a concluding summary.

Related work

For scanning related work, we note that AutoMoDe’s
contribution roughly fits in two categories: Firstly, a
methodical framework for automotive control systems
development is established, involving specific abstrac-
tion levels, transformation steps, and an embedding in
the automotive development process. Secondly, Auto-
MoDe provides technical contributions in the area of
modeling languages and semantic foundations, trans-
formation languages for CASE tools, and distributed
implementation of synchronous dataflow programs.



Methodology. There are a number of related meth-
ods for model-based design of automotive software
[13][14][20][24]. Besides some differences in detail,
all of the cited approaches use a number of defined
abstraction layers and supporting tools/notations for
incremental design of automotive control software,
comparable to AutoMoDe. On the other hand, using
several tools and notations at the design level, these
previous approaches typically do not achieve a tight
unification of syntax and semantics across different
system views and phases, as this is clearly difficult
in a heterogeneous setting. In AutoMoDe, using a
unified and semantically founded domain model sup-
ported by the AutoFOCUS tool framework [4], allows
the integration of novel technical contributions, such
as the use of transformation languages for refactoring
designs, or semantics-preserving refinement steps, in
an integrated automotive design method.

AutoMoDe is specifically based on results from
both the Automotive [24] and the EAST-EEA [20]
projects and addresses some prevailing deficits: com-
pared to Automotive project, instead of UML 1.x, Au-
toMoDe uses the AutoFOCUS notation, featuring an
explicit notion of components and their interfaces for
the description of the structures of embedded systems,
and appropriate support for modeling control algo-
rithms, such as data flow diagrams. AutoFOCUS is
tightly related to selected UML 2.0 concepts, so possi-
ble conformance to the UML standard is not regarded
as a critical issue. Compared to UML 2.0, which
is a generic standard and thus intentionally adapt-
able in many respects, AutoFOCUS has a well-defined
and unambiguous semantics without semantic varia-
tion points. The notational and semantic choices in-
herent in AutoFOCUS have been extensively validated
in a number of industrial case studies. Compared
to both EAST-EEA and Automotive, AutoMoDe also
puts a stronger emphasis on adequate ways of model-
ing and preserving behavioural aspects of embedded
control systems, as opposed to merely modeling struc-
tural aspects of a design.

Since the structual part of AutoMoDe is based on
a component-based paradigm, it can be seamlessly in-
tegrated with the “virtual functional bus” approach as
defined in AUTOSAR [17].

Technical contributions. The usage of explicit op-
erational modes for high-level decomposition of em-
bedded systems, and the design and semantical foun-
dation of appropriate languages, has also been brought
forward by other authors, for instance [11]. In addi-
tion to the idea of using explicit notations for opera-
tional modes, our approach employs such mode rep-
resentations across several levels of abstraction, espe-

cially for coarse-grained structuring of systems, and
investigates in particular transformations between dif-
ferent mode representations suited for different ab-
straction levels.

The concept of expressing frequencies and event
patterns as Boolean expressions (clocks), along with
an accompanying framework for checking and infer-
ring clocks, originates from the field of synchronous
programming languages [3]. Our clock checking and
inference procedure makes some different tradeoffs in
detail than the known clock calculi to combine com-
putational tractability of the procedure with adequate
expressivity of the modeling language.

Distribution of synchronous (dataflow) programs
is an active area of research. Related publications
in the area of semantics-preserving implementation
of synchronous programs by preemptively scheduled
tasks are, for instance, [1] and [22], again with differ-
ent tradeoffs in detail.

The use of the ODL transformation language to
translate between different representations and views
of model artefacts is reminiscent of the current devel-
opment of a transformation language standard in the
Object Management Group’s MDA [12] framework,
and related approaches for model transformation [9].

2. Overview
The AutoMoDe approach covers distinct aspects

of a model-based software design method:

Domain model An integrated domain model for the
development of automotive embedded software
is defined.

Notations The domain model comprises modeling
concepts which are syntactically combined in a
number of problem-oriented graphical and tex-
tual notations.

Abstraction levels For structuring the development
process several abstraction levels are proposed.

Toolchain The approach is supported by a toolchain
for editing, analysing and transforming models
at various abstraction levels.

To frame the description of both the individual ab-
straction levels and the employed notations and con-
cepts, we shall briefly describe the parts of the Au-
toMoDe toolchain relevant to this paper, shown in
Fig. 1. The relation of tools to abstraction levels is
straightforward: For the more abstract modeling lev-
els, we use the AutoFOCUS tool, which incorporates
the modeling notations used for the more abstract lev-
els, along with several options for model transforma-
tion and refinement which shall be discussed in the
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Figure 1. AutoMoDe refinement toolchain
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Figure 2. AutoMoDe abstraction levels

remainder of the paper. Towards more concrete and
implementation-oriented modeling, the toolchain uses
the ASCET [6], RTA OSEK Planner [10], and IN-
TECRIO [7] tools, which are established commercial
modeling tools used for development of automotive
embedded software.

Fig. 2 shows the abstraction levels incorporated by
AutoMoDe. The upper three levels are supported by
the AutoFOCUS tool:

Functional Analysis Architecture (FAA): This
level describes structural aspects of functions
and their communication dependencies. The
FAA description is intended to give a good
overview of the functionality and communi-
cation: The hierarchy is typically structured
in a user- and purpose-oriented way, and
ignores realisation constraints. The FAA-level
description concentrates on core application-

level algorithms: auxiliary functionality such
as sensor/actuator preprocessing, diagnosis-
and monitoring-related algorithms are not
considered.

Functional Design Architecture (FDA): The FDA
contains a complete description of the software
with respect to both structure and behaviour. The
focus is on behavioral validation of the software,
and on identifying reusable units. Compared
to the FAA structure, the FDA-level software
component structure is somewhat realisation-
oriented: for instance, for a vehicle dynam-
ics controller, a user-oriented partitioning into
“longitudinal” and “lateral” dynamics may be
abandoned in favor of a restructured design that
considers technical, organizational, and reuse-
oriented factors. Some implementation-specific
aspects such as clustering, detailed execution
timing, and implementation types will not con-
sidered on the FDA level

Logical Architecture (LA): In the AutoFOCUS-
related part of the logical architecture, the
software components of the developed system
are clustered into deployable parts, and tech-
nical informations such as execution timing
or implementation types are fully specified.
The purpose of the LA is thus to prepare
the design for the final steps of refinement
towards the Operational Architecture. Unlike
the FDA-level structure, which may consider
implementation-independent criteria such as
conceptual coherency or reuse concerns, LA-
level clusters are typically grouped according to
technical criteria stemming from the implemen-
tation, such as frequency of activation, priority,
or criticality. Consequently, functionality
running on the same ECU and within the same
task is grouped.

The lower two levels are supported by the com-
mercial tools ASCET, INTECRIO, and RTA OSEK
Planner:

Logical Architecture (LA): Beyond the information
available in the AutoFOCUS model, further im-
plementation details about OS schedules and
processes are specified in ASCET.

Technical Architecture (TA): Necessary infor-
mation about the platform, such as available
ECUs, I/O devices and communication buses, is
specified in the TA.

Operational Architecture: Code for the embedded
targets is generated and deployed.
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INTECRIO is used for integrating several clus-
ters of a developed software system with the used I/O
hardware and for deploying these clusters onto several
targets. ASCET deals with single clusters and the gen-
eration of C-Code for specific targets. RTA-OSEK is
used to refine the logical time to a real-time OS sched-
ule.

3. Operational Model

AutoFOCUS employs a message-based, discrete-
time communication scheme as its core semantic
model [5]. AutoFOCUS designs are built from net-
works of components or blocks exchanging messages
with each other and with the environment via ex-
plicit interfaces (message ports) and connectors (mes-
sage channels) between interfaces. Messages are
time stamped with respect to a global, discrete time
base. This computational model supports a high de-
gree of modularity by making component interfaces
complete and explicit. It also provides a reduced de-
gree of complexity: Because the discrete time base
abstracts from implementation details such as detailed
timing or communication mechanisms, the use of tim-
ing information below the chosen granularity of ob-
servable discrete clock ticks is avoided. Examples
for such detailed assumptions include the ordering
of message arrivals within one time slot, or the pre-
cise duration of message transfer. Real-time inter-
vals of the implementation are therefore abstracted by
logical time intervals. Note that the message-based
time-synchronous communication model does cater
for both periodic and sporadic communication as re-
quired for a mixed modelling of time-triggered and
event-triggered behaviour.

Modelling Real-Time Behaviour. In AutoFOCUS,
modelling of real-time behaviour and dependencies
occurs via dedicated sampling operators and the in-
troduction of dedicated unit delays. Basically, a sam-
pling operator relates messages streams with differ-
ent frequencies, whereas a unit delay realises a delay
of one logical time interval in the communication be-
tween two components or blocks.

In the AutoFOCUS notation, the various frequen-
cies and aperiodic event patterns of streams are repre-
sented in terms of clocks [3]. Each message stream in
AutoFOCUS is associated with a clock. The clock for
any given stream is a Boolean condition describing the
frequency or event pattern. At run-time, a clock eval-
uates to true whenever the associated message stream
has a non-absent value.

4. Abstraction Levels and Views
The different system abstractions and their sup-

ported views on the system (see Fig. 2) are central to
the model-based approach of AutoMoDe. The sys-
tem abstractions chosen are similar to those defined in
[20], but are adapted to match the model-based Auto-
MoDe development process. The respective abstrac-
tion levels and their corresponding use of the Auto-
FOCUS notations are introduced in the following.

4.1. Functional Analysis Architecture

The Functional Analysis Architecture (FAA) is the
most abstract level considered in AutoMoDe. The
FAA provides a system-level abstraction representing
the vehicle functionalities and their dependencies.

System Structure Diagrams. The dominating no-
tation used on the FAA level is called System Struc-
ture Diagram (SSD). SSDs are used for describing
a high-level architectural decomposition of a system,
similar to UML 2.0 component diagrams [15]. They
consist of a network of components, shown as rectan-
gles, with statically typed message-passing interfaces
(ports), shown as black and white circles. Explicit di-
rected connectors (i. e., channels) connect ports and
indicate the direction of message flow between com-
ponents. A component can be either be hierarchical,
so that it is recursively defined by another SSD, or
atomic, so that it is defined by a behaviour description
in one a number of specifically suited notations (see
Sec. 4.2). On the FAA level, being strongly focused
on structural modeling, it may be perfectly adequate
to leave the detailed behaviour unspecified. An exam-
ple FAA-level SSD is shown in Fig. 3.

Suited for the description of the structural aspects
of both components and functions, the SSD formalism
uses delayed communication at the component level.
Discrete-time models require delays both for avoid-
ing causal cycles, and in order to be implementable in
later phases. Introduction of delays through SSDs is
thus a prerequisite for refining designs with reduced
revalidation effort. Note that SSDs are not unique to
the FAA, but will be used throughout the AutoMoDe
approach on other abstraction levels as well (see also
Sec. 4.2 and 4.3).

4.2. Functional Design Architecture

The AutoMoDe system abstraction Functional De-
sign Architecture (FDA) is a structurally as well as be-
haviourally complete description of the software part
of the system or a subsystem. The description is in
terms of actual software components that can be in-
stantiated in later phases of the development process.
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Figure 3. Example SSD component network on the FAA level

Typically the structure at the FDA is more realisation-
oriented than at the FAA, and more auxiliary function-
ality is included.

In contrast to FAA-level functionalities, atomic
SSD components in the FDA are required to have
a well defined behaviour. Behaviour specifications
of atomic components are allowed in terms of Data
Flow Diagrams, which specify algorithms in terms
of blocks communicating through data flows, Mode
Transition Diagrams, which decompose the compo-
nent’s behaviour into distinct operational modes, or
State Transition Diagrams, which specify reactive,
event-driven behaviour in an automaton style.

Data Flow Diagrams. Data Flow Diagrams (DFD)
define an algorithmic computation in a structure-
oriented manner. Graphically, DFDs are similar to
SSDs (see Fig. 4): DFDs are built from individ-
ual blocks with ports connected by channels. Typ-
ing of ports is dynamic, using type inference prop-
erties of operators. A block may be recursively de-
fined by another DFD. The behaviour of atomic DFD
blocks is given either through a Mode Transition Di-
agram (MTD), through a State Transition Diagram
(STD), or directly through an expression (function)
in AutoFOCUS’s base language [8]. For example,
block Difference in Figure 4 is defined by the
function ReferenceSpeed - WheelSpeed, where
ReferenceSpeed and WheelSpeed are port identi-
fiers for input ports of block Difference (identi-
fiers not shown). It is thereby possible to define ad-
equate block libraries for discrete-time computations
with this mechanism.

In contrast to the delayed composition primitives
in SSDs, the semantics of DFD composition is “in-
stantaneous”, in the spirit of synchronous languages
[3]. In the AutoFOCUS tool, instantaneous commu-

Figure 4. Example DFD for slip determination

nication primitives are accompanied by a causality
check for detecting instantaneous loops. Note that
computations “happening at the same time” in FAA-,
FDA- or LA-level models are perfectly valid abstrac-
tions of sequential, time-consuming computations on
the level of the Operational Architecture (OA) if the
abstract model’s computations are observed with a de-
lay, such as the delays introduced by SSD composi-
tion. The duration of the delay then defines the dead-
line for the sequential computation on the OA level.

Mode Transition Diagrams. Mode Transition Di-
agrams (MTDs) are used to represent explicit sys-
tem modes and alternate behaviours within modes (see
Fig. 5). MTDs consist of modes and transitions be-
tween modes. Transitions are triggered by certain
combinations of messages arriving at the MTD’s com-
ponent. The behaviour of the component within a
mode is then defined by a subordinate DFD or SSD
associated with the mode, which may be further de-
composed: Consequently, MTDs can be used up to
the highest levels in the model hierarchy. MTDs thus
provide a valuable means of architectural decomposi-
tion specifically suited for embedded control systems.
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Figure 5. Example MTD for operational modes
of a gasoline engine

Figure 6. Example STD for injection timing
control of a gasoline engine

State Transition Diagrams. State Transition Dia-
grams (STD) are extended finite state machines with
states and transitions between states (see Fig. 6).
STDs are similar to the popular Statecharts notation,
but with some syntactic restrictions, such as no AND-
states, no inter-level transitions, and restricted primi-
tives for preemption. Through the chosen restrictions,
semantic ambiguities allowed by some standard Stat-
echarts dialects [23] are avoided.

Though MTDs and STDs both specify control flow
and look similar at first glance, the two notations use
notably different syntax, and have largely orthogonal
purposes. STDs write to outputs and access local vari-
ables directly, while MTDs switch between different
subordinate behaviors, which in turn (indirectly) de-
termine their local states and the MTD’s outputs. Ac-
cording to preliminary experiences, the former seems
to be better suited for sporadic, event-triggered com-
putation, while MTDs are easier to reconcile with
switched periodic computation. Other than MTDs,
STDs are not suitable for high-level decomposition ac-
cording to control flow.

4.3. Logical and Technical Architecture

The Logical and Technical Architecture (LA, TA)
is the most implementation-oriented abstraction level
supported by AutoFOCUS. For the transition from

Figure 7. Simplified example CCD for traction
controllerr

FDA to LA, FDA-level components are instantiated
and grouped into clusters at the LA level. The TA
represents hardware and platform components (ECUs,
communication buses, message frames) used to im-
plement the system. A cluster can be thought of as a
“smallest deployable unit” in a software system. Con-
sequently, several clusters may be mapped to a given
operating system task at the OA level, but a given clus-
ter will not be split across several tasks.

While we use AutoFOCUS to demonstrate the Au-
toMoDe method, AutoFOCUS supports only some as-
pects of the LA and TA level. Therefore we use two
typical commercial tools, ASCET and INTECRIO, for
the descriptions at these levels.

Cluster Communication Diagrams. The notation
used for top-level definition of the LA structure is
called Cluster Communication Diagram (CCD). Syn-
tactically, CCDs are largely equivalent to DFDs, but
are named differently according to their specific me-
thodical purpose. Unlike general DFDs, CCDs un-
derly certain restrictions: blocks (clusters) have stati-
cally typed interfaces, and may not be recursively de-
fined in terms of other CCDs. Based on the clocks
and the implementation strategy, unit delays are en-
forced at certain cluster boundaries [2]. The type sys-
tem at the LA level is extended by implementation
types which capture the more or less platform-related
constraints associated with the implementation. Basi-
cally, an implementation type is the concrete realisa-
tion of an abstract type, such as Int8 being the 8-bit
realisation of the type Integer. Fig. 7 shows an ex-
ample CCD for the traction control system.

CCDs can be implemented by sets of commu-
nicating real-time tasks. Typical automotive imple-
mentation platforms may use preemptive scheduling
of tasks: this poses some challenges for implemen-
tation of deterministic, logical-time models inher-
ent in the CCD description. [2] outlines a method

6



for implementing multirate CCDs based on fixed-
priority, preemptive scheduling. The method uses
a deadline-monotonic mapping from clocked clus-
ters to prioritised tasks: the cluster with the small-
est inter-event arrival time corresponds to the task
with the highest priority. Inter-cluster communica-
tion is achieved by a wait-free inter-process commu-
nication (IPC) mechanism based on double buffer-
ing for data-consistent communication from low-
frequency to high-frequency tasks [16]. The real-
time, implementation-level delays correspond to de-
lays on the level of logical time in the CCD’s seman-
tics: with the AutoMoDe implementation scheme, the
zero-delay communication in logical time can only be
implemented in certain situations. On the level of log-
ical time, this corresponds naturally to the delay con-
straints inherent in CCDs. See [2] for further details
of the implementation scheme.

5. Example: Traction Control System
The incremental design of an automotive control

system with the AutoMoDe method will be demon-
strated by means of a Traction Control System (TCS).

Overview. A traction control system compares the
wheel speeds of the drive wheels of a two-wheel-
driven vehicle with the actual vehicle velocity. Wheel
speeds above the actual vehicle velocity indicate slip.
This slip will usually result from excessive engine
torque in relation to the given road conditions. In the
case of slip, two typical actions are taken.

1. If just one of the two drive wheels slips, the
brake calliper will be actuated.

2. If both drive wheels slip, the engine torque will
be reduced. In a gasoline engine, this is typically
achieved by manipulating the engine’s spark ad-
vance through its ignition system, or by reducing
throttle throughput. The case study examines the
latter option.

A TCS system typically interacts tightly with an
Antilock Braking Systems (ABS). The TCS and ABS
systems both use wheel/vehicle speed signals, and
both interact with brake callipers.

The TCS model. As the behavioural definition of
the StabilityIntervention component shown in
Fig. 3, the DFD in Fig. 8 defines the essential blocks
for general stability control and vehicle dynamics
intervention. Beyond the core Traction Control

block, the StabilityIntervention component is

Figure 9. DFD for Traction Control

Figure 10. DFD for SlipClassification RX

comprised of a reference speed determination, the
traction controller, a brake slip controller, an accel-
eration controller, as well as a coordination of the ac-
tuation requests for the brakes. The result of the brake
actuation request coordination is a pressure request to
the hydraulic valves which manage the fluid supply
to the brake callipers. The figure schematically il-
lustrates the frequency of execution for the different
blocks, which is specified by clocks on corresponding
message streams (not shown in the diagram).

Figure 9 shows the inner view of the
Traction Control block. From the wheel
speed signals a reference velocity is calculated
against which the actual wheel speeds are compared.
The resulting slip value is normalized w.r.t. the
vehicle velocity and then classified. The classification
yields, for each rear wheel, whether the value is
above a given threshold value (AboveLambda2), or
below a second threshold value (BelowLambda1).
The classification is used to trigger the throttle
manipulation algorithm in case of slip.

The slip determination is shown in Figure 4 while
the slip classification is shown in Figure 10. The En-
gineIntervention block in Figure 9 will influence the
current throttle position by a certain amount if the
wheelslip of both wheels is outside the limits.
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Figure 8. DFD for StabilityIntervention

The amount of throttle actuation is calculated in
the throttle control block which is part of the Power-
train component shown in top leftmost block of Fig-
ure 3. The throttle valve is itself a dynamic system
which is controlled by a PID controller computing a
setpoint for the throttle motor.

Corresponding to the different temporal resolution
of sensors and actuators, the different parts of the trac-
tion control system are executed at various frequen-
cies. For example, the wheel and vehicle speed deter-
mination might run in a 6ms task, while the traction
control might run in a 12ms task. Throttle control is
done every millisecond (Fig. 8). In AutoFOCUS the
rates are described as different clocks while in ASCET
or INTECRIO, the differently clocked clusters will be
assigned to disjoint tasks, each task triggered at a rate
corresponding to its clock in the model.

6. Refinement to ASCET/INTECRIO
Abstract modeling based on the message-based,

discrete-time semantics schema of AutoFOCUS, and
validating control algorithm at the FDA and LA lev-
els, is just one side of the coin in embedded automo-
tive software development. For retaining the prop-
erties established on the abstract levels, it is impera-
tive that the translation to a real-time system preserves
the model’s semantics. Real-time executables synthe-
sized with ASCET consists of tasks, which in turn

call void(void) routines (corresponding to the pro-
cess concept in ASCET) written in a sequential lan-
guage, such as C. Communication between ASCET
processes and tasks is either through global variables,
or through inter process communication messages
(IPC messages. ASCET modules group processes and
messages, and ASCET projects group modules.

The behavior of ASCET processes can be defined
either by state machines, a C-like language (ESDL),
detailed C code, or a block diagram notation. In or-
der to preserve the rich information in graphical Auto-
FOCUS models, the refinement tool chain makes ex-
tensive use of the block diagram option: each ASCET
block diagram consists of elementary operators, vari-
ables, and a total order of assignments for the given
process, indicated by enumerated sequence calls. Us-
ing a sequential, programming-centric semantics, AS-
CET block diagrams are thus very close a sequence
of assignments and corresponding right-hand-side ex-
pressions in a sequential programming language, and
have a notably different syntax and semantics than
AutoFOCUS DFDs.

In addition to the software described in an LA
model, there are plenty of hardware-related interfaces
to consider, such as drivers for I/O devices or interrupt
service routines (ISRs).

To translate AutoFOCUS models to real-time soft-
ware in ASCET, a refinement tool chain was devel-
oped in AutoMoDe, incorporating an AutoFOCUS re-
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finement plugin, and the ETAS tools ASCET [6],
RTA-OSEK [10], and INTECRIO [7]. This refine-
ment chain is shown in Fig. 1. We shall summarize
the entire refinement procedure briefly before describ-
ing it in more detail: The refinement tool translates
the clusters defined in message-based, discrete-time
model of AutoFOCUS to real-time modules, processes
and messages in ASCET, shown in the top middle
of Fig. 1. The ASCET code generator translates the
clusters to C code: the clusters are then integrated on
a rapid development target (lower right hand side of
Fig. 1). Target integration comprises the implemen-
tation of an OS schedule: The schedule is directly
derived from the clocks inherent in the AutoFOCUS

design. The hardware related interfaces, such as in-
terrupt routines for driving the I/O devices, are added
manually to the synthesized design.

In following, the applied transformation steps are
described in detail: Module Identification, Sequence
Call Generation, Cluster Definition, Software System
Construction, Target Integration, and OS Configura-
tion.

Module Identification and Sequence Call Gener-
ation. The AutoMoDe refinement algorithm trans-
forms CCD clusters to ASCET modules, each mod-
ule containing one ASCET process. As described in
Section 4.3, the clusters correspond to the “smallest
deployable units” of a design. Each CCD cluster, in
turn, is defined by a behavioral description in Auto-
FOCUS, such as a (possibly hierarchical) DFD.

Each cluster corresponds to a flat block diagram in
ASCET1. Within the hierarchically structured DFD,
the atomic AutoFOCUS blocks, whose behavior is
specified through expressions in a textual language,
are transformed into a number of operators, intercon-
nections, IPC messages, and corresponding sequence
calls in ASCET. The sequence call numbering can be
inferred from the causality inherent in the AutoFOCUS

semantics.
As a very simple example of block dia-

gram translation, we consider a limit check from
SlipClassification RX, where RX stands for ei-
ther RL or RR, and whose DFD is shown in Fig. 10.
It is checked whether the actual slip is above the
limit lambda2. The block ConstLambda2 provides
upper the limit lambda2: the block defined by a
simple textual constant (constructor function), see
Fig. 11. The block AboveLambda2 compares its two
inputs, Lambda2 and WheelSlip, and returns the re-
sult. The selector function wheel slip is needed

1Translating the AutoFOCUS model hierarchy to corresponding hi-
erarchy features in ASCET is technically feasible, but is not realised
in the current version of the refinement chain.

Figure 11. Properties of the ConstLambda2

Elementary Block

Figure 12. Properties of the AboveLambda2

Elementary Block

because the type WheelSlip is a “wrapper” data
type in AutoFOCUS, defined as: data WheelSlip =

MakeWheelSlip(wheel slip:Float). The trans-
lation of these two blocks into an ASCET block dia-
gram is shown in Figure 13.

The complete ASCET block diagram transla-
tion of the SlipClassification RX cluster from
Figure 10 is depicted in Figure 14. The
SlipClassification RX DFD is translated into a
block diagram with three sequence steps of one pro-
cess. The number of necessary ASCET processes is
derived from the number of different clocks used. In
the example of SlipClassification RX, only one
clock is modelled, so only one ASCET process is
needed. The assignment of sequence call numbers
follows from the causality inherent in the AutoFOCUS

DFD. In our example three sequence steps are needed.
Firstly, the NegWheelSlip variable is assigned as
part of an ASCET IF statement (/5/process), then
BelowLambda1 and AboveLambda2 are assigned
(/7/process and /8/process).

The translation is optimised such that only a min-
imal number of internal help variables representing
the channels is needed. In this example the internal
variable NegWheelSlip is introduced. This variable
stores the result of the limited negation of WheelSlip
DFD block, and is subsequently read for the computa-
tion of BelowLambda1 and AboveLambda2.

Each external port of a cluster is translated

Figure 13. ASCET block diagram for
AboveLambda2
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Figure 14. ASCET block diagram for
SlipClassification RX

Figure 15. ASCET module for
SlipClassification RL

into an IPC message. In the example the cluster
SlipClassification RX is translated into a mod-
ule as shown in Figure 15. CCDs are not explicitly
supported by the AutoFOCUS graphical editors, so in
the current translation clusters are AutoFOCUS compo-
nents marked with the stereotype <<cluster>> (not
shown in the diagrams). In the example one “receive”
IPC message for the wheel slip value and two “send”
IPC messages of ASCET type logic are used.

These clustering algorithms as well as other model
transformations are defined in AutoFOCUS by the help
of the Operation Definition Language (ODL) [18].
The ODL is a first-order logic language which can
be used for the definition of checks and transforma-
tions. Within an ODL expression user interaction is
possible. So for example a clustering algorithm may
ask the user to provide a clock and some components
which are using this clock. Afterwards the algorithm
could transform the AutoFOCUS model, so that a CCD
cluster is inserted and the communication is rerouted
appropriately.

Cluster Definition. For the CCD of Fig. 7 compris-
ing clusters VehicleData, Traction Control, and
Compute ReferenceSpeed, the translation yields
three ASCET modules as shown in Figure 16. In the
example also the connectors between ASCET mod-

Figure 16. ASCET Modules representing
three AutoFOCUS clusters

ules are shown. These connectors represent ASCET
messages.

The next refinement step is the grouping of AS-
CET modules to ASCET projects. In ASCET, mod-
ules grouped in one project run on the same ECU, so
the module-to-project grouping activity follows from
the mapping of LA clusters to ECUs from the TA.
Given a suitable such mapping, the step of forming
ASCET projects could be easily performed automati-
cally. Because it is a lightweight activity, the current
refinement chain leaves this operation to the user.

Software System Construction. When all ASCET
modules have been grouped to ASCET projects, the
ASCET code generator will be used to generate C
code conforming with INTECRIO. For every clus-
ter respectively ASCET module this will result in C
code as well as a code description using the SCOOP-
IX format. Both descriptions establish an INTECRIO
module (not to be mistaken for an ASCET module).
For software system construction in INTECRIO, all
clusters are then imported as INTECRIO modules to
INTECRIO and might be further clustered by INTE-
CRIO functions. The result of all clustering steps is
shown in Figure 17. Sensor and actuator modules are
shown on the left hand and right hand sides of the IN-
TECRIO diagram. For example, the wheel speed cal-
culation is done by edge detection. The ports at the
exterior of the diagrma interface the modules to the
I/O boards of an ES-1000 rapid prototyping system.

The wheel speed sensors do edge detection and
trigger a counting process as ISR. Later on, this trig-
gering will be the only information exchange between
the I/O devices and the wheel speed sensor module so
that no additional transformations to the synthesized
software is necessary.
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Figure 17. The Traction Control System in INTECRIO

Target Integration. The ETAS rapid development
system ES-1000 is a VME bus-based rapid prototyp-
ing target. For the traction control example it consists
of a microprocessor board (ES 1135), an A/D con-
verter board (ES 1303), and a PWM board (ES 1330).
The software interface representation of the A/D con-
verter board as INTECRIO module has to be added so
that the PWM signals for the hydraulic valve interac-
tion and the throttle motor are connected to the TCS
system.

OS Configuration. On the level of AutoFOCUS de-
sign, the traction control model employs message
streams running on different clocks. From the model-
based point of view, the throttle control algorithm runs
6 times faster than the anti-lock braking algorithms
and 12 times faster then the traction control algorithm.

This clocked design will be translated to a real-
time system where the throttle controller cycle time
is set to 1ms. In combination with the clock schemes,
there will be a 1ms, a 6ms and a 12ms task. The pro-
cesses of the INTECRIO modules will be allocated to
the appropriate tasks.

As explained in more detail in Section 4.3, [2]
describes a correct-by-construction method for im-
plementation of time-synchronous AutoFOCUS pro-
grams based on rate-monotonic scheduling. The ap-
proach uses the aforementioned double buffering tech-
nique for communication from low-frequency to high-
frequency tasks. For analysing this default configura-
tion in the context of the traction control example, we
use the planner feature of the tool RTA-OSEK [10]
which implements algorithms described in [21].

In the case that the simple top-down, rate-
monotonic approach of [2] is not sufficient for a par-
ticular situation, the algorithms described in [1] can
ensure in a bottom-up fashion that the multiple clock

scheme is appropriately implemented by some given
real-time OS schedule. The basic idea of this algo-
rithm is to check whether all signals are read in the
appropriate cycle and that a writer is not overtaken by
the reader. Beyond the usage of checking algorithms,
it is common automotive design practice to support
this analysis by measurements on the real executing
system [19] using dedicated measurement and tracing
tools.

7. Summary and Outlook
The AutoMoDe approach to model-based automo-

tive software development is based on integrated de-
sign and modeling techniques with system views on
various levels of abstraction. In this paper, we have
shown that by using application-specific modeling no-
tations and (semi-)automated analysis and synthesis
steps, one can on the one hand establish abstraction
and a separation of concerns based on different views
and abstraction levels, and maintain overall consis-
tency on the other hand. We believe this to be a cen-
tral necessity for the future automotive software de-
velopment process: while abstraction and separation
of concerns cater to the needs of the numerous stake-
holders in the automotive development process, auto-
mated consistency ensures efficiency and tractability
of the used abstractions and views.

The development process designed within the Au-
toMoDe project was evaluated in three automotive
case studies: the described traction control system, an
engine management controller (containing the throttle
valve actuation), and a power windows controller. As
part of the physical prototyping of the traction control
case study, a real throttle valve was actuated based on
real-time input to demonstrate physically that the Au-
toMoDe approach scales down to the implementation
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level.
Part of the described case study is the refinement of

an abstract AutoFOCUS model into a technical model
how it is built today in practice. The technical model
is represented in ASCET and INTECRIO which are
examples for state of the art modelling tools. By
translating the abstract model and the further refining
of the technical model we showed which information
could be generated automatically and which part of
the model has to be refined manually. While Auto-
FOCUS shows the potential of a model-based devel-
opment, the refinement into ASCET and INTECRIO
shows that such a approach is principally applicable in
practice. An important result of this case study was,
that the AutoMoDe approach can lead to an efficient
realization.
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C. Schröder. Automotive UML. In B. Selic, G. Mar-
tin, and L. Lavagno, editors, UML for Real: Design of
Embedded Real-Time Systems, number ISBN 1-4020-
7501-4. Kluwer Academic Publishers, 2003.

12


