
Tableaux for Verification of Data-Centric Processes

Andreas Bauer, Peter Baumgartner, Martin Diller and Michael Norrish

NICTA? and Australian National University, Canberra, Australia

Abstract. Current approaches to analyzing dynamic systems are mostly grounded
in propositional (temporal) logics. As a consequence, they often lack expressiv-
ity for modelling rich data structures and reasoning about them in the course of
a computation. To address this problem, we propose a rich modelling framework
based on first-order logic over background theories (arithmetics, lists, records,
etc) and state transition systems over corresponding interpretations. On the rea-
soning side, we introduce a tableau calculus for bounded model checking of prop-
erties expressed in a certain fragment of CTL* over that first-order logic. We also
describe a k-induction scheme on top of that calculus for proving safety proper-
ties, and we report on first experiments with a prototypical implementation.

1 Introduction

Current approaches to analyzing dynamic systems are mostly grounded in propositional
(temporal) logics. As a consequence, they often lack expressivity for modelling rich
data structures and reasoning about them in the course of a computation. To address
this problem, we propose an expressive, sorted first-order logic to describe states, a
fragment of CTL∗ to describe systems’ evolution, and we introduce a tableau calculus
for model checking in that logic. Our approach is based on

– process fragments that describe specific tasks of a larger process, inspired by what
is known as declarative business process modelling [17]. As a result, users do not
have to specify a single, large transition system with all possible task interleavings.

– constraints for limiting the interactions between the fragments. In this way, users
can create many small process fragments whose interconnections are governed by
rules that determine which executions are permitted.

– first-order temporal logic. Unlike [8], we choose to extend CTL∗, i.e., a branch-
ing time logic, rather than LTL, since process fragments are essentially annotated
graphs and CTL∗ is, arguably, appropriate to express its properties (cf. [6]).

– sorts for JSON objects [7], where sorts are governed by a custom, static type system
which models and preserves the type information of any input data. JSON objects
allow for richly structured data types such as lists and records.

Tableau calculi have been long considered (e.g., [10]) an appropriate and natural
reasoning procedure for temporal logics. There is even a tableau procedure for propo-
sitional CTL∗ [18]. However, we are not aware of a first-order logic tableaux calculus

? NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and
the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

that accommodates our requirements, hence we devise one (Section 4). We note that
we circumvent the difficult problem of loop detection by working in a bounded model
checking setting, where runs are artificially terminated when they become too long.

The high expressivity of our approach comes at the price of high undecidability,
and so practical feasibility is an issue. Ultimately, all our reasoning problems reduce to
first-order logic proof obligations, and hence automated reasoning in first-order logic
becomes a crucial component. Although we focus on the core logic of our framework,
we also report on first experiments with a prototypical implementation that integrates
our tableau procedure with the state of the art SMT solver Z3 [14].

Related Work. In the area of business process modelling, the so-called “business ar-
tifact” approach pioneered the idea of making data a “first-class citizen” (Nigam and
Caswell [16]). The artifacts of this approach are records of data values that can change
over time due to the modifications performed by services, which are formalized using
first-order logic. Process analysis answers the following question: given some artifact
model, a database providing initial values, and a correctness property in terms of a first-
order LTL formula, do all possible artifact changes over time satisfy the correctness
property? For the constraints given in Damaggio et al. [8], this problem is decidable.
We refer to this problem as “concrete model checking” since an initial state has to be
given. We are also interested in the generalization thereof, where the set of possible
initial states is unconstrained, the “general model checking” problem.

Schuele and Schneider [20] give a categorisation of temporal model checking prob-
lems. They differentiate between global model checking techniques, which are basically
fix-point iterations, and local techniques, which are inference based and analyse a for-
mula in a top-down fashion by inspecting its syntax tree. As such, both our concrete
and general model checking problems fall under the local techniques category.

Bersani et al. [4] describe linking SMT-solvers to decide bounded model checking
problems over temporal logic extensions. There, LTL with integer constraints is consid-
ered, which results in an undecidable satisfiability problem. However, by constraining
the number of variables and length of paths, a decidable satisfiability and model check-
ing problem is obtained.

Another example combining data and dynamics is Vianu [23]. This work uses an
LTL in which the propositions can be replaced by a background theory statement, in par-
ticular FOL, to verify systems whose behaviour is expressible as sequence of database
updates. Since the latter results in an infinite-state system, Vianu imposes several re-
strictions on the database properties, and obtains a PSpace model checking algorithm.
In the area of description logics, Hariri et al. [12] and Chang et al. [5] both present
systems that allow for rich queries over dynamically evolving systems. Entities within
the systems can be related to one another and characterized in a first-order style, but
there is no scope for the use of types such as numbers and lists as in our work.

In Ghilardi et al. [9], fragments of first-order linear-time temporal logic with back-
ground theories are considered. While the general satisfiability problem of such a logic
is necessarily undecidable, the authors identify the quantifier-free fragment, which can
be decided in PSpace, given that the background constraints can. Work on temporaliz-
ing description logics heads in a similar direction. The challenge there is to determine

fragments of, e.g., LTL over description logics so that the desired reasoning services
become decidable. See, e.g., Baader et al. [1] for recent work.

2 Preliminaries

We work with sorted signatures Σ consisting of a non-empty set sorts and function
and predicate symbols of fixed arities over these sorts. We assume infinite supplies of
variables, one for each sort. A constant is a 0-ary function symbol. The (well-sorted
Σ-) terms and atoms are defined as usual. We assume Σ contains a predicate symbol =s

(equality) of arity s × s, for every sort s ∈ sorts. Equational atoms, or just equations,
are written infix, usually without the subscript s, as in 1 + 1 = 2. We write θ[x] to
indicate that every free variable in the formula θ is among the list x of variables, and we
write θ[t] for the formula obtained from θ[x] by replacing all its free variables x by the
corresponding terms in the list t.

We assume a sufficiently rich set of Boolean connectives (such as {¬, ∧ }) and the
quantifiers ∀ and ∃. The well-sorted Σ-formulas, or just (FO) formulas are defined as
usual. We are particularly interested in signatures containing (linear) integer arithmetic.
For that, we assume Z ∈ sorts, the Z-sorted constants 0,±1,±2, . . ., the function sym-
bols + and −, and the predicate symbol >, each of the expected arity over Z.

The semantics of our logic is the usual one: a Σ-interpretation I consists of non-
empty, disjoint sets, called domains, one for each sort. We require that the domain for Z
is the set of integers, and that every arithmetic function and predicate symbol (including
=Z) is mapped to its obvious function or relation, respectively, over the integers. Indeed,
we will later see that we treat other sorts, such as lists and other JSON types as “built-
in” (see Section 3). In brief, our modelling framework supports the use of (finite) lists,
arrays and records in a monomorphically sorted setting. Thus, we further require that Σ-
interpretations interpret the function and predicate symbols associated with these sorts
in a way consistent with the intended semantics, which can be given axiomatically. This
is consistent with the de-facto TPTP standard [21], so that compliant theorem provers
can be applied.

A (variable) assignment α is a mapping from the variables into their corresponding
domains. Given a formula θ and a pair (I, α) we say that (I, α) satisfies θ, and write
(I, α) |= θ, iff θ evaluates to true under I and α in the usual sense (the component α is
needed to evaluate the free variables in θ). If θ is closed then α is irrelevant and we can
write I |= θ instead of (I, α) |= θ. We say that a closed sentence θ is valid (satisfiable)
iff I |= θ for all (some) interpretations I.

Processes in our framework are modeled as state transition systems. A state transi-
tion system is a tuple M = (S , I,R) where S is a set of states, I ⊆ S are the initial states,
and R ⊆ S ×S the transition relation.1 Throughout this paper, states are mappings from
the variables into their corresponding domains, i.e., every state s ∈ S is an assignment
(but in general not every assignment α is a state in S).

Our query language is a fragment of CTL∗ over first-logic, which we refer to as
CTL∗(FO). Its syntax is given by the following grammar:

φ ::= θ | ¬φ | φ ∧ φ | Aψ | Eψ ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | Xψ | ψUψ | ψRψ

1 Notice we do not require R to be (left-) total, as runs may be finite.

where θ refers to a FO formula, φ is called a state formula and ψ a path formula. The
operator X is called “weak next”. A CTL∗(FO) formula is pure FO iff it does not contain
any path quantifier and does not contain any temporal operator.

Let M = (S , I,R) be a state transition system as stated above and s0 ∈ S . A run r
(of M) from s0 is a possibly infinite sequence s0 s1 s2 · · · of states such that (si, si+1) ∈
R. Let r[i] = si, and ri the truncated run si si+1 · · · . By |r| we denote the number of
elements in r or∞, if r is infinite. Obviously, r0 = r.

For any state formula φ ∈ CTL∗(FO), interpretation I, and state s0 ∈ S we define
a satisfaction relation |=. It differs somewhat from the usual definition (cf. [6]) in that
it is implicitly parametric in a set of admissible runs (of M). We identify the set of
admissible runs with its closure under truncation of runs.

A finite run s0 · · · sn is called finished if there is no s ∈ S such that (sn, s) ∈ R. That
is, finished runs do not stop prematurely. The set of standard runs (of M) consists of all
infinite runs and all finished runs. Unless stated otherwise we assume standard runs.

For any state formula φ ∈ CTL∗(FO), interpretation I, and state s0 ∈ S , the satis-
faction relation (I, s0) |= φ is defined as follows,

(I, s0) |= θ iff (I, s0) |= θ
(I, s0) |= ¬φ iff (I, s0) 6|= φ
(I, s0) |= φ1 ∧ φ2 iff (I, s0) |= φ1 and (I, s0) |= φ2
(I, s0) |= Aψ iff (I, r) |= ψ for all runs r from s0
(I, s0) |= Eψ iff (I, r) |= ψ for some run r from s0,

where the satisfaction relation (I, r) |= ψ for path formulas ψ and admissible r is

(I, r) |= φ iff (I, r[0]) |= φ
(I, r) |= ¬ψ iff (I, r) 6|= ψ
(I, r) |= ψ1 ∧ ψ2 iff (I, r) |= ψ1 and (I, r) |= ψ2
(I, r) |= Xψ iff |r| > 1 and (I, r1) |= ψ

(I, r) |= Xψ iff |r| ≤ 1, or |r| > 1 and (I, r1) |= ψ
(I, r) |= ψ1 Uψ2 iff there exists a j ≥ 0 such that |r| > j and (I, r j) |= ψ2,

and (I, ri) |= ψ1 for all 0 ≤ i < j
(I, r) |= ψ1 Rψ2 iff (I, ri) |= ψ2 for all i < |r|, or there exists a j ≥ 0 such that

|r| > j, (I, r j) |= ψ1 and (I, ri) |= ψ2 for all 0 ≤ i ≤ j.

We assume the usual “syntactic sugar”, which can easily be defined in terms of the
above set of operators in the expected way. Note that we distinguish a strong next oper-
ator, X, from a weak next operator, X, as described in [2]. This gives rise to the following
equivalences: ψ1 Rψ2 ≡ ψ2 ∧ (ψ1 ∨ X (ψ1 Rψ2)) and ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X (ψ1 Uψ2))
as one can easily verify by using the above semantics. This choice is motivated by our
bounded model checking algorithm, which has to evaluate CTL∗(FO) formulas over fi-
nite traces as opposed to infinite ones. For example, when evaluating a safety formula,
such as Gψ, we want a trace of length n that satisfies ψ in all positions i ≤ n to be
a model of this formula. On the other hand, if there is no position i ≤ n, such that
ψ is satisfied, we don’t want this trace to be a model for Fψ. This is achieved in our
logic as Gψ ≡ ψ ∧ X Gψ and Fψ ≡ ψ ∨ X Fψ hold. Note also that ¬Xψ . X¬ψ, but
¬Xψ ≡ X¬ψ.

3 The Specification Language

We provide a specification language to define processes and the data they manipulate.
A concrete specification consists of the sections TYPES, SIGNATURE, DEFINITIONS,
CONSTRAINTS, and DIGRAPH. We explain each section in turn, including sample ex-
tracts in each explanation from a business process modelling domain.

Logic for Individual States. Our specification logic stratifies into two levels. The first
level uses non-temporal first-order formulas to describe individual states of a system.
Formulas at this level are richly typed, and may refer to user-defined logical notions.

JSON Values, TYPES and SIGNATURE. Users capture the states of their systems with
JSON values. JSON [7] is an untyped framework for writing structured data, including
base types such as strings and integers, as well as structure through records (field names
coupled with values) and arrays. The JSON syntax is rich enough to represent complex
states while remaining human-readable. We layer a simple type-system over JSON,
ultimately providing a connection between these types and the sorts of CTL∗(FO).

The atomic types of our specification language are String, Bool and Integer. In
addition, users can define new types that are built up from these atomic types, the type
operators Array[], List[], and a syntax for record types, i.e., a list of field names
coupled with types for those fields. Types may occur within other type definitions, as
long as there are no recursive loops. This restriction means that users cannot specify
their own recursive types (such as trees). This restriction does not seem too onerous in
practice and makes the axiomatic characterization of the types straightforward.

DB = {

stock: Array[Stock],

nrStockItems: Integer,

open: List[Integer],

gold: Boolean,

invoice: Bool,

paid: Bool,

shipped: Bool }

Stock = {

ident: String,

price: Integer,

available: Integer }

The types from the purchase order example are
shown on the right. The DB type corresponds to the entire
system state. The stock array holds information about
stock items, for each item number 0..nrStockItems−1.
The Stock.available field is the number of items in
stock, per item number. The open list contains the open
order item numbers, those that have not been packed yet.
The gold bit says whether the customer is a gold cus-
tomer. The invoice filed says whether an invoice has
been generated. The paid and shipped fields control
the composition of “process fragments”, see below.

There are naturally various operations over terms of
the corresponding JSON types that our logic must support. Thus we support arithmetic
function and relation symbols (+, <, etc.). Support for JSON record types includes func-
tions for accessing fields of objects (the concrete syntax is the familiar “dot notation”;
e.g., s.value) and for creating new record values by updating field values of old val-
ues (“functional record update”). Depending on the nature of the back-end reasoning
tool, elements of the signature may be characterized directly in FOL, as is done for the
record functions. By contrast, we expect backend reasoning tools to directly support
arithmetic, arrays and lists, with the usual operators on them, freeing us from providing
a FOL axiomatization for the latter (this is not a critical limitation). We refer to this
extended language as JSON Logic, and talk of JSON sentences and JSON terms etc.

In addition, users can declare and define their own functions, predicates and rela-
tions over these types. Those entities without definition will be uninterpreted. All such,
whether or not they are later defined, are listed in the SIGNATURE section along with
their types. For example, the completed predicate on Status arguments is given in
this section with the syntax completed: [Status] -> Bool.

DEFINITIONS and CONSTRAINTS. The DEFINITIONS section consists of a set of FO
JSON sentences, providing the semantics for (some of) the free predicate and function
symbols declared in the SIGNATURE. Let defs be the image of the DEFINITIONS section
under translation into CTL∗(FO).

The CONSTRAINTS sections consists of a set of JSON CTL∗(FO) path formulas.
Unlike DEFINITIONS, the free variable DB-sorted variable db is permitted. It represents
the database at the current time point. The intention is to provide additional constraints
on the runs considered in the reasoning problems below. Let constraints be the image
of the CONSTRAINTS section under translation into CTL∗(FO).

Examples of definitions and constraints occur in Figure 1. One such is the definition
of the mentioned completed predicate over system statuses. The sample constraint is a
temporal property using the “weak until” W operator. It encodes the rule that customers
without “gold” status can never have their order shipped before they have paid.

Adding Dynamics. Above the state-based level of the previous section, we allow users
to define a “process fragment”-based dynamics for their systems by means of process
graphs. Formally, a process graph G is a directed labeled graph (N, E), where N is a
set of nodes and E ⊆ N × N is a set of edges. Exactly one node must be labelled as
an “init node”. Each node can be labelled as an “entry node” or “exit node” (or both).
A guard is a FO formula with free variables at most {db}; an update term is a FO term
with free variables at most {db}. Entry nodes and edges always have both a guard and
an update term attached to them, which are denoted by guard(n) and upd(n) for entry
nodes n, respectively, and analogously for edges.

The concrete syntax for process graphs should be obvious from our running exam-
ple. Every script, a sequence of assignments, is taken as an update term. The seman-
tics of entry/exit nodes is defined by implicitly putting an edge between every exit node
and every entry node and using the entry node’s guard and script for the edge.

We capture this intuition formally and in a uniform way by defining a labelled edge
relation consisting exactly of the quadruples m

γ,u
−→ n such that m, n ∈ N and either

(m, n) ∈ E, γ = guard(m, n) and u = upd(m, n), or m is an exit node, n is an entry node,
γ = guard(n) and u = upd(n).

The labelled edge relation induces a state transition system M = (S , I,R) as follows.
The states S are all assignments s of the form {` 7→ n, db 7→ d} where n ∈ N and d is a
domain element of sort DB. Notice that ` and db are fixed. Then,

I def
= {s ∈ S | s(`) = n0}

R def
= {(s, s′) ∈ S × S | s(`)

γ,u
−→ s′(`), (I, {db 7→ s(db)}) |= γ[db], and

s′(db) = (I, {db 7→ s(db)})(u[db])

Init

Pack

Stocktake

Declined

Packed

Invoice

Paid Shipped

entry = “true”
exit = “true”
guard = “db.paid , true”
script = “db..paid = true”

guard = “¬acceptable(db)”

Definitions:
completed: ∀db:DB . (completed(db)⇔ (db.paid = true ∧ db.shipped = true))
acceptable: ∀db:DB . (acceptable(db)⇔ db.open , [| |])
Constraints:
nongold: (db.gold = false⇒ (db.shipped = false W db.paid = true))

Fig. 1. Model of a purchase order system as process fragments and definitions.

Notice the transition relation R depends on the interpretation I, which is fixed at the
outset. If a guard evaluates to false under I and the current state, then the edge it is on
is just “not there”. Otherwise the state must be updated as specified by the update term.

We can now explain the dynamics of our running example, a system for handling
purchase orders. The purpose of the modelled system is to accept incoming purchase
orders and process them further (packing, shipping, etc.), or to decline them straight
away if there are problems. The dynamics of the model is depicted as a graph in Fig. 1.
It is comprised of three (process) fragments: the biggest fragment on the left, and beside
it the two one-node fragments labelled “Paid” and “Shipped”.

The depicted model’s initial node (“Init”) is where it waits for a purchase order
to arrive. Subsequently, the system can either start to pack (i.e., enter node “Pack”),
or decline the order (i.e., enter node “Declined”). An order can be declined if the de-
picted guard (¬acceptable(db)) in the annotation of the edge is satisfied. The predicate
acceptable is defined in the DEFINITIONS section of our input specification.

If the order is not declined, an attempt will be made to pack its constituents. As long
as the open list is not empty, the loop between “Pack” and “Stocktake” packs all items
one after the other. Not all guards and scripts are depicted in Figure 1. For example,
there is an edge from “Stocktake” to “Pack” labelled with

guard = “db.stock[head(db.open)].available > 0”
script = “db.stock[head(db.open)].available =

db.stock[head(db.open)].available − 1; db.open = tail(db.open)”

Upon completion, the “Invoice” state is reached, followed by composition with the
fragments “Paid” and “Shipped”. The “Shipped” fragment has a guard and script anal-
ogously to that of “Paid”. The guards make it impossible to compose these fragments
repeatedly, otherwise their composition is subject only to the “nongold” constraint. The
intended final states are those that satisfy the “completed” predicate.

Reasoning Problems. Assume as given a specification. Let Σ be the induced signature
with sorts sorts. Let defs, constraints and M = (S , I,R) be as defined above. In terms
of our specification language we are interested in the following reasoning problems. In
each of them, let ψ[db] be a path formula, in this context called the query.

Concrete satisfiability problem: Given an initial state s0 ∈ I.
Is there a Σ-interpretation I such that (I, s0) |= E (defs ∧ constraints ∧ ψ) holds?

General satisfiability problem: Is there an initial state s0 ∈ I and a Σ-interpretation I
such that (I, s0) |= E (defs ∧ constraints ∧ ψ) holds?

That is, the concrete vs. general dimension distinguishes whether an initial assignment
is fixed or not. The concrete problems are interesting for implementing deployed sys-
tems and runtime verification. For, if the definitions and constraints are sufficiently re-
stricted (e.g., non-recursive definitions and constraints whose quantifiers range over
finite domains) all state transitions can be effectively executed. See Section 6 for exam-
ples of reasoning problems.

4 Tableaux for CTL∗(FO)

In this section we introduce a tableau calculus for the reasoning problems in Section 3.
Without loss of generality it suffices to consider the general satisfiability problem only.
(Pragmatics aside, any concrete satisfiability problem can be encoded as a general one
as a set of equations in the CONSTRAINTS section). With the abbreviation ψ0 = defs ∧
constraints ∧ ψ the reasoning problem, hence, is to ask whether (I, s0) |= Eψ0 holds
for some s0 ∈ I and Σ-interpretation I. In fact, Ψ0 can be any path formula in the free
variable db.

It comes in handy to assume the signature Σ contains a DB-sorted constant db, rep-
resenting the initial database, and that Σ contains a distinguished sort “Node” and the
nodes N from the process graph as constants. We assume I(n) = n for every n ∈ N.

We formulate the calculus’ inference rules as operators on sets of sequents. A se-
quent is an expression of the form (n, t, l) `Q Φ where n ∈ N, t is a ground term of sort
DB, l ≥ 0 is an integer, Q ∈ {E,A} is a path quantifier, and Φ is a (possibly empty) set of
CTL∗(FO) formulas in negation normal form with free variables at most {db}. When we
write s `Q Φ we mean (n, t, l) `Q Φ for some (n, t, l) = s, and when we write s `Q φ, Φ
we mean s `Q {φ} ∪Φ.

Informally, the sequent (n, t, d) `Q Φ means that the computation has reached after
l steps (“length”) into a run the graph node n with a database represented by t and that
database satisfies QΦ. For example, t could be db{open = [|1, 3, 2|]} (in sugared no-
tation) which stands for an update of the initial database db updated on its open-field
with the list [|1, 3, 2|], and QΦ could be the formula A G db.open , [| |]. The calculus
analyses a given sequent by decomposing its formula Φ according to its boolean oper-
ators, path quantifiers and temporal operators. An additional implicit boolean structure
is given by reading the formulas Φ in s `E Φ conjunctively, and reading the formulas Φ
in s `A Φ disjunctively.2 The purpose is to derive a set of sequents with only classical,
i.e., pure FO formulas in Φ, so that a first-order satisfiability check results.

2 These structures are in general not decomposable, as A does not distribute over “or” and E
does not distribute over “and”, and so the calculus needs to deal with that explicitly.

We are using notions around tableau calculi in a standard way, and so it suffices to
summarize the key points. The nodes in our tableaux are labelled with sets Σ of sequents
or the special sign FAIL, which indicates branch closure. Logically, FAIL is taken as
an (any) unsatisfiability set of sequents, e.g., {(n0, db, 0) `A ∅}. We often write σ;Σ
instead of {σ} ∪ Σ, and we often identify the node with its label. A derivation D (from
a path formula ψ0) is a sequence of tableaux, starting from a root node only tableau
labelled with {(n0, db, 0) `E ψ0}. A successor tableaux is obtained by applying one of
the inference rules below to a non-FAIL leaf of the current tableau and branching out
with the conclusions. A refutation (of ψ0) is a derivation from ψ0 of a tableau whose
leaves are all FAIL. We suppose a notion of fair derivations as commonly used with
tableau calculi. Intuitively, a derivation is fair iff it is a refutation or no inference rule
application is deferred forever.

In the inference rules below we use the following notions. A formula is classi-
cal iff it contains no path quantifier and no temporal operator. A formula is a modal
atom iff its top-level operator is a path quantifier or a temporal operator. A sequent
s `Q Φ is classical if all formulas in Φ are classical. We define formA(Φ) def

= A (
∨
Φ)

and formE(Φ) def
= E (

∧
Φ) in order to reflect the disjunctive/conjunctive reading of Φ

depending on a path quantifier context. If all formulas in Φ are classical then the path
quantifier is semantically irrelevant and omitted from formQ(Φ).

Boolean rules.

E-∧
s `E φ ∧ ψ,Φ;Σ

s `E φ, ψ,Φ;Σ
E-∨

s `E φ ∨ ψ,Φ;Σ

s `E φ,Φ;Σ s `E ψ,Φ;Σ

A-∨
s `A φ ∨ ψ,Φ;Σ

s `A φ, ψ,Φ;Σ
A-∧

s `A φ ∧ ψ,Φ;Σ

s `A φ,Φ; s `A ψ,Φ;Σ

if φ is not classical or ψ is not classical (no need to break classical formulas apart).

Rules to separate classical sequents.

E-Split
s `E Φ;Σ

s `E Γ; s `E Φ\Γ;Σ
A-Split

s `A Φ;Σ

s `A Γ;Σ s `A Φ\Γ;Σ

if Γ consists of all classical formulas in Φ and Γ is not empty.

Rules to eliminate path quantifiers.

E-Elim
s `E Q φ,Φ;Σ

s `Q φ; s `E Φ;Σ
A-Elim

s `A Q φ,Φ;Σ

s `Q φ;Σ s `A Φ;Σ

The above rules apply also ifΦ is empty. In this caseΦ represents the empty conjunction
in s `E Φ, a sequent that is satisfied by every I, and the empty disjunction in s `A Φ,
a sequent that is satisfied by no I.

When applied exhaustively, the rules so far lead to sequents that all have the form
s `Q Φ such that (a) Φ consists of classical formulas only, or (b) Φ consists of modal
atoms only with top-level operators from {U,R,X,X}.

Rules to expand U and R formulas.

U-Exp
s `Q (φUψ), Φ;Σ

s `Q ψ ∨ (φ ∧ X (φUψ)), Φ;Σ
R-Exp

s `Q (φRψ), Φ;Σ

s `Q (ψ ∧ (φ ∨ X (φRψ))), Φ;Σ

The above rules perform one-step expansions of modal atoms with U and R operators.
When applied exhaustively, the rules so far lead to sequents that all have the form

s `Q Φ such that (a) Φ consists of classical formulas only, or Φ consists of modal atoms
only with top-level operators from {X,X}.

Rules to simplify X and X formulas. Below we define inference rules for one-step ex-
pansions of sequents of the form s `Q X φ and `Q X φ. The following inference rules
prepare their application.

E-X-Simp
s `E X φ1, . . . ,X φn,Xψ1, . . . ,Xψm;Σ

s `E Y (φ1 ∧ · · · ∧ φn ∧ ψ1 ∧ · · · ∧ ψm);Σ

if n+m > 1, where Y = X if n = 0 else Y = X. Intuitively, if just one of the modal atoms
in the premise is an X-formula then a successor state must exist to satisfy it, hence the
X-formula in the conclusion. Similarly:

A-X-Simp
s `A X φ1, . . . ,X φn,Xψ1, . . . ,Xψm;Σ

s `A Y(φ1 ∨ · · · ∨ φn ∨ ψ1 ∨ · · · ∨ ψm);Σ

if n + m > 1, where Y = X if m = 0 else Y = X.
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q Γ, where Γ consists of classical formulas only, (b) s `Q X φ,
or (c) s `Q X φ.

Rules to expand X and X formulas.

E-X-Exp
(m, t, l) `E X φ;Σ

(n1, u1[t], l + 1) `E γ1[t] ∧ φ;Σ · · · (nk, uk[t], l + 1) `E γk[t] ∧ φ;Σ
(m, t, l) `E ¬γ1[t] ∧ · · · ∧ ¬γk[t];Σ

if there is a k ≥ 0 such that m
γi,ui
−→ ni are all labelled edges emerging from m, where

1 ≤ i ≤ k. Notice that the case k = 0 is possible. In this case there is only one conclusion,
which is equivalent to Σ.

This rule binds the variable db in the guards to the term t, which represents the
current database. The variable db in XΦ refers to the databases in a later state and
hence cannot be bound to t.

There is also a rule E-X-Exp whose premise sequent is made with the X opera-
tor instead of X. It differs from the E-X-Exp rule only by leaving away the rightmost
conclusion. We do not display it here for space reasons. Dually,

A-X-Exp
(m, t, l) `A X φ;Σ

(n1, u1[t], l + 1) `A ¬γ1[t] ∨ φ; · · · (nk, uk[t], l + 1) `A ¬γk[t] ∨ φ; (m, t, l) `E γ1[t] ∨ · · · ∨ γk[t];Σ

if there is a k ≥ 0 such that m
γi,ui
−→ ni are all labelled edges emerging from m, where

1 ≤ i ≤ k.
The conclusion sequent (m, t, l) `E γ1[t]∨ · · · ∨ γk[t] forces that at least one guard is

true. Analogously to above, there is also a rule A-X-Exp for the X case, which does not
include this sequent. This reflects that X formulas are true in states without successor.

These rules are the only one that increase the length counter l.

Rule to close branches.

Close
(m1, t1, l1) `Q1 Φ1; · · · ; (mn, tn, ln) `Qn Φn

FAIL

if every formula in every Φi is classical and F =
∧

i=1,...,n formQi (Φi[ti]) is unsatisfiable
(not satisfied by any interpretation I).

Notice that F is a classical formula, It is meant to be passed to a first-order theorem
prover for checking unsatisfiability.

Let us now turn to analyzing the calculus’ theoretical properties. To this end, we
equip sequents with a formal semantics within the temporal logic framework in Sec-
tion 2. In that framework, a state is a mapping from variables to domain elements. In
our case the (relevant) variables are fixed, which are the Node-sorted variable ` and the
DB-sorted variable db. Given an interpretation I, we associate to the triple (n, t, l) the
state stateI(n, t, l) def

= {` 7→ n, db 7→ I(t)} (the length l has no relevant meaning for that).

Definition 4.1 (Tableau node semantics). Let I be an interpretation. We say that I
satisfies a sequent s `Q Φ, written as I |= s `Q Φ, iff (I, stateI(s) |= formQ(Φ). We say
that I satisfies a set Σ of sequents, written as I |= Σ, iff I satisfies every sequent in Σ.

The following lemma expresses the correctness of our inference rules.3

Lemma 4.2. Let I be an interpretation and Σ a set of sequents. For every tableau rule
inference with premise Σ and conclusions Σ1, . . . , Σn it holds that I |= Σ if and only if
I |= Σ j, for some 1 ≤ j ≤ n.

Theorem 4.3 (Soundness). Given a state transition system M = (S , I,R) as described
in Section 3 and a path formula Ψ0[db]. If there is a refutation of Ψ0 then for no inter-
pretation I and no s0 ∈ I it holds (I, s0) |= EΨ0.

We are now turning to completeness. In its simplest form, the completeness state-
ment reads as “if for no interpretation I and no s0 ∈ I it holds (I, s0) |= EΨ0 then there
is a refutation”. For efficiency in practice, one should exploit confluence properties of

3 Proofs are in the long version of this paper, see http://www.nicta.com.au/pub?id=6988

the inference rules and work with fair derivations instead. To this end, we demand that
the inference rules are applied in the order given above, with decreasing priority. (In the
bounded setting described below this is indeed a fair strategy.) Additionally, we would
like to get a stronger model-completeness result saying that a non-refutation leads not
only to a model of Ψ0 but also delivers the corresponding run.

However, the infinite-state model checking problems we are dealing with make any
general completeness result impossible. Our pragmatic solution is to use a form of
bounded model checking by limiting runs to user-given length, as follows.

Let lmax ≥ 0 be an integer, the length bound. We define bounded versions of the rules
to expand X and X formulas by taking k = 0 whenever l = lmax, otherwise the rule is
applied as stated. That is, after lmax expansions of X or X formulas the bounded versions
of the inference rules pretend that the underlying run (of length lmax) has stopped. The
bounded version of the tableau calculus uses that bounded rules.

We need to reflect the bounded version of the calculus at the semantics level. Given
a state transition system M = (S , I,R) and lmax ≥ 0, let the admissible runs of M consist
of all runs r from each s0 ∈ I such that |r| ≤ lmax and if |r| < lmax then r is finished. We
qualify the resulting satisfaction relation of Section 2 by “wrt. runs of length lmax”.

Theorem 4.4 (Bounded tableau calculus completeness). Given a state transition sys-
tem M = (S , I,R) as described in Section 3, lmax ≥ 0 a length bound, and a path formula
Ψ0[db]. LetD be a fair derivation from Ψ0 in the bounded version of the calculus.

Then, D is finite, every non-FAIL leaf Σ consists of classical sequents only, and for
every model I of Σ it holds (I, s0) |= EΨ0 wrt. runs of length lmax.

Conversely, for every interpretation I such that (I, s0) |= EΨ0 wrt. runs of length
lmax there is a non-FAIL leaf Σ such that I satisfies Σ (model completeness).

Thanks to the tableau calculus maintaining the history of expanding formulas, it is easy
to extract from the branches leading to the leaves Σ the corresponding runs. Moreover,
the formula Σ represents the weakest condition on I and this way provides more valu-
able feedback than, say, a fully specified concrete database.

But notice that in order to exploit Theorem 4.4 in practice, one has to establish
satisfiability of the non-FAIL leaf node Σ. In general this is impossible, and the first-
order proof problems we are dealing with are highly undecidable (Π1

1 -complete [19]), as
the DEFINITIONS section may contain arbitrary FO sentences over integer arithmetics
with free function symbols [11].

5 Inductive Proofs of Safety Properties

Verifying a safety property A G φ of a state transition system M (under given constraints)
is especially problematic when using bounded model checking. The complexity of
model checking will in most cases be prohibitive in case φ is in fact invariant and the
failure to find a counterexample trace of a given length does not entail invariance.

A relatively simple method for verifying safety properties that has been shown to
often work well in practice in the context of SAT and SMT based model checking is the

k-induction principle [22, 15, 13]. It attempts to prove an invariant φ by iteratively in-
creasing a parameter k ≥ 1, the maximal length of considered traces, until a counterex-
ample trace for the base case is found, k-induction succeeds, or some pre-determined
bound for k is reached. In our setting the the k-induction principle reads as follows:

Base Case: There does not exist a Σ interpretation I and an assignment α0 with α0(l) =

n0 such that (I, α0) |= E((constraints ∧ defs) ∧ ¬(φ ∧ Xφ ∧ ... ∧ X
k−1
φ)).

Induction Step: There does not exist a Σ interpretation I and an assignment α0 with
α0(l) = ni for some ni ∈ N such that (I, α0) |= E (defs∧¬((φ∧Xφ∧ ...∧Xk−1φ)→
Xk−1Xφ)).

Constraints (e.g. of the form A Gψ) can be used for traces starting at the initial states, but
in general not for the inductive step. An upper bound for k can sometimes be computed
from the structure of φ and constraints. In general, k-induction based model checking is
incomplete because a counterexample trace to the inductive step for some k may start at
a state which is unreachable from an intitial state. While the objective of increasing k is
precisely to avoid such “spurious” counterexamples, some properties are not k-inductive
for any k. Strengthening the property to be verified [15, 13] is one means of attempting
to avoid that problem. We have adapted the strengthening strategy presented in [15] to
our framework, though more work is required to make this approach practical.

6 Implementation and Experiments

We have implemented the modelling language of Section 3, the tableau calculus of
Section 4, and the k-induction scheme of Section 5 on top of it.4 The implementation,
in Scala, is in a prototypical stage and is intended as a testbed for rapidly trying out
ideas. As the first-order logic theorem prover for the Close rule we coupled Microsoft’s
SMT-solver Z3 [14]. Z3 accepts quantified formulas, which are treated by instantiation
heuristics. Moreover, Z3 natively supports integers, arrays, and lists. For JSON record
types we have to supply axioms explicitly. Non-recursive definitions are passed on as
“functions” to Z3, recursive ones as “constraints”. The coupling of Z3 is currently rather
inefficient, through a file interface using the SMT2 language.

The lack of further improvements currently limits our implementation to problems
that do not require too much combinatorial search induced by a process’ dynamics. But,
in fact, we are currently mostly interested in investigating the usefulness and limits of
currently available first-order theorem proving technology in an expressive verification
framework as ours (recall from Theorems 4.3 and 4.4 and the accompanying discussions
how critically our approach depends on that).

A basic query is F completed(db), which checks whether or not it is possible to fully
execute an (acceptable) order into a completed state. Such “planning” queries are useful,
e.g., for flexible process configuration from fragments during runtime, but also for static
analysis during design time. Our prover can be instructed to exhaust all branches under

4 Our implementation supports concrete reasoning problems (Section 3) by evaluation of
scripts with a Groovy interpreter and a tailored, model elimination based proof procedure
for guards, but we do not discuss this here.

inference rule applications and extract all runs represented by non-FAIL leaves. With a
length bound lmax = 8 it returns the runs

Init → Pack → Stocktake→ Pack → Invoice→ Shipped → Paid
Init → Pack → Stocktake→ Pack → Stocktake→ Pack → Invoice→ Shipped → Paid
Init → Pack → Stocktake→ Pack → Invoice→ Paid → Shipped
Init → Pack → Stocktake→ Pack → Stocktake→ Pack → Invoice→ Paid → Shipped

which are exactly the expected ones. In total, 223 branches have been closed, with
912 inference rule applications, and Z3 was called 529. The total runtime is 30 sec-
onds, the time spent in Z3 was negligible. A variation is the query (F completed(db)) ∧
(db.shipped = true R db.paid = f alse) (“Is there a completed state that has shipment
before payment?”) which returns the first two of the above runs. We also experimented
with unsatisfiable variants, e.g., by adding the CONSTRAINT db.gold = false to the
latter query. All these queries can be answered in comparable or shorter time.

Let us now turn to safety properties. They typically occur during design time, and
are clearly general (as opposed to concrete) problems. Here are some examples, stated
in non-negated form:

A G (∀i:Integer.((0 ≤ i ∧ i < db.nrStockItems)⇒ db.stock[i].available ≥ 0))
(“The number of available stock items is non-negative”)

A G ((db.paid = true ∧ db.shipped = false)⇒ F db.shipped = true)
(“Orders that have been paid for but not yet shipped will be shipped eventually”)

A G ((db.gold = false ∧ db.shipped = true)⇒ db.paid = true)
(Follows from non-gold CONSTRAINT)

A G inRange(db.open, db.nrStockItems)
where inRange is defined as ∀l:List[Integer].∀n:Integer.(inRange(l, n)⇔

(l = [| |] ∨ (0 ≤ head(l) ∧ head(l) < n ∧ inRange(tail(l), n))))
(“The open list contains valid item numbers only, in the range 0 . . . db.nrStockItems”)

The first property requires the additional CONSTRAINT db.nrStockItems ≥ 0 ∧
(∀i:Integer.((0 ≤ i ∧ i < db.nrStockItems) ⇒ db.stock[i].available ≥ 0)),
which asserts that that property holds true initially. The proof of that is found with
k = 1. The second property needs k = 3, both proven within seconds.

The third property is problematic. Although valid, it cannot be proven by k-induction
because it admits spurious counterexamples due to ignoring constraints in the induc-
tion step. The fourth property is again valid after adding db.nrStockItems ≥ 0 ∧
inRange(db.open, db.nrStockItems) to CONSTRAINTS, which asserts the property
holds initially. It is provable by k-induction for k = 2. There is a caveat, though: as
said, our prover tries k = 1, 2, . . . in search for a proof by k-induction. Here, for k = 1
an unprovable (satisfiable) proof obligation in the induction step turned up on which Z3
did not terminate. Z3, like other SMT-solvers, does not reliable detect countersatisfia-
bility for non-quantifier free problems. This is a general problem and can be expected
to show up as soon as datatypes with certain properties (like inRange) are present. Our
workaround for now is to use time limits and pretend countersatisfiability in case of
inconclusive results. Notice that this preserves the soundness of our k-induction proce-
dure.

7 Conclusions and Future Work

In this paper we proposed an expressive modelling framework based on first-order logic
over background theories (arithmetics, lists, records, etc) and state transition systems
over corresponding interpretations. The framework is meant to smoothly support a wide
range of practical applications, in particular those that require rich data structures and
declarative process modelling by fragments and constraints governing their composi-
tion. On the reasoning side, we introduced a tableau calculus for bounded model check-
ing of properties expressed in a certain fragment of CTL* over that first-order logic. To
our knowledge, the tableau calculus as such and our soundness and completeness re-
sults are novel. First experiments with our implementation suggests that bounded model
checking is already quite useful in the business domain we considered, in particular in
combination with k-induction.

From another point of view, this paper is meant as an initial exploration into using
general first-order logic theorem provers as back-ends for dynamic system verification.
Developing such systems that natively support quantified formulas over built-in theories
has been become an active area of research. Improvements here directly carry over to
a stronger system on our side. For instance, we plan to integrate the prover described
in [3].

We also plan to work on some conceptual improvements. Among them are block-
ing mechanisms to detect recurring nodes, partial-order reduction to break symmetries
among fragment compositions, and cone of influence reduction. Each of these reduces,
ultimately, to first-order logic proof problems, which again emphasizes the role of first-
order logic theorem proving in our context.

References

1. F. Baader, H. Liu, and A. ul Mehdi. Verifying properties of infinite sequences of description
logic actions. In ECAI, 2010, pp. 53–58.

2. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime verification.
Logic and Computation, 20(3):651–674, 2010.

3. P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstraction. In M. P.
Bonacina, ed., CADE-24, 2013, LNAI. Springer.

4. M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, and M. Rossi. SMT-based verifica-
tion of LTL specification with integer constraints and its application to runtime checking of
service substitutability. In J. L. Fiadeiro, S. Gnesi, and A. Maggiolo-Schettini, eds., SEFM,
2010, pp. 244–254. IEEE Computer Society.

5. L. Chang, Z. Shi, T. Gu, and L. Zhao. A family of dynamic description logics for representing
and reasoning about actions. J. Autom. Reasoning, 49(1):1–52, 2012.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

7. D. Crockford. RFC 4627—The application/json media type for JavaScript Object Notation
(JSON). Technical report, IETF, 2006.

8. E. Damaggio, A. Deutsch, R. Hull, and V. Vianu. Automatic verification of data-centric
business processes. In S. Rinderle-Ma, F. Toumani, and K. Wolf, eds., BPM, 2011, LNCS
6896, pp. 3–16. Springer.

9. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Combination methods for satisfiability
and model-checking of infinite-state systems. In CADE-21, Berlin, Heidelberg, 2007, LNAI,
pp. 362–378. Springer-Verlag.

10. R. Goré. Chapter 6: Tableau methods for modal and temporal logics. In M D’Agostino,
D Gabbay, R Hähnle, J Posegga, ed., Handbook of Tableau Methods, pp. 297–396. Kluwer
Academic Publishers, 1999.

11. J. Halpern. Presburger Arithmetic With Unary Predicates is Π1
1 -Complete. Journal of Sym-

bolic Logic, 56(2):637–642, 1991.
12. B. B. Hariri, D. Calvanese, G. D. Giacomo, R. D. Masellis, P. Felli, and M. Montali. Verifica-

tion of description logic knowledge and action bases. In L. D. Raedt, C. Bessière, D. Dubois,
P. Doherty, P. Frasconi, F. Heintz, and P. J. F. Lucas, eds., ECAI, 2012, Frontiers in Artificial
Intelligence and Applications, vol. 242, pp. 103–108. IOS Press.

13. T. Kahsai and C. Tinelli. Pkind: A parallel k-induction based model checker. In J. Barnat
and K. Heljanko, eds., PDMC, 2011, EPTCS, vol. 72, pp. 55–62.

14. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan and
J. Rehof, eds., TACAS, 2008, LNCS 4963, pp. 337–340. Springer.

15. L. M. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction: From
refutation to verification. In W. A. H. Jr. and F. Somenzi, eds., CAV, 2003, LNCS 2725, pp.
14–26. Springer.

16. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.
IBM Systems Journal, 42(3):428–445, 2003.

17. M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business processes
management. In J. Eder and S. Dustdar, eds., Business Process Management Workshops,
2006, LNCS 4103, pp. 169–180. Springer.

18. M. Reynolds. A tableau for CTL*. In A. Cavalcanti and D. Dams, eds., FM, 2009, LNCS
5850, pp. 403–418. Springer.

19. H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. The MIT Press,
Cambridge, Massachusetts, 1987.

20. T. Schuele and K. Schneider. Global vs. local model checking: A comparison of verification
techniques for infinite state systems. In SEFM, Washington, DC, USA, 2004, pp. 67–76.
IEEE Computer Society.

21. G. S. S. Schulz, K. Claessen, and P. Baumgartner. The TPTP typed first-order form with
arithmetic. In N. Bjoerner and A. Voronkov, eds., LPAR-18, 2012, LNAI 7180. Springer.

22. M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction and
a SAT-solver. In W. A. H. Jr. and S. D. Johnson, eds., FMCAD, 2000, LNCS 1954, pp.
108–125. Springer.

23. V. Vianu. Automatic verification of database-driven systems: a new frontier. In R. Fagin, ed.,
ICDT, 2009, ACM International Conference Proceeding Series, vol. 361, pp. 1–13. ACM.

