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Abstract

In many branches of industry, the component-based ap-
proach to systems design is predominant, e. g., as in embed-
ded control systems which are often modelled using MAT-
LAB/Simulink. In order to facilitate reuse, and to raise
the level of abstraction for future designs and frequently
used functions, the employed tool sets offer built-in mech-
anisms to create sophisticated component libraries. For
large, real-world designs, however, it is not always clear,
whether or not a certain context violates even the most ba-
sic design assumptions of employed library components,
thus often leading to expensive runtime errors. This pa-
per introduces a practical method for checking compatibil-
ity of large designs, statically. This method not only en-
sures that large component-based designs provide a context
such that all (library) components have well defined types,
but it also ensures that transmitted physical units, such as
m2, km/h,mph, etc. are preserved during computation.
As such the possibility for runtime errors is reduced, and
a metric for sound component reuse given.

1 Introduction

Component-based approaches to software and systems
design are predominant in large parts of industry, such as
automotive and embedded control systems in general. Tool
chains used in these domains are often based on MAT-
LAB/Simulink, a graphical modelling and simulation envi-
ronment with the ability to generate code (via program ex-
tensions). MATLAB/Simulink and other tools further sup-
port the creation and use of dedicated component libraries
such that frequently used functionality can be reused in dif-
ferent contexts, and without having to concentrate on imple-
mentation details. As such, the reuse of components raises
the level of abstraction for many designs, and development
time is often reduced.

However, this convenience comes at a price; that is, the
developer has to make sure that reused components are
compatible in the context they are used in. For large, real-

world designs as they are common, e. g., for automotive
control systems like adaptive cruise control, engine man-
agement, or electronic brake systems, reuse is often con-
strained by the ability to establish firm criteria for ensuring
compatibility of reused components with respect to the rest
of a complex design, i. e., acontext.

Contribution. In this paper, we focus on establishing a
criterion for syntactic compatibility, i. e., a criterion that
can be checked at compile-time and without executing the
component-based design under scrutiny. In the context of
some of our industrial research collaborations, compatibil-
ity checking has been reduced to a problem oftype inference
for which a comprehensive theory already exists (cf. [13]),
and which can be greatly automated and tool-supported. We
say that a given design is compatible w. r. t. its employed
library components iff (1.) a well-typed design can be in-
ferred from it, and (2.) the inferred types do not violate
a set of predeterminedmeasurement units. Measurement
units (see Sec. 4) play an important role in domains where
systems control physical processes, e. g., for ensuring that
signals are interpreted correctly by another system or com-
ponent. Therefore, adecidable polymorphictype system
for a custom component language is introduced that can be
used to infer for a concrete design its types and according
measurement units, and determine compatibility. However,
this type system and inference algorithm is not restricted
to our language, but can be applied to similar component-
based formalisms, e. g., MATLAB/Simulink at ease.

In the context of our current projects, our approach to
compatibility testing has proven to be a reliable metric not
only in terms of establishing type compatibility of large de-
signs and component libraries, but also as a means of avoid-
ing type errors in the running program and the code gener-
ator of our component language. An implementation of our
method would exhibit only linear runtime in the number of
design artifacts due to the use of standardunificationalgo-
rithms (cf. [9]) for inference. Moreover, not only type cor-
rectness can be established formally, but also compatibility
between the measurement units of a design.



Related work. Most tools which support a component or
model-based design approach, and which are currently used
in the domain of embedded control systems, do not offer ad-
vanced concepts for type checking, let alone type inference.
The authors of this text believe that the reason lies in that
these systems target rather low-level design artifacts, such
as the design of continuous control algorithms, and abstrac-
tion from this level of detail has not been the primary focus
of the developers for a long time.

The concept of measurement units in combination with
a strong static type system, however, caters for comprehen-
sible designs, and avoids errors in the actually running sys-
tems. Moreover, they facilitate the reuse of components,
and give to the user a powerful tool for combining different
library components in different contexts without violating
assumptions over measurement units or data types, and not
being aware of it.

Currently, MATLAB/Simulink does not offer strong
static type checking, and subsumes mostly basic data types
such asboolean anddouble which, if not specified at
“compile-time”, may create runtime errors due to maltyped
designs; that is, if nothing is explicitly specified for a com-
ponent, thendouble is used as a “default type” for input
and output signals (cf. [5, 1]). The situation is a similar one
for other domain-specific solutions such as ASCET-SD.

However, various authors have concentrated on estab-
lishing behavioural correctnessof low-level designs. A
popular formalism areInterface automata[6]. These can
be used for the specification of behaviour at component in-
terfaces, and to establish compatibility between compound
interfaces by means of automata analysis. One of the re-
search tools already making use of this is, e. g., Ptolemy
II [11]. The static part of Ptolemy’s type system, however,
is rather different from the approach presented in this paper,
in that the behaviour of Ptolemy II components (called “ac-
tors”) is tightly interwoven with Java code. Therefore, type
correctness is partly handled by the Java compiler, and Java
is known to leave space for subtle type errors at runtime.

Our custom language, in the next section introduced as
SCL, handles type inference at compile time and avoids
such problems altogether. To the best of the knowledge of
the authors, no other component-based design language for
the development of embedded control systems currently of-
fers the combination of polymorphic type and measurement
unit inference as well as a decidable, static type system.

2 SCL—A simple component language

In the following, we introduce a simple component lan-
guage, SCL, that provides the essential mechanisms for sys-
tems modelling and analysis. Conceptually, SCL is close to
other graphical modelling formalisms, such as UML-based
ones, or MATLAB/Simulink, but its semantics is based

upon a uniform discrete time-base and the hypothesis of
perfect-synchrony [2]. This basically asserts that compu-
tations of components occur instantly, i. e., take no time,
and that communication is infinitely fast. This allows us to
abstract from implementation details when modelling, and
caters for a sound and well-defined semantics. Various tools
for systems design and synthesis exist that are based on this
notion, e. g., SCADE [5], Esterel [3], and AutoFocus [4].

In the following the syntax and semantics of SCL are
introduced. The syntax is required for the definition of the
typing rules (see Sec. 3.1), the semantics for the safety proof
(see Sec. 3.2).

2.1 Concepts and syntax

Basically, SCL provides the following core concepts for
modelling: (functional) blocks, ports and channels for com-
munication, (composite) components, all of which are ex-
plained in the following.

plus

eq

delay

Figure 1. An example SCL model

A block is a “primitive” component whose functional-
ity is defined by the semantics of SCL. It cannot be de-
composed further. For instance, the predefined arithmetic
block plus simply adds two variables, which are delivered
to it via two input ports (see Fig. 1). Further, a dedicated
delay block (i. e.,z−1) is used to store values for one com-
putational cycle, and essential for avoiding causal loops in
the model. Hence its value gets updated periodically, and
needs to be initialised to a default value when invoked for
the first time. For brevity, only some predefined blocks are
discussed here.

A block has a signatureS and parameters depending
on the type of block, e. g., thedelay block delay((pi ֌

po), v) has an initial valuev. (Composite) components,
denotedcomponent((S), ch, C,Φ), are composed of a
nonempty set of subcomponentsC, and a nonempty set
of channelsch, and have a well-defined signatureS =
pin
1

, . . . , pin
n

֌ pout
1

, . . . , pout
n

that is made up of its
outside-visible input and output ports. The type contextΦ
is used to introduce new type variables.

Note that a more detailed account of the syntax is avail-
able in [10].



〈ord(ch ∪ C), σ, η〉 → 〈σ′, η′〉

〈component(S, ch, C, Φ), σ, η〉 → 〈σ′, η′〉
(S-comp)

〈delayl((pi ֌ po), v), σ, η〉 → 〈σ′, η〉
〈delays((pi ֌ po), v), σ, η〉 → 〈σ, η′〉

〈delay((pi ֌ po), v), σ, η〉 → 〈σ′, η′〉
(S-delay)

〈e, σ, η〉 → 〈σ′, η′〉 〈es, σ′, η′〉 → 〈σ′′, η′′〉

〈e; es, σ, η〉 → 〈σ′′, η′′〉
(S-seq)

σ(pa) = va σ(pb) = vb

vc.value = va.plus(va.value, vb.value)

〈plus(pa, pb ֌ pc), σ, η〉 → 〈σ[vc/pc], η〉
(S-plus)

σ(pi) = vi

〈delays((pi ֌ po), v), σ, η〉 → 〈σ, η[vi/pi]〉
(S-delay-store)

η(pi) = ⊥

〈delayl((pi ֌ po), v), σ, η〉 → 〈σ[v/po], η〉
(S-delay-nohist)

η(pi) = vo

〈delayl((pi ֌ po), v), σ, η〉 → 〈σ[vo/po]; η〉
(S-delay-hist)

σ(p1) = v

〈chan(p1 ֌ p2), σ, η〉 → 〈σ[v/p2], η〉
(S-chan)

σ(pc) = true σ(pt) = v

〈if(pc, pt, pe ֌ pr), σ, η〉 → 〈σ[v/pr], η〉
(S-if-true)

σ(pc) = false σ(pe) = v

〈if(pc, pt, pe ֌ pr), σ, η〉 → 〈σ[v/pr], η〉
(S-if-false)

v = {l1 = v1, . . . , ln = vn} li ∈ {l1, . . . , ln}

v.li = vi

(S-rcd)

Figure 2. Operational semantics of SCL

2.2 Operational semantics

In order to substantiate the claims made in Sec. 1, we
briefly introduce an operational semantics for SCL. This
provides for a concrete type context when reasoning about
type safety, and consequently compatibility of component-
based designs in SCL.

The notation for the operational semantics used here is
loosely based on the one presented by Plotkin [14]. The
rules are displayed in Fig. 2. The current state of a sys-
tem is denoted byσ, and the history byη (i. e., the previous
state). This differentiation is important especially in face of
thedelay block which stores values for exactly one compu-
tational cycle. We fix a set of portsP , and a set of channels
ch, as well as a domain of valuesV which are transmit-
ted via ports and channels. Letp1, p2 ∈ P and c ∈ ch,
thenc = chan(p1 ֌ p2) indicates that a portp1 is con-
nected withp2 via channelc. Further, we use the notation
σ(p) ∈ V for “retrieving” a value currently associated to a
port p ∈ P , andσ[v/p] for “storing” it in the state (respec-
tively with η). To avoid conflicts inσ andη, the identifiers
of all ports and delays of a model are assumed to be unique.

Finally, we introduce an artificial functionord : 2E →
2E , which, for a given set of entities, returns a partially or-
dered set of entities that defines their order of execution,
whereE = C ∪ ch andC is the set of components con-
nected over the set of channelsch. Before a component
can be evaluated, the input ports have to be assigned their
values. For the system, this has to be provided by the en-
vironment, within a component this is ensured by theord
function.

In the first computational cycle (i. e., at the beginning of
execution), the history is empty,η = ∅. In the following

cycles, the history of stepn is used to compute stepn + 1.

Order of execution and causality The values of a com-
ponent (S-comp) are defined according to its subcompo-
nents and channels. The execution order of the individ-
ual subcomponents and channels is determined by function
ord.

Additionally, the ord-function formally “splits” every
delay (S-delay) into a load part,delayl, and a store part,
delays. The load part is placed at the beginning of the eval-
uation order, and the store part at the end. This ensures that
the delayed values of the last step are available to all com-
ponents and that the current values of the delays are stored.

The remaining components and the channels are sorted
in their evaluation order. Letc ∈ C be some component,
and letI(c) denote the set of input ports ofc andO(c) the
output ports, respectively, then a partial order< is defined
as follows: For two componentsc, c′ ∈ C, and for every
channelchan(po ֌ pi) ∈ ch, c < chan(po ֌ pi) < c′

iff po ∈ O(c) andpi ∈ I(c′). Since no cyclic connections
without adelay are allowed,< delivers a partial order on
model entities, returned byord.

Let ; be the functional sequence operator. Then, an or-
dered sequencee; es of entities is evaluated by evaluating
the first elemente of the sequence, delivering a new val-
uation sequenceσ′ and history sequenceη′. These new
sequences are then used for recursive evaluation of the
remainder of the entity sequencees as depicted in rule
(S-seq).

The store part of a delay takes the valuev ∈ V of the in-
put portpi ∈ P and stores it in the historyη for the next cy-
cle (S-delay-store). In the first cycle, whenη(p) = ⊥, i. e.,
the port is not yet bound inη, the load part of delay block



returns its default value (S-delay-nohist). In the consecutive
steps, it returns a valuevo ∈ V storedη (S-delay-hist).

As expected, a channel simply propagates the value of
one port to the other port (S-chan).

Execution of blocks. Let in what follows,pa, pb, pc ∈ P
andv ∈ V . A plus block is evaluated in (S-plus) by adding
the values of the input portspa andpb and binding the result
to the output portpc. As we are using existential types for
type abstraction, (see Sec. 3.1), theplus-Operator of the
respective type is applied. The rules for other blocks such
asminus, mult, div, and, or, etc. are similar. An entry
l of an existentially typed valuev can be accessed byv.l
(S-rcd).

The evaluation of a conditional block,if , depends on the
value of portpc: if σ(pc) = true then the value of the port
pt is assigned to the result portpr (S-if-true), otherwise the
value of portpe is used (S-if-false).

3 Compatibility in SCL designs

Compatibility checking in SCL is reduced to three key
aspects all of which can be checked statically and automat-
ically:

1. Type inference, i. e., inferring the appropriate types for
an under-specified model, if syntactically possible.

2. Type safety, i. e., SCL ensures that a well-typed model
cannot create runtime errors which are due to type fail-
ures.

3. Units, i. e., SCL models can be checked for compati-
bility in terms of the physical units that are computed
and used in a model.

In this section, we first concentrate on 1. and 2. The in-
troduction and elimination rules and some of the subtyping
rules are omitted here for the sake of brevity, as those are
similar to the standard literature (cf. [13]).

3.1 Inference of data types and signatures

When components are built for reuse, it is desirable to
design them so that they can be used in a variety of con-
texts. For example, a sorting algorithm could be used with
any type, as long as an ordering, e. g., an≤-operator, is de-
fined on that type. Another example would be a component
implementing a queue: this component should be able to
queue elements of a static, but arbitrary type. To implement
this in the type system,existential types, universal typesand
subtypingare used.

If type S is a subtype of typeT , denotedS ⊑ T , this
means that every typeT in a well-typed model could be
replaced with anS, and the model would still be well-typed.

(Bounded) universal types are used to introduce new type
variables in the contextΦ of a component (T-component).
They are denoted by∀X ⊑ T.X to express that the com-
ponent can be used for any typeX, which is required to be
a subtype ofT . This can be used to define the types of the
queue example above.

Existential types are used to denote which operations
have to be defined on a certain type. In combination with
universal types and subtyping, the example can now be de-
scribed formally: the sort component may be used with any
type∀X ⊑ T.X as long as an operation≤ is defined on
that typeT = {∃Y, {≤: Y × Y → Bool}}.

When a new type such as a record or tuple is defined by
the users, they can also define operations on that type and
thereby build a new existential type. This new type can now
be used with any (prior) component whose type restrictions
it satisfies.

SCL requires only a minimal set of primitive types,Bool

andFloat. Bool is required for comparison andif blocks,
Float for arithmetics. Other types can be added in a similar
manner. As we use only existential types throughout the
model, these types are defined as:

Float := {∃X, {value : X,

plus,minus,mult, div : X,X → X,

sqrt : X → X,

eq, le, gt : X,X → Bool}}

Bool := {∃X, {value : X,

and, or : X,X → X,

neg : X → X}}

Notably, SCL supports under-specification in models in
terms of polymorphic blocks and components. For instance,
a plus block is polymorphic in that it works over differ-
ent value domains, and its output type is determined solely
by the types of input values. A model can thus be made
up only of polymorphic blocks (i. e., under-specified blocks
and components lacking a concrete signature), and the con-
crete instances are then inserted automatically by the type
inference mechanism.

The (almost) complete set of typing rules of SCL is de-
picted in Fig. 3. A typeT of a portp ∈ P can be derived
from a type contextΓ, whenever there is exactly one occur-
rence ofp in Γ (T-port). The set of all bound ports inΓ is
defined asdom(Γ). And whenever a typing can be derived
from a contextΓ′, so can it from any permutation thereof
(T-perm).

The ports of theplus block are bound to the typeT ,
which may be an arbitrary type for which an operatorplus
with signatureX,X → X is defined (T-plus). The rules for
minus, mult, neg, andsqrt, etc. are similar.

For a component to be well-typed, all of its channels and
sub-components have to be well-typed (T-component). A



p /∈ dom(Γ)

Γ, p : T ⊢ p : T
(T-port)

Γ′ ⊢ p : T Γ permutation of Γ′

Γ ⊢ p : T
(T-perm)

Γ ⊢ pa, pb, pc : T
Γ ⊢ T ⊑ {∃X, {value : X, plus : X, X → X}}

Γ ⊢ plus(pa, pb ֌ pc)
(T-plus)

Γ ⊢ pa, pb : T Γ ⊢ pc : Bool

Γ ⊢ T ⊑ {∃X{value : X, eq : X, X → Bool}}

Γ ⊢ eq(pa, pb ֌ pc) :
(T-eq)

Γ ⊢ pa, pb, v : T

Γ ⊢ delay((pa → pb), v)
(T-delay)

∀c ∈ C. Γ, Φ ⊢ c
∀c ∈ ch. Γ, Φ ⊢ c

Γ ⊢ component(S, ch, C, Φ)
(T-component)

Γ ⊢ p1 : S Γ ⊢ p2 : S Γ ⊢ S ⊑ T

Γ ⊢ chan(p1 ֌ p2)
(T-chan)

Γ ⊢ pc : Bool Γ ⊢ pt, pe, pr : T

Γ ⊢ if(pc, pt, pe ֌ pr)
(T-if)

Γ ⊢ T ⊑ T
(U-refl)

Γ ⊢ S ⊑ T Γ ⊢ T ⊑ Q

Γ ⊢ S ⊑ Q
(U-trans)

Γ ⊢ T ⊑ Any
(U-any)

Γ ⊢ S ⊑ R

Γ ⊢ {∃X, S} ⊑ {∃X, R}
(U-ex)

{kj∈1..m
j } ⊇ {li∈1..n

i }

kj = li → Sj ⊑ Tj

{kj : Sj∈1..m
j } ⊑ {li : T i∈1..n

i }
(U-rcd)

Figure 3. Typing (T-) and subtyping (U-) rules of SCL

component is the only possibility for the user to define new
type variables by adding them to the additional contextΦ.
The scope of these variables is the component and all its
ports and sub-components.

A channel is the “link” between two components. It is
well-typed, if the type of the source portp1 ∈ P is a sub-
type of the type of the target portp2 ∈ P as defined in
rule (T-chan). Naturally a channel can be used for any type
satisfying the subtype property. It is sufficient to allow sub-
typing only at channels, i. e., between components, as the
type system would not be more expressive if we allowed
subtyping within blocks.

Subtyping. The types in SCL together with the subtyp-
ing relation⊑ form a lattice. The subtyping rules over this
lattice are depicted in Fig. 3.

The subtyping relation is transitive (U-trans) and reflex-
ive (U-refl) and every type is a subtype ofAny (U-any).
An existential type is subtype of another existential type,
if their operations are in a subtype relation (U-ex). The
subtyping-relation for records (U-rcd) is used for existen-
tial types, since we want

{∃X, {value : X, plus,minus : X,X → X}}
⊑ {∃X, {value : X, plus : X,X → X}}

This case occurs, e. g., when one output port is connected to
the input ports of aplus and aminus block by two chan-
nels. Then the type of that output port has to provide aplus
and aminus operator, thus the two existential types have to
be unified as defined in rules (U-ex) and (U-rcd).

These properties of the type system not only provide the
possibility to check the compatibility of a component but
can also be used to adjust the typing of the components to
make them compatible. This is achieved by inferring a valid
typing from the composed components, if such a typing is
possible.

3.2 Runtime safety

Yet, establishing the compatibility of two components at
compile time is not enough. The main concern is that these
components remain compatible at runtime. This means that
the type system must ensure that no type errors occur at
runtime. We therefore have to provesafetyof our static type
system. This means that a model, which was well-typed at
compile-time, remains well-typed during runtime.

In general, to show safety for a type system it is suf-
ficient to showprogressand preservation[13]. Progress
means that the evaluation, based on the operational seman-
tics, for any well-typed entity is not stuck, i. e., a port can
be evaluated and for all entities, there is a rule that can be
applied. Preservation means that every well-typed entity re-
mains well-typed after an evaluation step in the operational
semantics. Syntactic correctness of the model is presumed
here.

Lemma 1 (Progress) If the model andσ and η are well-
typed, then every port can be evaluated and for each entity
there is a rule of the operational semantics that can be ap-
plied to it.



Proof For a detailed proof of this lemma, see [10].
¤

Lemma 2 (Preservation) If the model is well-typed and
for an evaluation rule〈e, σ, η〉 → 〈σ′, η′〉 σ andη are well-
typed so areσ’ and η’. A model is well-typed, if the typing
rules (see Sec. 3.1) can be applied without getting stuck.
σ (and η respectively) is well-typed, iff for every binding
σ(p) = v, v andp are of the same type, i. e.,p, v : T .

Proof For a detailed proof of this lemma, see [10].
¤

Theorem 1 (Safety) This type system is safe, i. e., there are
no type errors at run-time.

Proof Safety can be shown by proving progress and preser-
vation [13].

¤

Thus, when two components are compatible at compile
time, they remain compatible during run-time. This is es-
pecially important for embedded systems, as a type error at
runtime might lead to a damage of the system or its envi-
ronment.

4 Measurement units

When a port in a model is assigned typeFloat, all we
know is the range of values for that port. It does not say
anything about what these values actually represent in the
real world. A model in which two integers, say, one repre-
senting apples and the other oranges, are added would still
be well typed. But in many cases it is not desirable that ap-
ples and oranges can be added. In such a case, additional se-
mantic information must be represented in the model. This
is achieved usingmeasurement units.

Let U denote the set of all (measurement) units de-
fined for a model. Which units are used within a model
depends on the application domain. For embedded sys-
tems the SI units [12] could be used, as many physical
values are processed in such an environment, i. e.,U =
{s, m, kg, A, K, mol, cd}. The functionµ : U → Z is a
mapping from unitsU to integral numbersZ representing
the exponent of the respective unit. This is necessary as
mixed units, such asacceleration = m/s2, can occur as
well. This example would be represented asµ(m) = 1,
µ(s) = −2 andµ(u) = 0 for all remaining unitsu ∈ U.

To be able to discern between different representations
of the same unit, e. g., meters, inches, and miles, these can
be encoded as separate units, all of the same dimension
“length”. It was just this mismatch between the metric and
the imperial system of units that led to the loss of the Mars
Climate Orbiter [7]. But a mismatch of the units of a model
may not only be detected automatically, but in some cases

even be resolved automatically, as some units can be con-
verted into each other, e. g., meters and miles. For this au-
tomatic conversion, the functionτ : U × U → component
is introduced.

The component always has the same signaturei ֌ o
with types i, o : ∀X ⊑ Float. X. Thus the conversion
components can be type-checked with the same rules as the
rest of the model. If two units cannot be converted, the
function returns⊥.

The functionτ can also be interpreted as aconversion
table1, as illustrated in an example with different units for
the dimension length:

m cm inch mile

m ⊥ x ∗ 100 ⊥ x/1609
cm x/100 ⊥ ⊥ ⊥
inch ⊥ ⊥ ⊥ x/63.360
mile x ∗ 1609 ⊥ x ∗ 63.360 ⊥

The conversion tableτ does not have to be fully spec-
ified, since the conversion from cm to inch can be derived
from the table above over m and mile. To achieve that, the
conversion table can be interpreted as aconversion graph
by creating a node for each table entry and connecting the
nodes whenever the entry of the conversion table is not⊥.
Thus the adjacency matrixA for this graph is given as:

A(µ1, µ2) =

{

0 if τ(µ1, µ2) = ⊥

1 otherwise

For the functionτ to be consistent, it is required that, (1)
if there is a path between any two unitsµ1 andµ2, there
must also be a path betweenµ2 andµ1, (2) identical units
are not converted, i. e.,∀µ. τ(µ, µ) = ⊥ and (3) the conver-
sion components do not contain any delays. Note that the
adjacency matrix does not have to be symmetric to satisfy
these constraints.

Lemma 3 Two unitsµ1, µ2 are convertible if there exists a
directed path in the adjacency matrixA fromµ1 to µ2.

Based on the adjacency matrix, the sets of convertible com-
ponents could also be defined over the connected compo-
nents of the conversion graph: Two unitsµ1, µ2 are con-
vertible, if both belong to the same connected component
of the graph defined by the adjacency matrixA.

The concept of units is not limited to the conversion
based on scalar functions, as in [8], but may also be applied
to arbitrary conversion functions, e. g., for Celsius, Kelvin
and Fahrenheit:

1To make the table more concise, its components are represented as
mathematical functions, rather than SCL components.



∆ ⊢ pa, pb, pc : µ

∆ ⊢ plus(pa, pb ֌ pc)
(D-plus)

∆ ⊢ pa : µa ∆ ⊢ pb : µb ∆ ⊢ pc : µa · µb

∆ ⊢ mult(pa, pb ֌ pc)
(D-mult)

∆ ⊢ pa : µa ∆ ⊢ pb : µb ∆ ⊢ pc : µa · µ−1

b

∆ ⊢ div(pa, pb ֌ pc)
(D-div)

∆ ⊢ pa : µ2 ∆ ⊢ pb : µ

∆ ⊢ sqrt(pa ֌ pb)
(D-sqrt)

∆ ⊢ pa, pb : µ

∆ ⊢ eq(pa, pb ֌ pc)
(D-eq)

∆ ⊢ pt, pe, pr : µ

∆ ⊢ ite(pc, pt, pe ֌ pr)
(D-if)

∆ ⊢ pa, pb, v : µ

∆ ⊢ delay((pa ֌ pb), v)
(D-delay)

∀c ∈ C. ∆ ⊢ c
∀c ∈ ch. ∆ ⊢ c

∆ ⊢ component(S, ch, C, Φ)
(D-net)

∆ ⊢ p1 : µ1 ∆ ⊢ p2 : µ2

µ1 6= µ2 → convertible(µ1, µ2)

∆ ⊢ chan(p1 ֌ p2)
(D-chan)

Figure 4. Unit inference rules of SCL

C F K

C ⊥ (x − 32)/1, 8 x − 273
F (x ∗ 1, 8) + 32 ⊥ ⊥
K x + 273 ⊥ ⊥

Furthermore, the units are not restricted to physical units
but may also be used, e. g., to convert between different cur-
rencies. Thus the choice of units depends largely on the
application domain.

In contrast to [8] the units are treated separately from the
type system. That is because units (in contrast to types) do
not have an influence on the system behaviour at runtime.
They are only used to check the consistency of the model.
Thus we do not want to argue about them in the operational
semantics and thus also in the safety proof.

The inference of units in a model is similar to the type
inference. Thus the same notation is used as for the type
system: In the unit context∆ portp has unitµ is written as
∆ ⊢ p : µ. Again for the different entities of an SCL model,
different rules are required, the rules (T-port) and (T-perm)
apply here as well. To be able to infer the units in a model,
there are several operations required onµ. These are based
on [8]. Let n ∈ Z in:

µ1 = µ2 ⇐⇒ ∀u ∈ U. µ1(u) = µ2(u)
µ1 = µ2 · µ3 ⇐⇒ ∀u ∈ U. µ1(u) = µ2(u) + µ3(u)
µ1 = µ2

n ⇐⇒ ∀u ∈ U. µ1(u) = n · µ2(u)
unitless(µ) ⇐⇒ ∀u ∈ U. µ(u) = 0

The test for equalityµ1 = µ2 is required to check the
consistency of the model. The addition of unitsµ1 · µ2 is
required for the mathematical multiplication and division
operators, i. e., when two values are multiplied, their units
are added. For the division operator units need to be in-
vertedµ−1. For the square root operator every unit will be
divided by 2, i. e.,µ2. The predicate unitless(µ) is true if a
port does not have any units.

The blocks in SCL are polymorphic in the sense that they
can be used for any unit. There are only restrictions on
the allowed combination of units. The rules are depicted
in Fig. 4.

The plus block only makes sense, if all ports have the
same units. The rule forminus is identical to (D-plus)
modulo renaming. At themult block, the units have to
be added, at thediv block subtracted as defined in rules
(D-mult) and (D-div). At thesqrt block (D-sqrt), the expo-
nents of the units of the input port must be divisible by two,
since only integral numbers are allowed as exponents.

At theeq block, it does not make sense to compare values
with different units (D-eq).

Analogue to the typing rules, a component is unit-
consistent, if its channels and subunits are unit-consistent
(D-net). The conversion of units is done at the channels,
connecting ports with different units (D-chan). The func-
tion convertible(µ1, µ2) is true, iff there exists a path from
µ1 to µ2 in τ .

Since units only make sense on numerical types, all ports
with units must have a subtype ofFloat. Thus for all ports
with type Γ ⊢ p : T and unit∆ ⊢ p : µ the following
property must hold:

¬unitless(µ) → Γ ⊢ T ⊑ Float

At compile time, after types and units have been checked
and inferred successfully, this property is verified by the
type checker. This provides the ability to use units not only
on a single type, as in [8], but also on any subtype ofFloat.

The information about units is removed from the model
at compile time, since it is no longer needed. The only thing
that must remain in the model are components that convert
between the different units. These components are gener-
ated automatically at compile time. Since the unit conver-
sion only occurs at channels with different units, only these



cm

to

m

m

to

mile

mile

to

inch

p q

Figure 5. Conversion from cm to inch

channels need to be modified for unit conversion. These
components are generated by replacing the original channel
and linking the conversion components along the shortest
path betweencm andinch in the conversion graph. The ex-
ample in Fig. 5 illustrates the components inserted for this
the conversion.

5 Conclusions

The framework of static compatibility presented in this
paper comprises three different aspects: (1) data type check-
ing, (2) unit checking, and (3) automatic data type and unit
inference. This framework enables users to define syntac-
tic interfaces of components by abstracting from concrete
types and thereby allows a component to be (re-) used in
several concrete contexts (i. e., polymorphic signatures). A
concluding abstract example of type and unit inference is
depicted in Fig. 6, assuming that the environment provides
the appropriate types and units.

This general framework can easily be adopted to other
component-based languages exhibiting different syntax and
semantics, such as AutoFocus or MATLAB/Simulink, for
instance. Notably, our notion of component compatibility
can be checked statically, i. e., at compile-time, and there-
fore does not negatively affect runtime efficiency. More-
over, we have shown that this scheme does not leave space
for subtle type-errors that may occur at runtime, and which
are often experienced with standard component-based de-
sign and modelling tools that lack mechanisms of type in-
ference and polymorphism.

In the present form, our approach can be realised with
unification in only linear time w. r. t. the size of the model
under scrutiny. However, if additional types, such as struc-
tured types (tuples, lists, etc.) are introduced to the model,
the algorithm will be exponential in the worst-case. This is
due to the fact that a component in a model could take as
input, say, a tuple, and return, say, a tuple of tuples, and so
forth.

Acknowledgements. The authors thank Stefan Berghofer
for helpful discussions regarding the subtleties of type sys-
tems, and for his comments on draft versions of the paper.
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