
Model-based runtime analysis of distributed reactive systems

Andreas Bauer Martin Leucker Christian Schallhart

Institut für Informatik, Technische Universität München
{baueran, leucker, schallha}@informatik.tu-muenchen.de

Abstract

Reactive distributed systems have pervaded everyday life
and objects, but often lack measures to ensure adequate be-
haviour in the presence of unforeseen events or even errors
at runtime. As interactions and dependencies within dis-
tributed systems increase, the problem of detecting failures
which depend on the exact situation and environment condi-
tions they occur in grows. As a result, not only the detection
of failures is increasingly difficult, but also the differentia-
tion between the symptoms of a fault, and the actual fault
itself, i. e., the cause of a problem.

In this paper, we present a novel and efficient approach
for analysing reactive distributed systems at runtime, in that
we provide a framework for detecting failures as well as
identifying their causes. Our approach is based upon mon-
itoring safety-properties, specified in the linear time tempo-
ral logic LTL (respectively, TLTL) to automatically generate
monitor components which detect violations of these prop-
erties. Based on the results of the monitors, a dedicated di-
agnosis is then performed in order to identify explanations
for the misbehaviour of a system. These may be used to
store detailed log files, or to trigger recovery measures. Our
framework is built modular, layered, and uses merely a min-
imal communication overhead—especially when compared
to other, similar approaches. Further, we sketch first experi-
mental results from our implementations, and describe how
it can be used to build a variety of distributed systems using
our techniques.

1. Introduction

Reactive real-time systems are increasingly embedded
and, due to modern communication and fault-tolerant bus
technologies, also increasingly laid out as distributed sys-
tems. Often they control safety-critical applications and
have already pervaded everyday life, e. g., in terms of au-
tomotive control-systems used in present-day cars, mobile
phones, or modern aircraft systems.

In general terms, a real-time system is one in which the

temporal aspects are part of its specification. As such not
only the correctness of a computed result is crucial, but also
the time at which it is produced. In case of an embedded
system, it is usually the environment which imposes a strict
frequency upon the system which needs to react and re-
spond, i. e., follow hard deadlines. Such systems are more
precisely referred to as reactive systems [11]. However, not
only embedded systems can be reactive; many business in-
formation systems are also typically labelled as being real-
time sensitive, or reactive. Unlike in the embedded world,
however, many deadlines in business information systems
are soft deadlines, i. e., some of them may be missed by the
system without fatal consequences on the environment or
even human life.

The design and development of embedded systems, es-
pecially in a safety-critical setting such as automotive, for
instance, can be guided by the use of formal methods [28],
such as model checking or deductive reasoning, in order
to increase our confidence in the correctness of the sys-
tem. However, formal methods employed in the design and
development process alone cannot guarantee that systems
are sufficiently prepared to deal with unforeseen events or
even errors, probably induced by the environment. More so,
certain assumptions made during the development process,
e. g., predetermined fault models, may prove to be inade-
quate in a real-world setting.

1.1. Related work

Although a lot of today’s systems are equipped with cus-
tom built-in diagnostic mechanisms, they usually provide
insufficient means to distinguish between the symptoms of
a fault, i. e., an observed failure, and the actual fault itself,
i. e., its cause. Diagnostics is then often reduced to a mere
recording of symptoms. To address this problem, various
improvements were suggested as well as implemented, for
instance, adding additional knowledge about the system un-
der scrutiny in terms of cause and symptom “tables”, re-
flecting the effects of certain failures [17, 14]. These may
be obtained prior from a dedicated hazard and risk analysis,
or directly from the engineers who designed the system and

know about its possible ways of failure [27, 26, 10]. The
downside of these solutions, however, is that such knowl-
edge basically constitutes assumptions, and as such these
may be invalidated by the real-world, e. g., when situations
occur that are not explicable using this knowledge.

Another approach to obtain a more holistic view on dis-
tributed systems has been introduced in [13]: global sys-
tem properties are monitored using watchdogs, which are
transparently distributed amongst the system’s components
in order to detect violations of these properties. The holis-
tic view is then obtained by exchanging diagnosis messages
between the watchdogs, each attached with a time stamp, in
order to identify those system parts/watchdogs where an er-
ror initially occurred. However, depending on the property,
the price to pay for this solution areO(

(
n
2

)
) extra messages,

which need to be continuously communicated, where n is
the number of watchdogs used.

1.2. Contribution

In this paper we introduce a combined framework for a
dedicated runtime analysis which avoids many of the prob-
lems that currently exist in monitoring and diagnosing dis-
tributed reactive systems. We sketch the theoretical founda-
tions for our framework, and provide experimental results
from our implementations.

Basically, the framework as is combines two novel ap-
proaches, first for detecting failures at runtime, and then
secondly for analysing their causes requiring only a mini-
mal communication overhead; in fact, only linear with re-
spect to the number of used watchdogs, and only in case of
a system error. Unlike failure detection by means of system
monitoring, the identification of failures is only performed
using a dedicated system’s diagnosis if, prior, a monitor
has noticed a certain misbehaviour. As such, there exists
no continuous computation and communication penalty for
diagnosis, in case the system under scrutiny works as ex-
pected.

In contrast to many similar approaches, e. g., [6, 13, 25],
we also provide means to explicitly specify and automati-
cally reason about real-time properties and systems, which
is an important prerequisite when dealing with hard dead-
lines. The experimental results demonstrate the feasibility
of our approach and hint to the scalability of the methods.
Moreover, the framework can be downloaded (see http:
//runtime.in.tum.de/), and is developed and pub-
licly available in terms of an open-source project.

Notice in the remainder of this paper, we refer to our
work in terms of a runtime reflection framework, indicating
a system’s ability to reason and reflect about its own operat-
ing modes and overall system state at runtime by employing
our framework, in a flexible and highly customisable fash-
ion.

Outline. After a brief overview on the overall architec-
ture in the next section, we provide more details on our
employed methods for performing runtime analysis. We,
therefore, first discuss the background of runtime verifica-
tion (see Sec. 3), and then of model-based diagnosis (see
Sec. 4). Afterwards, we develop, at the end of each respec-
tive section, our particular approach and realisation of that
according method. Then, in Sec. 5, we provide some tech-
nical insights into the implementation of our methods and,
finally, conclude the paper in Sec. 6.

2. Architectural overview

In this section we first present an architectural overview
on our runtime reflection framework. First, we consider its
structure merely in terms of the existing layers, and with-
out regarding in particular the distribution of its underlying
components within the layers. Then, we describe the organ-
isation of the individual components of our framework by
means of giving a brief intuitive example, reflecting more
on the distributed nature of our architecture and the appli-
cation to be analysed at runtime.

2.1. The layered view

The architecture is a layered and modular one, in that it
well-supports a separation of concerns; that is, the different
tasks of the analysis are handled by separate layers which
communicate only through minimal interfaces, as is indi-
cated in Fig. 1.

Figure 1. An application and the layers of the
runtime reflection framework.

Let the application under scrutiny be a (possibly) dis-
tributed reactive system, instrumented and/or annotated
to produce an outside-visible stream of (internal) system
events.

2

Logging—Recording of system events. A dedicated log-
ging layer in our architecture is then the only part of the
runtime reflection framework directly known to the appli-
cation itself. The distributed application, embedded into
the framework, employs special code annotations in order
to produce the visible system events, which are then col-
lected and communicated further by our logging layer. The
annotations are the only prerequisites, necessary within the
application’s code, in order to be able to use our framework
in conjunction with an application.

Further, the logging layer allows to register so-called
loggers for observing the stream of system events, and thus,
to reflect upon the runtime behaviour of the executed appli-
cation. A logger might be part of the application itself, e. g.,
to extract more general statistics on the overall system util-
isation, or to record system events merely to a file during
a unit-test session. However, when we employ the logging
layer in conjunction with the complete runtime reflection
framework, we use the layer to deliberately decouple the
application’s code from the remaining layers in the frame-
work.

In particular, the application’s code does not contain
any knowledge on the properties which are monitored, and
which are then used subsequently for deducing a diagnosis
in case of an error. Therefore, we can change the moni-
tored properties and the system description (as used by the
diagnosis) even on-the-fly, during their execution without
interrupting the running application.

Monitoring—Failure detection. The monitoring layer
consists of a number of monitors (complying to the logger
interface of the logging layer) which observe the stream of
system events provided by the logging layer. Its task is to
detect the presence of failures in the system without actually
affecting its behaviour. It is implemented via automatically
generated monitors which—each locally with respect to a
certain subsystem or system’s component—monitor safety
properties (see Sec. 3).

Intuitively a safety property asserts that “nothing bad
happens”. Therefore, safety properties impose minimal re-
quirements upon the system which must hold in order to
have some sort of a well-defined behaviour. They do not,
however, impose a specific behaviour on the system as
such. A typical example is the exclusion of certain crit-
ical system states, e. g., one always wants to ensure that
¬(critical1 ∧ critical2) holds.

If a violation of a safety property is detected in some part
of the system, the generated monitors will respond with an
alarm signal for subsequent diagnosis.

Diagnosis—Failure identification. We deliberately sep-
arate the identification of causes from the detection of fail-
ures in terms of a dedicated diagnosis system. The diag-

nosis layer collects the verdicts of the distributed monitors
and deduces an explanation for the current system state.

For this purpose, the diagnosis layer infers a minimal set
of system components, which must be assumed faulty in or-
der to explain the currently observed system state. The pro-
cedure is solely based upon the results of the monitors, and
as such, the diagnostic layer is not directly communicating
with the application, but rather creates with each diagnosis a
“snapshot” of the system at a given time. This bears a major
advantage in that no extra messages need to be exchanged
between all the monitors in order to obtain a holistic system
view.

Our diagnostic layer then infers a system model which
incorporates and reflects the observed failures, and com-
pares it with an internal reference model. The differences
found constitute possible causes for failure. Basically, this
approach is based upon an efficient realisation of the theory
of consistency-based diagnosis (see Sec. 4).

Mitigation—Failure isolation. The results of the sys-
tem’s diagnosis are then used in order to isolate the fail-
ure, if possible. However, depending on the diagnosis and
the occurred failure, it may not always be possible to re-
establish a determined system behaviour. Hence, in some
situations, e. g., occurrence of fatal errors, a recovery sys-
tem may merely be able to store detailed diagnosis infor-
mation for off-line treatment.

In the following sections, for brevity, we therefore focus
on the first two layers, monitoring and diagnosis, and es-
tablish the theoretical foundations for our framework, and
sketch its implementation along with some preliminary re-
sults.

2.2. The distributed-system view

So far, we merely discussed the tier-structure of our ar-
chitecture, while we did mostly ignore the distributed nature
of it. However, the distribution is oriented towards the layer-
ing of the framework: the logging layer and the monitoring
layer consist both of a number of different software com-
ponents, which are distributed throughout the system under
scrutiny; that is, depending on the granularity and number
of the system’s components. Each local monitor then com-
putes a verdict on the locally observed event stream and
provides this verdict for further, subsequent diagnosis re-
garding the system’s general status. The diagnosis and mit-
igation layers, in contrast to logging and monitoring, are re-
alised in terms of centralised components, which collect the
information of the monitors in order to compute and react
upon a global system view.

For instance, consider Fig. 2, where we show an exam-
ple application consisting of four distributed components,
C1, . . . , C4. To monitor the overall system behaviour of

3

Diagnosis

i4

i3

i2

i1
C1

C2

C3

C4

o1

m1

M1 M3

M2 M4

o2

m2

Figure 2. Distributed monitoring & diagnosis.

this application, we employ four dedicated monitoring ap-
plications, M1, . . . ,M4, to the system. Each monitor Mi

is then locally observing the output of a single component,
Ci, and computes its verdict on the correctness of the ob-
served output stream so far. These distributed verdicts are
then transmitted back to the central diagnosis component
for further treatment via the application’s communication
infrastructure which, depending on the nature of the system,
may be a physical bus system or merely remote procedure
calls, for instance.

3. Runtime verification

Basically, the monitors used for failure detection in our
setting are automatically generated from specifications for-
mulated in linear time temporal logic (LTL) [20].

In a model-based development process of safety-critical
systems (cf. [4]), formal requirements are often formulated
in LTL. Then model checking [5] can be used to decide
automatically, whether the model satisfies the property at
hand [21].

When implementing the model in terms of software or
hardware, discrepancies between the model and the actual
system (or the environment for that matter) might come into
play. Thus, in order to improve the overall result, one can
select the most important requirements to be monitored at
runtime, such that crucial aberrations are detected and dealt
with accordingly.

In model checking, a complete model of the system
is given and all possible infinite traces are considered for
checking the LTL property in question. In runtime verifica-
tion, however, we can just examine a finite part of a possi-
bly infinite behaviour—the sequence of actions carried out
by the underlying system so far. It is therefore important

to come up with an adequate semantics for LTL on finite
traces that extends soundly to the infinite trace semantics.
As we argue below, we achieve this goal using a 3-valued
semantics for LTL on finite traces.

Besides plain LTL, which is suitable for synchronous
systems with a fixed notion of steps, we are often faced with
hard real-time constraints in software or hardware systems,
especially in the automotive or telecommunication domain.
We therefore extend the setting towards a timed version of
LTL, namely TLTL, that allows to formulate real-time con-
straints on the actions observed.

For both logics, we can easily obtain monitors that sig-
nal the semantics corresponding to the observations so far
[2]. The results then constitute the basis for the diagnosis as
described in the next section.

3.1. Background: linear time temporal logic

The set of LTL formulae is inductively defined by the fol-
lowing grammar, where AP is a finite set of atomic propo-
sitions:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (p ∈ AP),

A LTL formula ϕ is interpreted over an infinite trace
w = a0a1 . . . , where each ai is actually a set of propo-
sitions, identifying the observations of the underlying sys-
tem. The formula p expresses that in the current instant
of the observed trace (a0), p has occurred. true and the
boolean combinations are as expected. An “until” formula,
e. g., ϕUψ, states that ψ holds at a present or some future
instant, and that ϕ holds until then. A “next” formula, e. g.,
Xϕ, states that ϕ holds in the next time instant.

While the grammar above is complete to define the set of
LTL formulas, it is typically—as in our tool set—enhanced
by further operators that make specifications more concise,
thus, more readable as well as the overall approach more
useful in practice. For example, we use a “globally” opera-
tor (G) as in Gϕ to express that ϕ holds now and will hold
at all future instants, and a “finally” operator (F) as in Fϕ
to say that ϕ holds at present or will hold at some future
instant.

In order to get an intuitive access to LTL specifications,
let us briefly get back to our example property from Sec. 2.1,
which would be correctly expressed as G¬(critical1 ∧
critical2), where {critical1, critical2} ∈ AP. Thus, it
says that never both critical1 and critical2 occur at the
same time. On the other hand, if we think of a concrete tar-
get, such as an automobile, for instance, we may want to
make sure that, while the vehicle is running, the key is not
removed from the ignition; that is, we monitor the property
defined by G(¬(speed = 0) → ¬(ignition = keyout)).
Here, (speed = 0) and (ignition = keyout) are atomic
propositions, and → denotes logical implication.

4

3.2. A three-valued approach

Unlike model checking, runtime verification is a dy-
namic method, applicable to white, gray or black-box sys-
tems alike. In a nutshell, it works as follows. A correctness
property ϕ, formulated in (some variant) of LTL, is given
and an according monitorAϕ automatically generated. The
system under scrutiny as well as the generated monitor are
then executed in parallel, such that the monitor observes
a system component’s stream of actions. System actions
which violate property ϕ are then detected by the monitor
and an according alarm signal is raised.

However, since a monitor can have at most a finite view
on the system’s behaviour over time, whereas LTL is orig-
inally defined over infinite behavioural traces, a semantics
for LTL on finite traces has to be defined—but one that goes
along with the engineer’s expectation that is based on the
infinite trace semantics!

Typically, a two-valued (true/false) semantics on finite
traces has been defined and used in runtime verification
tools, such as, e. g., [7] or [12]. However, in our opinion,
any two-valued semantics is unsatisfactory. For instance,
what should be the interpretation of Xp in the last obser-
vation of some finite trace? Since the next state has not
been observed yet, we do not know whether p holds there.
Assigning false would make a monitor raise complaints, al-
though no violation has been observed. Assigning true, on
the other hand, is misleading, since it is not clear whether p
holds in the next observation.

On the other hand, consider the formula ¬pU init stating
that nothing bad (p), should happen before the init-function
is called. If, indeed, the init-function has been called and no
p has been observed before, the formula is true—regardless
as to what will happen in the future.

In our framework, we have solved this problem by in-
terpreting LTL using a 3-valued semantics, i. e., with the
values true, false, and ?, where the latter denotes an incon-
clusive verdict, indicating that the behaviour observed so far
does not allow to decide whether ϕ holds or whether it will
be violated in the future.

Formally, we define our 3-valued semantics over the set
of truth values B3 = {⊥, ?,>} as follows. Let u ∈ Σ∗ de-
note a finite behavioural trace. The truth value of a formula
ϕ w. r. t. u, denoted by [u |= ϕ], is an element of B3 and
defined as follows:

[u |= ϕ] =





> if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.

where Σω denotes the set of infinite behavioural traces and
w |= ϕ denotes the standard (two-valued) satisfaction rela-
tion of LTL on infinite words, defined for example in [18].

Intuitively, the definition states that a formula only eval-
uates to > if, based on the finite prefix observed so far, it is
currently true , and if there exists no continuation, σ, which
may invalidate it; vice versa, for ⊥. If neither conclusion
can be drawn, the truth value of a formula is ?, i. e., incon-
clusive.

For verification, it is important to know whether some
property is indeed true , or whether the current observation
is just inconclusive. When monitoring a property ϕ and the
monitor signals true, the monitor can be stopped, since it
cannot report any violation any more. The underlying prop-
erty of such a monitor requested to watch over the system
up-to some moment that has occurred, like in the until ex-
ample above.

In [2], we have developed an efficient automata-based
monitor procedure for our 3-valued logic, abbreviated as
LTL3. Basically, it builds on the well-known translation of
LTL to Büchi automata, but substitutes the acceptance con-
dition in that it yields a finite Moore machine for a formula
ϕ ∈ LTL3 that outputs three symbols, based on the internal
state the machine is currently in. The automata are subse-
quently used to generate code for the actual runtime moni-
tors. Some implementation details are available in Sec. 5.

3.3. Extension towards real-time

Additionally, we have raised our 3-valued runtime ver-
ification approach to explicitly deal with timed behaviour
in order to be able to monitor real-time properties of reac-
tive systems. To formulate such real-time requirements, we
employ timed LTL (TLTL for short), a logic originally in-
troduced in [22], but in the form presented in [23].

The language expressible by a TLTL formula can be de-
fined by event-clock automata [1], a subclass of timed au-
tomata. It was shown in [8] that TLTL corresponds exactly
to the class of languages definable in first-order logic inter-
preted over timed words. Recall that LTL corresponds to the
class of languages definable in first-order logic interpreted
over (non-timed) words [15]. Thus, it can be considered as
the natural counterpart of LTL for the timed setting.

LTL is suited for synchronous systems, where a notion of
step exists. In each step, the propositions in question (AP)
are either true or false, and a log event read by the monitor
is a vector denoting the corresponding truth values.

In the real-time setting, we assume an event-driven ar-
chitecture. The monitor reads subsequently (notifications
of) events together with the time when the events occurred.
Correspondingly, the atomic entities in our logic are no
longer atomic propositions but timed events.

Formally, the syntax of TLTL is defined as follows:

ϕ ::= true | a | Ca ∈ I | Ba ∈ I |
¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (a ∈ Σ),

5

The boolean operators, Xϕ, and ϕUψ, are interpreted
as before in the untimed setting. The proposition a denotes
that the event currently observed is a. Real-time constraints
can be checked using Ca and Ba. Ca ∈ I is the operator
which measures the time elapsed since the last occurrence
of a, and Ba ∈ I is the operator which predicts the next oc-
currence of a, both saying that this is within a timed interval
I . For example, G(Ba ∈ [0, 5]) requires an event a to occur
again and again with a delay of at most 5 time units. Us-
ing these dedicated operators, we are now able to explicitly
reason about real-time systems emitting real-time events to
satisfy their respective deadlines.

In [2], we introduced the 3-valued variant of TLTL,
which follows the same approach taken for LTL3. Fur-
thermore, we have also described how to generate for a
given TLTL3-formula a corresponding monitor function
that reads events and outputs whether the events seen so far
yield true, false, or just inconclusive.

4. Runtime diagnosis

In principle, diagnosis in our framework is based on the
formal theory of consistency-based diagnosis introduced
first by Reiter [24] and roughly at the same time, but in-
dependently under the name of model-based diagnosis by
de Kleer and Williams [6].

4.1. Background: first-order diagnosis

From the diagnosis point of view, a system is a combi-
nation of a finite set of components, denoted by COMP .
The components are considered as atomic entities, mean-
ing that diagnosis will determine a subset of COMP to be
faulty, but—as expected—does not yield the actual “bug”
within a component, e. g., division by zero or stack over-
flow. However, such a set of components can be of almost
arbitrary granularity. Depending on the properties of the
system to be diagnosed, COMP may refer to, say, Java
threads, user session objects within a web-server applica-
tion, or even physical entities such as smart sensors, actua-
tors, or entire nodes/CPUs of a computer network.

The overall system behaviour is then modelled in terms
of the components’ behaviours and their causality. In [24]
and [6], first-order logic is used to describe the behaviour
of a system. More specifically, first-order logic where the
components in COMP are used as (uninterpreted) constants
is employed. Furthermore, a special predicate, AB , is used
to denote that a component is abnormal; that is, presents
a behaviour which is different to its specified or intended
behaviour.

A system is then represented as a tuple S =
(SD ,COMP), where COMP is a finite set of components
and SD constitutes a finite set of first-order sentences over

the signature containing COMP , comprising the system’s
description.

i4

i3

i2

i1
M1

M2

m1

A1

A2 o2

o13

4

5

26

26

m2 20

6
2

Figure 3. Application with four components.

Let’s consider the application depicted in Fig. 3. We as-
sume M1, M2 to be multiplicators, and A1, and A2 to be
adders. The set of components is thus, COMP = {M1,
M2, A1, A2}. For a multiplicator, the output is the product
of its two inputs, unless it does not work correctly. We can
model this fact by the formula

mult(X) ∧ ¬AB(X) ⇒
(output1(X) = input1(X)× input2(X)).

Thus, the crucial idea in the description above is to add
the predicate ¬AB(X), denoting that X is not abnormal,
as a premise to the formula describing the correct functional
behaviour. Thus, if ¬AB(X) evaluates to true, i. e., compo-
nentX works correctly, the output is, indeed, the product of
the inputs. IfX is abnormal, i. e., ¬AB(X) is false, nothing
has to hold for the conclusive part.

Overall, the system description SD then comprises the
following list of first-order sentences:

mult(X) ∧ ¬AB(X) ⇒
(output1(X) = input1(X)× input2(X)),

mult(M1),
output1(M1) = input1(A1),
input1(M1) = i1,
input2(M1) = i2, . . . ,

Notice, the above list is not complete, in that not all
components are described. At this point, it shall suffice
to see how the system modelling is generally done, and
how causality within the system is defined (i. e., in terms
of input-output relations).

Formally, an observation corresponds to a mapping of
in- and outputs to actual values, e. g., denoted as OBS =
{i1 7→ 2, i2 7→ 3, . . .}. Observations may be consistent
with the system description, or not (in case of an occurred
failure).

Given the tuple (SD ,COMP ,OBS), a diagnosis is then
defined as a minimal set ∆ ⊆ COMP such that

SD ∪OBS ∪
{AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMP\∆} (1)

6

is consistent, i. e., satisfiable. In other words, the compo-
nents of a diagnosis are set to be abnormal, which make the
implications of the system description in which the compo-
nents are involved hold trivially. Note that, in general, for a
given system description and observation, several diagnoses
also of different cardinality might exist.

It follows that the only interpretation for a diagnosis ∆
with ∆ = ∅ is that the system is working as expected. Com-
ing back to our example, it is self-evident that substituting
in OBS , the output mapping o1 7→ v with a value v 6= 26,
will lead to the conclusion ∆ = {A1}, i. e., the following
holds: ¬AB(M1), ¬AB(M2), ¬AB(A2), and AB(A1).

However, the approach outlined above has a serious lim-
itation for automation. It is well-known that satisfiability of
first-order logic is undecidable. Thus, there exists no auto-
matic procedure for computing diagnoses for arbitrary sys-
tem descriptions.

In the original theory of consistency-based diagno-
sis [24], the problem is addressed by using alternative char-
acterisations of diagnoses in terms of conflict sets and em-
ploying (possibly non-terminating or interactive) first-order
theorem provers for sub-goals.

Formally, a conflict set for (SD ,COMP ,OBS) is a set
{ci, . . . , cj} ⊆ COMP with 1 ≤ i ≤ j such that

SD ∪OBS ∪ {¬AB(ci), . . . ,¬AB(cj)} (2)

is inconsistent, i. e., not satisfiable. Thus, the assumption
that the components ci of a conflict set work correctly does
not explain the (partial) observations. In other words, a con-
flict set is a super set of those components assumed faulty,
such that an abnormal system behaviour can be explained.

Surely, assuming all components to be faulty makes the
previous formula unsatisfiable. Hence, {M1, M2, A1, A2}
(i. e., all components are faulty) would be a conflict set for
our example, given o1 7→ 27, and that m1, m2 are not ob-
servable. Further, a conflict set for (SD ,COMP ,OBS) is
called minimal, iff no proper subset of it is a conflict set for
(SD ,COMP ,OBS) at the same time. That is, {A1} is a
minimal conflict set, but not the only possible conflict set.

Then diagnoses are obtained by first determining an
initial conflict set using a first-order theorem prover, and
then subsequently unfolding the (minimal) sets using the so
called hitting set algorithm.

Theorem proving for first-order logic is either manual
(i. e., interactive) or possibly non-terminating if automated.
The hitting set problem, also known as the transversal prob-
lem, is one of the key problems in the combinatorics of fi-
nite sets and known to be NP-complete (cf. [9]). Hence,
this complex, two-fold approach is hardly suitable to be
performed at runtime, let alone for reactive or embedded
systems.

4.2. Diagnosis as a SAT-problem

Fortunately, using the automatically generated monitors
described in Sec. 3, it is possible to reduce the problem of
diagnosis to a satisfiability problem of propositional logic,
as described below. Recall that satisfiability of proposi-
tional logic is decidable and, more importantly, often solv-
able efficiently. Thus, we can develop efficient algorithms
for solving the diagnosis problem.

Using monitors, we abstract from details of the system.
A monitor’s duty is to check whether a sequence of events
satisfies a certain safety property (see Fig. 4). Then, for di-
agnosis, we no longer rely on the comparison of the actual
values transmitted over some channels, but just on the in-
formation whether everything works according to the speci-
fied properties, in the following denoted by an ok predicate.
Correspondingly, a system description is reduced to a set
of formulas describing the correctness of input-output be-
haviour.

C1

C2

C3

C4

M4

M3

i1

i2

i3

i4

m1

m2

o1

o2

M2

M1

G(Bsignal ∈ [0, 5])

G(¬valid → Xvalid)

G(¬valid → Xvalid)

G(Bsignal ∈ [0, 5])

Figure 4. Application with four components
and monitors.

Let’s consider Fig. 4, depicting an abstract distributed
system consisting of four components, C1, . . . , C4, and
monitors, M1, . . . ,M4, each of which observes a custom
safety property. The system description SD can thus be re-
duced in terms of SD ′ as follows:

SD ′ =





ok(i1) ∧ ok(i2) ∧ ¬AB(C1) ⇒ ok(m1),
ok(i3) ∧ ok(i4) ∧ ¬AB(C2) ⇒ ok(m2),
ok(m1) ∧ ok(m2) ∧ ¬AB(C3) ⇒ ok(o1),
ok(m1) ∧ ok(m2) ∧ ¬AB(C4) ⇒ ok(o2)




,

where ok is the predicate denoting that a value or be-
haviour does not violate an expected behaviour, i. e., a cor-

7

responding safety property. Notice, for brevity, we have
not modelled in this example any criteria for determining
ok(i1), . . . , ok(i4).

As discussed in the section on runtime verification
(Sec. 3), the monitors used for observing the details of the
system, signal either true, false, or inconclusive. For di-
agnosis, we have to look for causes of violated properties.
Thus, we can identify true and ?. Therefore, in the follow-
ing, assume a monitor to yield true or false , where true
may also mean inconclusive.

The system description SD ′ in the form presented above
can be converted into conjunctive normal form, denoted by
CNF (SD ′), in a straightforward manner using only poly-
nomial time [16]. For example, we have for SD the follow-
ing form:

CNF (SD ′) =





¬i1 ∨ ¬i2 ∨AB(C1) ∨m1,
¬i3 ∨ ¬i4 ∨AB(C2) ∨m2,
¬m1 ∨ ¬m2 ∨AB(C3) ∨ o1,
¬m1 ∨ ¬m2 ∨AB(C4) ∨ o2




.

When observing the system, we get for some input and
some output values the information, whether the value is
indeed ok or not.

Let us now assume that we have a monitor attached to
all output channels of the application, except on m1 and
m2 which remain unobservable (i. e., unknowns). Fur-
thermore, assume we have the observations OBS =
{i1, i2, i3, i4,¬o1, o2}, meaning that the monitor observ-
ing o1 has reported a failure.

In order to determine diagnoses explaining a monitor’s
result, we have to compute the (minimal) models for (1). In
other words, the problem of determining diagnoses is now
reducible to a propositional satisfiability problem (SAT), us-
ing CNF (SD ′) rather than SD .

Although the SAT-problem is known to be NP-complete,
there exist rather efficient algorithms which are able to de-
termine the satisfiability of thousands of CNF-clauses and
variables within seconds. Because of this, many other logic
problems in computer science, such as model checking
large state spaces, are often reduced to SAT-problems.

Using a SAT-solver we can now determine for the sys-
tem and observations S = (CNF (SD ′),COMP ,OBS)
the sets of all possible sets, CS , that explain ¬o1 by means
of one, or many broken components:

CS =





{C1, C2, C3,¬C4},
{C1, C2,¬C3,¬C4},
{C1,¬C2, C3,¬C4},
{C1,¬C2,¬C3,¬C4},
{¬C1, C2, C3,¬C4},
{¬C1, C2,¬C3,¬C4},
{¬C1,¬C2, C3,¬C4}





.

Diagnoses, i.e. minimal sets showing satisfiability of (1),

are the fourth and the last solution, meaning that either C1

or C3 is broken.

Diagnoses with minimal cardinality. Actually, we have
to find minimal satisfying solutions of (1). While the SAT-
problem is NP-complete, the so-called #SAT-problem is
known to be in the much bigger class #P [19]. Therefore,
we still face a complexity problem. We solved it by build-
ing our own SAT-solver, which is described in greater de-
tail in [3]. In a nutshell, it works as follows. Assuming
that components fail independently, it is very unlikely that
those diagnoses are relevant diagnoses in which, e. g., all
the components are marked faulty. Of course, this may hap-
pen, but (say) from experience or service reports of a cer-
tain system, we may assume that the most likely diagnoses
are those where merely one or two components are marked
faulty. Our custom solver component, named LSAT, reflects
this knowledge in its main data structures and solving algo-
rithm, in that it prunes the search space based on the cardi-
nality of the AB-predicates. In other words, given a two-
fault assumption, for example, LSAT would merely return
solutions containing at most two faulty components. Other
solutions are pruned from the search-space.

Using the monitors in combination with diagnosis, we
have at hand a propositional, hence, very efficient mech-
anism for differentiating symptoms for a failure, i. e.,
¬ok(o1), from actual causes, e. g., AB(C1), which is based
upon the cardinality of the AB-predicates, rather than so-
lutions obtained by using a theorem prover or the HS-
algorithm, for instance.

5. Implementation and results

Our runtime reflection framework currently consists of
the core components for performing runtime verification
and diagnosis, i. e., we have implemented and provide freely
the logging layer, monitoring layer, as well as the diagnosis
layer which hints to faulty system components in the case
of an occurred error. In the following, we therefore give
a brief overview on the respective technicalities regarding
their implementation.

5.1. Logging and monitoring

Currently, we provide an extensive and versatile logging
layer for distributed and multi-threaded C++-applications.
The logging layer offers two separate interfaces: first, a log-
ging interface which is used by the observed application to
generate outside-visible system events, and second, a con-
figuration interface which allows to customise the logging
and monitoring facilities in an arbitrary manner. To inte-
grate a custom application written in C++ with the logging
layer, it is necessary to annotate the application’s code. Our

8

Table 1. Modified ISCAS‘89 benchmarks under the n-fault assumption.

∞-fault 5-fault
Name: #COMP : #Var.: #Cl.: #Steps: CPU: #Steps: CPU:

s208.1 66 122 389 84 0.17 sec 60 0.25 sec
s298 75 136 482 27 0.11 sec 58 0.32 sec
s444 119 205 714 20 0.18 sec 105 0.91 sec
s526n 140 218 833 − timeout 295 0.23 sec
s820 256 312 1,335 − timeout 562 0.59 sec
s1238 428 540 2,057 38 0.97 262 0.21 sec
s13207 2,573 8,651 27,067 − timeout 17 0.57 sec
s15850 3,448 10,383 33,189 − timeout 41 0.17 sec
s35932 12,204 17,828 60,399 2,339 11.16 sec 29 0.21 sec

logging layer provides a large number of annotations for
this purpose, for example, to log certain method entries and
exits or unexpected exceptions.

Based on this logging layer, we also provide with our
framework a dedicated generator-tool to automatically cre-
ate a monitor based on a specification written in LTL. The
generated monitor is then provided in terms of a C++-class,
which implements the main communication interface em-
ployed in the logger layer.

5.2. Diagnosis

Diagnosis in the runtime reflection framework is per-
formed by employing a custom SAT-solver, optimised for
consistency-based diagnosis as outlined in Sec. 4. Instead
of determining the minimal hitting sets of all possible con-
flicts, we employ a data structure that provides diagnoses
based on the minimal cardinality of abnormal components
(cf. [3]). In other words, only those diagnoses are com-
puted, which contain at most n faulty components, where n
is a variable that can be chosen by the user, e. g., based on
known probabilities of failure, or failure rates. We referred
to this earlier as the n-fault assumption, which constitutes
the pruning criterion of the data structure representing all
the possible supersets of diagnoses. For example, a 2-fault
assumption indicates that all possible diagnoses are omit-
ted, in which more than two components would be declared
faulty.

Technically, the diagnostic engine obtains from the mon-
itors information on the status of the components deter-
mined via safety properties. In terms of the overall frame-
work, this allows for an efficient analysis, in that we trigger
diagnosis only if at least one monitor has detected an ab-
normal behaviour in some component of the system under
scrutiny. Alternatively, the diagnostic engine can be used
stand-alone, e. g., for off-line analysis of arbitrary systems.

We have validated this approach experimentally by in-

ducing random faults in large micro-chip designs with tens
of thousands of clauses and variables, and have restricted
ourselves to a five-fault assumption. Notice, from the di-
agnostic point of view alone, it is irrelevant as to whether
the system to be diagnosed is a micro-chip, or a large dis-
tributed system, as long as an adequate system model for
diagnosis is available.

The results of the computations were almost instanta-
neous, i. e., the search never occupied more than a second
on a standard PC (i686, ca. 2 GHz, standard Linux kernel).
Without the optimisation, several seconds were occupied
and occasionally no solution found at all (see Table 1).

6. Conclusions and future work

Our framework for runtime analysis as we have pre-
sented it in this paper provides tools and methods that en-
able distributed reactive systems to reflect upon their system
status at runtime. Due to the layered architecture and the ef-
ficient combination and realisation of different techniques
for reasoning about such systems, i. e., runtime verifica-
tion and subsequent model-based diagnosis, we avoid some
typical pitfalls that exist in analysing distributed systems
at runtime when using more “monolithic” methods as de-
scribed, e. g., in Sec. 1. Foremost, our component-oriented
approach triggers diagnosis specifically at the occurrence of
a fault, which avoids a continuous computational effort on
the diagnoser’s side. Additionally, the use of independent
and local monitors in order to observe specific components,
avoids an expensive communication penalty in that no extra
diagnostic messages need to be exchanged between the re-
spective monitors in order to come to a verdict regarding a
system’s overall status.

We have successfully implemented the ideas presented
in this paper and are currently in the process of streamlin-
ing the entire architecture for ease of integration and further
extensibility towards recovery measures, for instance. The

9

latter were, on purpose, not intensively dealt with in this
paper, since they constitute highly domain-specific knowl-
edge and methods, which are not necessarily applicable to
all real-time or reactive systems alike. Consider, for in-
stance, the differences between distributed control systems
and business information systems.

The results we presented for the diagnosis component,
however, hint to the scalability of our approach and show
the potential for deployment even in resource-bounded en-
vironments such as embedded systems, where it is often
even more difficult to differentiate between symptoms of
a failure and its cause, since access to the system’s internals
is often limited. Moreover, the ability to reason about gray-
box systems (i. e., reasoning in the presence of unknowns),
as we have discussed earlier, is additionally interesting for
such settings.

Finally, we are developing and provide the runtime re-
flection framework free and under an open-source license,
namely the GNU General Public License (see http://
runtime.in.tum.de/), thus enabling wide-spread de-
ployment in various settings, and to provide a platform for
future add-ons and developments possibly even by a third
party.

References

[1] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata:
A determinizable class of timed automata. Theor. Comput.
Sci., 211(1-2):253–273, 1999.

[2] O. Arafat, A. Bauer, M. Leucker, and C. Schallhart. Run-
time verification revisited. Technical Report TUM-I0518,
Technische Universität München, 2005.

[3] A. Bauer. Simplifying diagnosis using LSAT: a proposi-
tional approach to reasoning from first principles. In Proc.
CP-AI-OR, volume 3524 of LNCS, Prague, Czech Republic,
June 2005. Springer-Verlag.

[4] M. Broy. Mathematical system models as a basis of software
engineering. In J. van Leeuwen, editor, Computer Science
Today, volume 1000 of Lecture Notes in Computer Science,
pages 292–306. Springer, 1995.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[6] J. de Kleer and B. C. Williams. Diagnosing multiple faults.
AI, 32(1):97–130, 1987.

[7] D. Drusinsky. The temporal rover and the ATG rover. In
SPIN, pages 323–330, 2000.

[8] D. D’Souza. A logical characterisation of event clock au-
tomata. Int. Journ. Found. Comp. Sci., 14(4):625–639, Aug.
2003.

[9] T. Eiter and G. Gottlob. Hypergraph transversal computa-
tion and related problems in logic and AI. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors, JELIA, volume
2424 of LNCS, pages 549–564. Springer, 2002.

[10] C. A. Ericson, II. Hazard Analysis Techniques for System
Safety. John Wiley and Sons Inc., Aug. 2005.

[11] D. Harel and A. Pnueli. On the development of reactive
systems. In Logics and models of concurrent systems, pages
477–498. Springer, New York, NY, USA, 1985.

[12] K. Havelund and G. Rosu. Monitoring Java Programs with
Java PathExplorer. Electr. Notes Theor. Comp. Sci., 55(2),
2001.

[13] K. Havelund and G. Rosu. Efficient monitoring of safety
properties. Journ. Softw. Tools for Tech. Transf., 2004.

[14] R. Isermann. Model-based fault detection and diagnosis:
status and applications. In Proceedings of the 16th IFAC
Symposium on Automatic Control in Aerospace, St. Peters-
burg, Russia, June 2004.

[15] H. W. Kamp. Tense Logic and the Theory of Linear Order.
PhD thesis, University of California, Los Angeles, 1968.

[16] A. Nonnengart and C. Weidenbach. Computing small clause
normal forms. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, chapter 6,
pages 335–367. Elsevier Science B.V., 2001.

[17] M. Nyberg. Model Based Fault Diagnosis: Methods, The-
ory, and Automotive Engine Applications. PhD thesis,
Linköpings Universitet, June 1999.

[18] O. Lichtenstein and A. Pnueli. Checking that finite state con-
current programs satisfy their linear specification. In Pro-
ceedings of the Twelfth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 97–107, New York,
Jan. 1985. ACM.

[19] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley, New York, 1994.

[20] A. Pnueli. The temporal logic of programs. In Proceedings
of the 18th IEEE Symposium on the Foundations of Com-
puter Science (FOCS-77), pages 46–57, Providence, Rhode
Island, Oct. 31–Nov. 2 1977. IEEE Computer Society Press.

[21] A. Pnueli. Applications of temporal logic to the specifica-
tion and verification of reactive systems: a survey of cur-
rent trends. In Current trends in concurrency. Overviews
and tutorials, pages 510–584, New York, NY, USA, 1986.
Springer-Verlag.

[22] J.-F. Raskin and P.-Y. Schobbens. State clock logic: A de-
cidable real-time logic. In O. Maler, editor, HART, volume
1201 of Lecture Notes in Computer Science, pages 33–47.
Springer, 1997.

[23] J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks
- decidability, complexity and expressiveness. Journ. of Au-
tom. Lang. and Comb., 4(3):247–286, 1999.

[24] R. Reiter. A theory of diagnosis from first principles. AI,
32(1):57–95, 1987.

[25] K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient De-
centralized Monitoring of Safety in Distributed Systems. In
ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, pages 418–427. IEEE Computer
Society, 2004.

[26] D. H. Stamatis. Failure Mode and Effect Analysis: FMEA
from Theory to Execution. ASQ Quality Press, second edi-
tion, Apr. 2003.

[27] W. E. Vesely et al. Fault tree handbook. Technical Re-
port NUREG-0492, Systems and Reliability Research, Of-
fice of Nuclear Regulatory Research, U.S. Nuclear Regula-
tory Commission, Washington, DC, 1981.

[28] P. Wolper. The meaning of ”formal”: From weak to strong
formal methods. STTT, 1(1–2):6–8, 1997.

10

