
LTL Goal Specifications Revisited

Andreas Bauer and Patrik Haslum1

Abstract. The language of linear temporal logic (LTL) has been

proposed as a formalism for specifying temporally extended goals

and search control constraints in planning. However, the semantics

of LTL is defined wrt. infinite state sequences, while a finite plan

generates only a finite trace. This necessitates the use of a finite trace

semantics for LTL. A common approach is to evaluate LTL formu-

lae on an infinite extension of the finite trace, obtained by infinitely

repeating the last state. We study several aspects of this finite LTL se-

mantics: we show its satisfiability problem is PSpace-complete (same

as normal LTL), show that it complies with all equivalence laws that

hold under standard (infinite) LTL semantics, and compare it with

other finite trace semantics for LTL proposed in planning and in run-

time verification. We also examine different mechanisms for deter-

mining whether or not a finite trace satisfies or violates an LTL for-

mula, interpreted using the infinite extension semantics.

1 INTRODUCTION

The classical planning problem asks for a sequence of actions trans-

forming an initial state into a state satisfying the goal specification.

But for several reasons, there may be additional restrictions on the

action sequence which are not easily captured by the goal state con-

dition. These may reflect user requirements (often called “temporally

extended goals”) or may be intended as search control information,

guiding the planner to sequences more profitable to explore.

The language of linear temporal logic (LTL) [14] has been pro-

posed by several researchers as a suitable formalism for specifying

such plan constraints, whatever the motivation for imposing them

[1, 6, 2, 17]. The plan constraints available in the PDDL3 formalism

[9] are also equivalent to a limited subset of LTL.

LTL formulae, when used in this manner, are evaluated over the

sequence of states, or trace, generated by the action sequence. How-

ever, there is a significant mismatch between this use of LTL in plan-

ning and the semantics of the logic. The truth value of an LTL for-

mula is defined wrt. an infinite state sequence, while a finite plan of

course only generates a finite trace. This discrepancy can of course

be resolved by generating infinite (cyclic) plans, as done by, e.g.,

Kabanza and Thiébaux [10], but the more common solution is to in-

terpret LTL formulae according to some finite trace semantics.

The finite trace LTL interpretation most common in planning,

since the work of Bacchus & Kabanza [1], is to view the trace gener-

ated by a finite plan as an infinite trace in which the last state repeats

infinitely. We term this the infinite extension semantics, or IE-LTL.

This is a reasonable interpretation, as it reflects the classical planning

1 Australian National University, and NICTA. email: {andreas.bauer,
patrik.haslum}@anu.edu.au. NICTA is funded by the Australian
Government as represented by the Department of Broadband, Commu-
nications and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program. Patrik Haslum is supported
by ARC project DP0985532 “Exploiting Structure in AI Planning”.

assumption that nothing other than the actions in the plan changes

the world state. It is, however, by no means the only possibility. For

instance, Baier and McIlraith [2] propose a different finite trace se-

mantics (actually equivalent to the FLTL semantics; see section 4).

PDDL3 plan constraints are also given an interpretation directly over

finite traces (also equivalent to an IE-LTL specification).

Planning is not the only application area where LTL formulae over

finite traces have been considered. As an example, runtime verifica-

tion is an “on-line” form of model checking where properties, ex-

pressed in LTL, are checked incrementally against the finite trace

generated by the running system (rather than against all possible infi-

nite traces, as in normal “off-line” model checking; e.g, [5]). Several

finite trace semantics for LTL, all different from the infinite extension

semantics used in planning, have been proposed for use in runtime

verification (cf. [3] for an overview).

The adoption of any finite trace semantics for LTL formulae has

consequences. For example, there are LTL formulae that are only sat-

isfiable by traces that infinitely alternate between two or more states2:

a simple example is 23p∧23¬p. Clearly, such a formula can never

be true in any trace where all but a finite prefix of states are the same.

Hence the meaning of satisfiability changes in the finite setting.

We study several aspects of the infinite extension semantics for

LTL in planning. We examine the relationship between IE-LTL and

standard LTL semantics, as well as a number of other finite trace se-

mantics, and show that satisfiability of IE-LTL is PSpace-complete.

A practical use of this is that a formula representing a temporally ex-

tended goal can be tested for satisfiability wrt. the correct semantics

prior to planning. The complexity of this check depends only on the

size of the goal formula and on no other parts of the planning prob-

lem. We also show that under certain conditions, IE-satisfiability of

a universally quantified formula can be decided without grounding.

Planners for temporally extended (LTL) goals need efficient mech-

anisms for evaluating the truth of a formula over a finite trace wrt. the

chosen semantics. Methods that have been proposed include formula

progression [1], and compiling extended goals into ordinary end-

state goals by modifying the planning domain [6, 7, 2, 8]. In forward-

chaining state space search, progression offers incremental evalua-

tion and thus a mechanism for early pruning of action sequences that

cannot lead to a valid plan. However, the size of the progressed for-

mula can grow exponentially with the length of the action sequence.

The alternative is to construct an automaton accepting those traces

that are models of the goal formula, according to the IE-LTL seman-

tics. This can be done by a modification of the construction of Büchi

automata for standard LTL. The size of the automaton may be expo-

nential, but once constructed it permits testing traces incrementally

in time that is independent of the trace length, and a slightly different

construction allows for efficient detection of dead ends.

2 Note that even the extremely restricted constraint language of PDDL3 al-
lows formulae of this kind to be specified [8].

2 BACKGROUND

Let AP be a non-empty set of atomic propositions.3 A complete

assignment of truth values to propositions in AP is a state. Let

S = 2AP be the set of all states. S∗ is the set of finite sequences

of elements of S, including the empty (zero-length) sequence ǫ,

S+ = S∗ − ǫ the set of non-empty finite sequences, and Sω is the

set of infinite sequences over S. For a state s ∈ S, s∗ denotes a finite

(possibly empty) sequence of repetitions of s, while sω denotes the

infinite sequence of repetitions of s. As a notational convention, we

use the letters w,w′, etc. for infinite traces, and the letters u, v, u′,

etc. for finite traces.

For a finite trace u = u0 . . . un, last(u) denotes the last state in

u, i.e., un. The infinite extension of a finite trace u, is the infinite

trace obtained by appending to u an infinite number of repetitions

of last(u), i.e., u last(u)ω . Note that there is no explicit symbol for

trace concatenation. For any (infinite or finite) trace w, wi denotes

the suffix of w from position i onwards (inclusive, i.e., w0 = w),

whereas wi denotes the ith element in w (i.e., wi ∈ S).

The set of well-formed LTL formulae over vocabulary AP ,

LTL(AP), are given by the following grammar: ϕ ::= p | ¬ϕ |
ϕ ∨ ϕ | ϕU ϕ | ©ϕ, where p ∈ AP and ϕ ∈ LTL(AP). The truth

of an LTL formula ϕ is defined wrt. an infinite trace w ∈ Sω and

i ∈ N
≥0 as follows:

wi |= p ∈ AP ⇔ p ∈ wi

wi |= ¬ϕ ⇔ wi 6|= ϕ

wi |= ϕ1 ∨ ϕ2 ⇔ wi |= ϕ1 ∨ w
i |= ϕ2

wi |= ©ϕ ⇔ wi+1 |= ϕ

wi |= ϕ1 U ϕ2 ⇔ ∃k ≥ i : ((wk |= ϕ2)∧

∀l : (i ≤ l < k ⇒ wl |= ϕ1))

When w0 |= ϕ holds, we also write w |= ϕ. Besides the stan-

dard Boolean connectives, additional modal operators, such as the

common always (2) and eventually (3), and weak until (W) can

be defined as abbreviations for formulae constructed using the basic

LTL language: 3ϕ ≡ (TRUE U ϕ), 2ϕ ≡ ¬3¬ϕ, and ϕW ψ ≡
(ϕU ψ)∨2ϕ. As a dual to U , the release operator ϕRψ is defined

as ¬(¬ϕU ¬ψ).

For any formula ϕ ∈ LTL, we can construct a non-deterministic

Büchi automaton (NBA) A = (S,Q,Q0, δ, F), where S is the al-

phabet of states (over the vocabulary AP), Q the finite set of au-

tomaton states, Q0 ⊆ Q the initial states, δ the transition relation,

and F ⊆ Q the set of accepting states, such that L(A) = L(ϕ), i.e.,

the set of infinite traces accepted by A equals the set of models for ϕ

(cf. [16]). The language of an NBA is determined by a labelling on

either the transitions, in which case δ is defined as Q× S → 2Q, or

by a labelling function on states, Q→ S. The two types of automata

are semantically equivalent. In either case, an infinite run through

an NBA corresponds to an infinite sequence of labels (i.e., a trace),

which is accepted by the NBA if the run contains infinitely often

a state in F . The size of A, measured as the number of automaton

states, is, in the worst case, exponential in the size of ϕ for either

type of automaton.

3 INFINITE EXTENSION SEMANTICS

In planning, the truth value of an LTL formula over a finite trace is

often taken to be the truth value that the formula is given by the stan-

3 In planning, the propositional vocabulary is typically the set of all instan-
tiations of a collection of predicates with objects from a finite set. Mostly,
we will consider AP as a set of opaque symbols, but sometimes we’ll also
make use of the “lifted” view.

dard LTL semantics over the infinite trace constructed by appending

an infinite repetition of the last state. We call this infinite trace the

infinite extension of the finite trace, and this interpretation of LTL

formulae the infinite extension semantics, or IE-LTL for short. It is

formally defined as follows.

Definition 1 (Infinite Extension Semantics for LTL) Let ϕ ∈ LTL

be a formula, and u ∈ S+ be a non-empty finite trace. The truth

value of ϕ in u according to the infinite extension semantics, denoted

[u |=IE ϕ], is defined as

[u |=IE ϕ] :=



⊤ if u last(u)ω |= ϕ,

⊥ otherwise.

Note that [u |=IE ϕ] is only defined for a non-empty finite trace u.

For planning this is not an important restriction, since there is always

an initial state. As a notational convention, we will be using brackets

(“[·]”) around a satisfaction relation that is defined over finite traces,

to differentiate from the standard relation over infinite traces.

Relationship Between IE-LTL and LTL The IE-LTL semantics

is closely related to the standard, infinite trace LTL semantics. The

difference is that in IE-LTL, we consider only infinite traces that have

a certain structure, viz. that are composed of an arbitrary finite prefix

followed by an infinite tail of identical states. Obviously, these are a

strict subset of all possible infinite traces, and as a consequence, we

have the following result.

Proposition 2 Any equivalence that holds under normal (infinite)

LTL semantics holds also under IE-LTL semantics.

Proof: This is most easily seen by considering the contrapositive:

Suppose ϕ and ψ are LTL formulae not equivalent under IE-LTL

semantics. Then there is a finite trace, u, such that ϕ and ψ have

different truth values in u, i.e., such that [u |=IE ϕ] 6= [u |=IE ψ].
This implies that the truth values of ϕ and ψ, according to standard

LTL semantics, over the infinite trace u last(u)ω , are also different.

Thus, they cannot be equivalent under normal LTL semantics. 2

The converse of Proposition 2 is not true: there are equivalences that

hold under IE-LTL semantics but not under standard LTL seman-

tics. As an example, consider the formulae (a) 32p ∨ 32q and (b)

32(p ∨ q). That (a) implies (b), under either standard LTL or IE-

LTL semantics, is easy to see. The latter formula is satisfied by a

trace that alternates infinitely between states where p ∧ ¬q hold and

states where ¬p ∧ q hold, while the former is not; hence the two for-

mulae are not equivalent, under standard LTL semantics. But such a

trace cannot be the infinite extension of any finite trace. In any finite

trace u such that [u |=IE 32(p∨q)] = ⊤, p or q, or both, must hold

in the repeated state last(u), and thus at least one of [u |=IE 32p]
and [u |=IE 32q] is true; the formulae are IE-equivalent.

4 ALTERNATIVE FINITE TRACE SEMANTICS

Finite trace semantics for LTL all have to deal with the same prob-

lem, namely how to interpret outstanding eventualities in a finite

trace that does not allow for a conclusive answer. For example, is

the formula ©p true or false at the end of a finite trace? There are

arguments for both choices, but whichever is made, the truth value

can change when a new state is appended to the trace.

Next, we discuss a few different finite trace semantics, and their

relationships to IE-LTL. These originate in the area of runtime veri-

fication (cf. [3]), though FLTL has been used also in planning.

FLTL Semantics FLTL4 extends LTL with a weak next operator,

denoted ©ϕ, with the intuitive meaning that if a next state exists,

then it has to satisfy ϕ. Formally, the FLTL semantics of the two next

operators is defined as follows:

[u |=F ©ϕ] :=



[u1 |=F ϕ] if u1 6= ǫ

⊥ otherwise.

[u |=F ©ϕ] :=



[u1 |=F ϕ] if u1 6= ǫ

⊤ otherwise.

This yields the following relationship between the two operators:

[u |=F ¬(©ϕ)] = [u |=F ©¬ϕ]. Remaining operators are inter-

preted as in standard LTL, but with respect to the finite trace. Thus,

for the until operator, where n = |u| > 0, we have in FLTL:

[u |=F χU ψ] :=

8

<

:

⊤ ∃k ∈ {0, . . . , n− 1} : ([uk |=F ψ] = ⊤∧

∀l : (0 ≤ l < k ⇒ [ul |=F χ] = ⊤))
⊥ otherwise.

Baier and McIlraith [2] propose a finite trace semantics, which they

call f-FOLTL, for planning. They interpret the next operator strongly,

and instead of a weak next operator define a 0-ary operator FINAL,

which is true only in the last state. However, it is easy to see that this

semantics is equivalent to FLTL, since ©ϕ ≡ (©ϕ) ∨ FINAL, and

FINAL ≡ ¬© TRUE. They also note that there are “several obvious

discrepancies in the interpretation of LTL and f-FOLTL formulae”

[2], but argue that the finite trace interpretation is adequate, or even

better than standard LTL, for expressing temporally extended plan-

ning goals.

Relationship Between IE-LTL and FLTL The IE-LTL and FLTL

semantics differ in their treatment of the next (and weak next) oper-

ator. To see how, consider the value of formulae ©p and ©p on a

trace u that consists of a single state (i.e., |u| = 1). In FLTL, [u |=F

©p] = ⊥, because there is no next state, while [u |=F ©p] = ⊤.

The IE-LTL value, on the other hand, is decided by the value of p in

the last (and only) state of u. If p is true in last(u), ©p will hold in

last(u)ω , while if p does not hold in last(u) it will not.

This discrepancy extends to satisfiability. For example, Baier and

McIlraith [2] note that the formula 2(ϕ → ©ψ) ∧ 2(ψ → ©ϕ)
is in FLTL equivalent to 2(¬ϕ ∧ ¬ψ), since if either ϕ or ψ is ever

true, the first formula would require an infinite trace to be true. In IE-

LTL, however, this equivalence does not hold, since the first formula

is also satisfied by, e.g., any single state trace where ϕ ∧ ψ holds.

However, as long as we avoid using next (and weak next), IE-LTL

and FLTL agree, as the next proposition shows.

Proposition 3 Let ϕ be a LTL formula without © or © operators,

and u ∈ Σ+ a finite trace: [u |=IE ϕ] = [u |=F ϕ].

Proof: By structural induction. The interpretation of Boolean con-

nectives is the same in both semantics, so the only interesting case is

the until operator. Let ϕ = χU ψ, and let |u| = n ≥ 1.

If [u |=F χU ψ] = ⊤, then ∃0 ≤ k ≤ n − 1. [uk |=F ψ] = ⊤
and ∀0 ≤ l < k. [ul |=F χ] = ⊤. But then uw |= χU ψ, for any

w ∈ Sω , including u last(u)ω . Thus, [u |=IE χU ψ] = ⊤.

If [u |=IE χU ψ] = ⊤, then w = u last(u)ω |= χU ψ, which

implies ∃1 ≤ k. wk |= ψ and ∀1 ≤ l < k. wl |= χ. The least

such k cannot be greater than n − 1, since every suffix from wn−1

4 FLTL corresponds to a variant of LTL over finite traces that was originally
introduced by Manna and Pnueli [13]. The name FLTL, short for “finite
LTL,” was later used to refer to this logic by Bauer et al. [3].

and onwards is identical. Thus, there exists a k ≤ n − 1 such that

[uk |=IE ψ] = ⊤ and ∀0 ≤ l < k. [ul |=IE χ] = ⊤, which by

inductive assumption implies that [uk |=F ψ] = ⊤ and ∀0 ≤ l <

k. [ul |=F χ] = ⊤. Thus, [u |=F ϕ] = ⊤. 2

LTL3 and RV-LTL The LTL3 semantics maps LTL formulae over

finite traces to three possible values: ⊤, ⊥, and “inconclusive”, de-

noted by ?. The first two values are taken by [u |=3 ϕ] when the value

of ϕ, according to standard LTL semantics, is the same no matter

what extensions follows after u. In other words,

[u |=3 ϕ] :=

8

<

:

⊤ if ∀w ∈ Sω. uw |= ϕ

⊥ if ∀w ∈ Sω. uw 6|= ϕ

? otherwise.

Thus, instead of evaluating ©ϕ prematurely to either ⊤ or ⊥, a third

value denotes that the current trace is inconclusive.

The RV-LTL semantics further discriminates inconclusive situa-

tions using four different truth values. It combines LTL3 and FLTL,

in the sense that for traces such that [u |=3 ϕ] equals ⊤ or ⊥, RV-

LTL assigns the same value, while for traces where [u |=3 ϕ] = ?,

RV-LTL uses the FLTL interpretation to determine whether the value

is “possibly true” (⊤p), or “possibly false” (⊥p).

Corollary 4 Let ϕ be a LTL formula without © and © operators,

and u ∈ Σ+ a finite trace. It then holds that [u |=RV ϕ] ∈ {⊤,⊤p}
iff [u |=IE ϕ] = ⊤, and, equivalently, that [u |=RV ϕ] ∈ {⊥,⊥p}
iff [u |=IE ϕ] = ⊥.

Proof: When [u |=RV ϕ] ∈ {⊤,⊥}, the value is given by the

LTL3 semantics, i.e., either uw |= ϕ for every possible continuation

w ∈ Sω , or uw 6|= ϕ for every w ∈ Sω . Since last(u)ω is one

such possible continuation, IE-LTL assigns the same value. When

[u |=RV ϕ] ∈ {⊤p,⊥p} the value is given by the FLTL semantics,

and the results follows from Proposition 3. 2

5 PLANNING WITH TEMPORALLY
EXTENDED GOALS

We adopt a standard definition of classical planning. A propositional

planning domain consists of a set of atomic propositions, AP , and a

set A of actions. As mentioned, AP is typically obtained by ground-

ing out the domain predicates with a finite set of objects. Each ac-

tion a ∈ A is described by a precondition, pre(a), which is a

Boolean formula overAP , and an effect, which is a (partial) function

eff(a) : S −→ S, such that eff(a)(s) is defined for any s ∈ S such

that pre(a) holds in s. The precise definition of the mapping depends

on the action formalism, and is not important for our purposes.

A planning problem consists of a domain, an initial state s0 ∈ S

and a goal, G, which is expressed as an LTL formula. If we wish to

state an ordinary reachability goal, this can be expressed as 32α,

where α is the goal state condition.

A finite sequence of actions a1, . . . , an generates a finite trace,

u0u1 . . . un ∈ S∗, where u0 is the initial state of the planning prob-

lem, and ui = eff(ai)(ui−1) for i ≤ n. The action sequence is

executable iff pre(ai) holds in ui−1 for i = 1, . . . , n. Note that if

the action sequence is executable, the trace is well-defined.

An executable action sequence is a solution to the planning prob-

lem (a plan) iff the goal formula G is true in the finite trace gener-

ated by the sequence, according to the chosen finite trace semantics.

This is often taken to be the infinite extension semantics, and there

are good reasons for this choice: this interpretation follows naturally

from the classical planning assumption that nothing other than the

actions in the plan changes the world state, and, as we have shown,

all equivalences that hold in standard LTL also hold in IE-LTL, so

operations such as rewriting a formula to negation normal form can

be done as usual. However, nothing prevents us from choosing a dif-

ferent finite trace interpretation. As noted earlier, Baier and McIl-

raith [2] assume the FLTL semantics. Alternatively, we could adopt

the LTL3 semantics, and require that for a plan to be valid, the goal

formula should evaluate to ⊤. This is a stricter condition for plan

validity, accepting only plans that guarantee the temporally extended

goal is satisfied no matter what happens after the end of the plan.

Modelling Temporally Extended Goals To give some examples

of temporally extended goals expressed in LTL, we consider the

Miconic domain5, which models planning for a bank of elevators

equiped with “destination control” [11]. The goal is to serve each

passenger (i.e., deliver them to their destination floor),

∀?p : passenger32served(?p),

but there are often also other constraints on plans in this domain

[11]. For example, the formula

∀?p : passenger (above(destin(?p), origin(?p)) →
∀?e : elevator2(boarded(?p, ?e) →
∀?f : floor
((at(?e, ?f) → above(?f, origin(?p)))
U served(?p))))

expresses that any passenger ?p whose destination is above his

origin floor, travels only upwards after boarding an elevator, while

∀?p1,?p2 : passenger,?e1,?e2 : elevator
2((vip(?p1) ∧ ¬vip(?p2)∧

origin(?p1) = origin(?p2)) →
¬(boarded(?p2, ?e2) ∧ ¬boarded(?p1, ?e1)))

expresses that VIP passenger (?p1) should never be left waiting

while a non-VIP passenger (?p2) is picked up from the same floor.

PDDL3 PDDL3 [8] extends earlier versions of the Planning Do-

main Definition Language (PDDL) in a number of ways, one of

which is the introduction of plan constraints which express restric-

tions on the trace generated by the plan. The semantics of the PDDL3

plan constraint operators is defined directly in terms of the finite trace

generated by a plan. However, their meaning is identical to that of the

LTL formulae shown in Table 1, when those formulae are interpreted

according to the infinite extension semantics, though note that for the

“temporal” operators (lower part of the table), this equivalence holds

only in the the unit time-step case; the semantics of these operators

in the metric time case cannot be expressed in (untimed) LTL.
PDDL3 does not allow nesting of modal operators. Because of the

limited form that plan constraints in PDDL3 may take, they can be
compiled away with only polynomial increase in the size of the plan-
ning domain [8]. In spite of this, PDDL3 can express plan constraints
that are satisfiable but not IE-satisfiable. A simple example is

(and (sometime-after p (not p))
(sometime-after (not p) p)).

5 The examples are based on the IPC2 STRIPS formulation of the domain.
For improved readability, we use some function terms, like destin(?p),
which would in plain STRIPS need to be written using extra quantifiers, i.e.,
∀?fd : floor (destin(?p, ?fd) → . . .).

PDDL3 IE-LTL

(always α) 2α
(sometime α) 3α
(at-most-once α) 2(α → (αW 2¬α))
(sometime-after α β) 2(α → 3β)
(sometime-before α β) (¬αW ¬α ∧ β)
(within n α)

W

0≤i≤n ©iα

(always-within n α β) 2(α →
W

0≤i≤n ©iβ)

(hold-during n m α)
V

n≤i<m ©iα

(hold-after n α) ©n
3α

Table 1. PDDL3 plan constraints and corresponding IE-LTL formulae. α
and β are state formulae; n and m are non-negative integers. The expression

©n stands for n applications of the © operator.

6 CHECKING IE-LTL SATISFIABILITY

Next, we consider the problem of deciding satisfiability of an LTL

formula wrt. infinite extension semantics, or IE-satisfiability for

short. We show that its complexity is the same as that of standard

LTL satisfiability. As noted earlier, the set of infinite traces obtained

via infinite repetition of the last state of a finite trace is a strict subset

of the set of all infinite traces. Thus,

Corollary 5 IE-satisfiability implies satisfiability wrt. the standard

LTL semantics.

Theorem 6 IE-satisfiability is PSpace-complete.

Proof: Membership in PSpace can be shown by embedding IE-LTL

into standard LTL. Let ϕ ∈ LTL and AP be the set of propo-

sitions as used in ϕ. We construct in polynomial time a formula

ψ := φ ∧ 3
V

a∈AP ((a → 2a) ∧ (¬a → 2¬a)). Intuitively, ψ

encodes that ϕmust be true and that from a certain point onwards, all

propositions must retain their truth values forever. ϕ is IE-satisfiable

iff ψ is IE-satisfiable, since the right-hand part is a tautology in all

IE-LTL models. ψ is IE-satisfiable iff ψ is satisfiable in regular LTL,

since the right-hand part ensures that the only possible LTL models

are those models which are also considered in IE-LTL. Since LTL

satisfiability is PSpace-complete, membership in PSpace follows.

We show hardness via a reduction from the propositional STRIPS

planning problem, which is PSpace-hard [4]. Given a planning prob-

lem P with actions A, initial state s0 and goal G, we construct an

LTL formula ϕP such thatϕP is IE-satisfiable iff there exists a plan

for P . Note that G here is an ordinary end state goal.

The construction of ϕP is similar to an encoding of (bounded)

planning into propositional logic, but using the next operator (©) to

link each state (“layer”) to the following instead of indexing.

ϕP ≡
`
V

a∈A a→ pre(a)
´

∧
“

V

a,a′∈A,a6=a′ a→ ¬a′
”

∧
“

V

p∈AP ϕnext(p)

”

∧ ϕinit ∧ 32G.

The first and second conjuncts ensure that at most one action is

applied in each state and that this action is applicable. ϕinit is the

usual encoding of the initial state, i.e., the conjunction of literals

true in s0, and ϕnext(p) encodes the explanatory frame axiom for p:

©p ↔ (
W

a∈A:p∈add(a) a) ∨ (p ∧
V

a∈A:p∈del(a) ¬a). If there ex-

ists a plan for P , then the infinite extension of the trace it generates

is a model of ϕP , and of required form; hence, ϕP is IE-satisfiable.

If there is no plan for P , ϕP is unsatisfiable, and therefore also IE-

unsatisfiable. Finally, the size of ϕP is at most quadratic wrt. P . 2

The decision procedure for IE-satisfiability has exponential time

complexity, but only in the size of the goal formula: it does not de-

pend on any other part of the planning problem. However, temporally

extended goal specifications often require something to hold for all

objects of a certain type, in which case the grounded formula grows

with the size of the problem. Fortunately, it is sometimes possible to

check the IE-satisfiability of a universally quantified formula without

grounding it. The next theorem shows one sufficient condition.

Theorem 7 Let ϕ = ∀x1 ∈ D1, . . . , ∀xn ∈ Dn. ψ(x1, . . . , xn),

where ψ(x1, . . . , xn) is a first-order LTL formula without quanti-

fiers or functions, and let ψ(d1, . . . , dn) be an arbitrary instanti-

ation of ψ(x1, . . . , xn) with objects d1 ∈ D1, . . . , dn ∈ Dn. If

the domains D1, . . . , Dn are all disjoint, then ϕ is IE-satisfiable iff

ψ(d1, . . . , dn) is.

Proof: If ψ(d1, . . . , dn) is IE-satisfiable, there exists a finite trace

u = u0, . . . un such that [u |=IE ψ(d1, . . . , dn)] = ⊤. From u we

construct a finite trace u′ satisfying ϕ. Let uk be a state in u: the

corresponding state u′
k in u′ is defined as follows: Let P be an m-

ary predicate, and P (xii
, . . . , xik

) an occurrence P in ϕ, with argu-

ment terms xii
, . . . , xik

. In ψ(d1, . . . , dn), there is a corresponding

instantiation P (dii
, . . . , dim

) of P . Let Γ be the set of all instantia-

tions of P (xii
, . . . , xik

), i.e., instantiations of P with first argument

in the domain of xi1 , second argument in the domain of xi2 , etc., and

let each instance in Γ have in u′
k the truth value that P (dii

, . . . , dim
)

has in uk. Since variables range over disjoint domains, no occurrence

of P in ϕ with different argument terms can instantiate to any of the

elements of Γ. Thus this assignment is consistent.

That [u′ |=IE ϕ] = ⊤ follows directly from the construction.

For any instantiation of the quantified variables x1, . . . , xn, the truth

values of all atomic propositions in the formula in every state are

the same as in the corresponding state of the trace that satisfies

ψ(d1, . . . , dn), thus making ψ(x1, . . . , xn) true. If ψ(d1, . . . , dn)
is not IE-satisfiable then neither is ϕ, since for ϕ to be IE-satisfiable

there must be a finite trace satisfying ψ(x1, . . . , xn) for every instan-

tiation of x1, . . . , xn, including d1, . . . , dn. 2

To illustrate the use of Thm. 7, consider the last example formula

from the Miconic domain given in section 5: to check IE-satisfiability

of this formula, we would have to ground ?e1, ?e2, and the implicit

quantified floor variables, but not ?p1 and ?p2, since the domains

of VIP and non-VIP passengers are disjoint.

7 INCREMENTAL EVALUATION FOR
SEARCH CONTROL

A planner seeking to achieve a temporally extended goal has to de-

cide (1) when a plan satisfies a goal formula (goal test) and (2) when

a partial plan cannot be extended to one that does (dead-end test).

In a forward-chaining, state space search-based planner, both tests

are done on a large number of traces of increasing length, so it is

clearly desirable that the test mechanism is efficient, and that its com-

plexity does not grow with the length of the trace. Moreover, trading

some extra effort prior to search, on preprocessing or optimising for

faster per-state evaluation, is likely to pay off in this setting.6

6 As an example, TALplanner, a forward-chaining planner that uses a tempo-
ral logic for search control, performs a sophisticated analysis of the control
formulae prior to search with the aim of speeding up on-line formula eval-
uation, and this is one important reason for its good performance [12].

7.1 Formula Progression

Several planners have used formula progression to perform either

goal or dead-end testing, or both [1, 10]. Progression splits the goal

formula into a condition on the current state and a new goal that has

to be achieved by the future trace: if the new goal is TRUE, it is a goal

state; if the new goal is FALSE, it is a dead-end.

Progression is done by the inductive function prog : LTL × S →
LTL, taking a formula ϕ and a state s as input and returning a new

formula, such that sw |= ϕ iff w |= prog(ϕ, s), for any w ∈ Sω .

For example, prog(2ψ, s) = prog(ψ, s) ∧ 2ψ, where prog(ψ, s)
may yield a truth value immediately or after expanding to a more

complicated formula. Other operators are handled similarly.

At worst, each progression step may double the size of the

formula. Thus, without continuous simplification of formulae, the

complexity of each progression step over an expanding trace may

be exponential in the trace length. Rosu and Havelund [15, Thm.

2] have shown that this exponential growth is unavoidable: there

exists a family of formulae ϕ, of increasing size, such that for

some trace u = u0 . . . un ∈ S+, any formula equivalent to

prog(. . . (prog(ϕ, u0) . . . , un) is at least exponential in |ϕ|.
Thus, even if the result of each progression step is simplified, one

may still have to perform an exponential amount of work for every

new state that is added to the trace. Moreover, to ensure it remains

single exponential, simplification must test formulae for equivalence,

which in itself is a PSpace-complete problem. Thus, besides having

already exponentially sized formulae, the simplification is also likely

to require exponential time. These operations must then be carried

out for every new state s that is added to the trace.

7.2 Length Independent Goal and Dead-End Tests

By way of the embedding described in Thm. 6 we can obtain an

NBA for a formula ϕ that accepts only traces that are infinite ex-

tensions of a finite prefix by repeating the last state infinitely often.

From this NBA we can derive an ordinary finite automaton which

accepts exactly those finite prefixes. This automaton can be used di-

rectly to perform goal tests on traces of increasing length in constant

time, or it can be compiled into the planning problem in various ways

[6, 7, 2, 8]. An advantage of compilation is that this enables planning

heuristics to guide search towards an accepting state. For dead-end

detection, the compilation approach relies solely on the planner’s in-

herent ability to detect states from which no goal state is reachable.

Kabanza & Thiébaux [10], who consider infinite plans, convert the

temporally extended goal into an NBA, from which a series of state-

reachability goals is derived, but still use progression of search con-

trol formulae (wrt. the state goals) to detect dead-ends.

As an alternative, a slight modification of the construction yields

an automaton which accepts traces such that the formula holds in any

extension, not just ones formed by infinite repetition of the last state:

by applying this construction to the negation of the goal formula, we

obtain a dead-end test device. In the worst case, the automata may be

of size exponential in that of the formula, but, compared to progres-

sion, they have the advantage that the processing of each new state in

an expanding trace requires only constant time. In the remainder of

this section, we sketch the details of the two automata constructions.

Let 〈Aϕ = (S,Q,Q0, δ, F), λ〉 be a state-labelled NBA accept-

ing the models of the embedding of ϕ, i.e., ϕ ∧ 3
V

a∈AP ((a →
2a) ∧ (¬a → 2¬a)), and λ : Q → S its state-labelling func-

tion. Further, let for any q ∈ Q, Aϕ({q}) be like Aϕ except that

its set of initial states is {q} instead of Q0. Whenever 〈Aϕ, λ〉 ac-

¬a ∧ b a ∧ b TRUE

Figure 1. Finite automaton for ϕ ≡ aR b ∧ 3a. Initial states are marked
with an incoming arrow, and accepting states with double outlines.

¬a ∧ b

¬b a ∧ bTRUE TRUE

Figure 2. The state-labelled NBA for ¬ϕ ≡ (¬aU ¬b) ∨ 2¬a.

cepts a trace w = u last(u)ω , there exists a path through the states

of Aϕ, consisting of a finite prefix, and a cycle with at least one ac-

cepting state in it. Using 〈Aϕ, λ〉, the finite automaton is constructed

as follows: Check for all q ∈ Q whether or not they are part of a

(non-trivial) strongly connected component (SCC) which contains at

least one accepting state, or which unavoidably leads to a state q that

forms part of a universal SCC, i.e., L(Aϕ({q})) = Sω . Note that

for any prefix u = u0 . . . un of an accepted word of Aϕ and any

position 0 ≤ i < n, it holds that ui |= λ(qi) and there exists a state

qi+1 ∈ δ(qi). Due to the embedding of ϕ, the NBA ensures that if

qi+1 is part of an accepting SCC, then the infinite repetition of ui will

always yield a successor in the same SCC, and consequently a state

in F , i.e., is an accepted word of the NBA. Hence, for every accept-

ing SCC we define a set F̂ ⊆ Q containing all its states as well as

those leading unavoidably into universal SCCs. Let F be the union of

all these sets. It is easy to see that the accepted language of the finite

automaton Âϕ, L(Âϕ) ⊆ S+, consists of exactly those u ∈ S+ for

which [u |=IE ϕ] = ⊤ holds. An example is given in Fig. 1, which

depicts the finite automaton for the goal formula ϕ ≡ aR b ∧ 3a.

Note that since Âϕ is an ordinary finite automaton (unlike Aϕ which

is an NBA) it can be determinised and minimised using standard al-

gorithms. By making Âϕ deterministic, membership in L(Âϕ) can

be checked in constant time for each new state in the trace.

Âϕ performs only the goal test, i.e., it decides if the trace u gen-

erated by the current (partial) plan satisfies the goal. When that is

not the case, it does not tell us if u can be extended to a valid

plan or not. To perform the dead-end test, we can construct a sec-

ond automaton, Â¬ϕ, and then run the two in parallel. The con-

struction of the dead-end monitor is slightly different, because it

serves a different purpose: for the goal test, we only need to know

if [u |=IE ϕ] = ⊤, whereas for the dead-end test, we want to know

if [u v |=IE ¬ϕ] = ⊤ for any finite extension v of u. Therefore,

the dead-end monitor can accept a trace only when it reaches an ac-

cepting SCC and every transition out of this SCC leads to a universal

SCC. Consequently, for the state-labelled NBA, generated from ¬ϕ,

we first have to check if there exists a state q ∈ F , which does not

lead to a universal SCC, and eliminate it from F . To see a case where

this occurs, consider the NBA for ¬(aR b ∧ 3a), shown in Fig. 2:

the state labelled by ¬a ∧ b must be made non-accepting since it is

possible to take a transition to a non-accepting state (i.e., one where

the goal is true), by appending a state satisfying a ∧ b to the trace.

8 SUMMARY

We have presented a formal account of IE-LTL, the finite trace se-

mantics for LTL widely adopted in planning when LTL is used to

express temporally extended goals, and shown that its satisfiability

problem is PSpace-complete, as well as several results about its rela-

tion to standard LTL and other finite trace LTL semantics.

We also discussed the merits of mechanisms for performing goal

and dead-end tests in a forward state space search for plans achiev-

ing an LTL goal. In contrast to the widely used formula progression

method, which may from suffer an exponential growth in complexity

as the length of the trace increases, methods based on automata can

incrementally check the status of a trace in constant time for each

new state added. Moreover, handling goal tests (and heuristic guid-

ance towards the goal) and dead-end tests by separate devices may

be better than using only one method.

REFERENCES

[1] F. Bacchus and F. Kabanza, ‘Using temporal logic to control search in a
forward chaining planner’, in Proc. 3rd European Worksh. on Planning

(EWSP’95), (1995).
[2] J. Baier and S. McIlraith, ‘Planning with first-order temporally ex-

tended goals using heuristic search’, in Proc. 21st Nntl. Conf. on AI

(AAAI’06), (2006).
[3] A. Bauer, M. Leucker, and C. Schallhart, ‘Comparing LTL semantics

for runtime verification’, Journal of Logic and Computation, (2009). In
print. Pre-print available online.

[4] T. Bylander, ‘Complexity results for planning’, in Proc. 12th Intl. Joint

Conf. on Artif. Int. (IJCAI’91), pp. 274–279, (1991).
[5] S. Colin and L. Mariani, ‘Run-time verification’, in Model-Based Test-

ing of Reactive Systems, volume 3472 of LNCS, pp. 525–555, (2004).
[6] S. Cresswell and A. Coddington, ‘Compilation of LTL goal formu-

las into PDDL’, in Proc. of the 15th European Conf. on Artif. Int.,

(ECAI’04), (2004).
[7] S. Edelkamp, ‘On the compilation of plan constraints and preferences’,

in Proc. of the 16th Intl. Conf. on Automated Planning and Scheduling

(ICAPS’06), pp. 374–377, (2006).
[8] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos, ‘De-

terministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners’, Artif. Int., 173(5-
6), 619–668, (2008).

[9] A. Gerevini and D. Long, ‘Plan constraints and preferences in PDDL3’,
Report RT 2005-08-47, University of Brescia, Italy, (2005).

[10] F. Kabanza and S. Thiébaux, ‘Search control in planning for temporally
extended goals’, in Proc. of the 15th Intl. Conf. on Automated Planning

and Scheduling (ICAPS’05), pp. 130–139, (2005).
[11] J. Koehler and K. Schuster, ‘Elevator control as a planning problem’, in

Proc. 5th Intl. Conf. on Artif. Int. Planning and Scheduling (AIPS’00),
pp. 331–338, (2000).

[12] J. Kvarnström, ‘Applying domain analysis techniques for domain-
dependent control in TALplanner’, in Proc. 6th Intl. Conf. on Artif. Int.

Planning and Scheduling (AIPS’02), pp. 101–110, (2002).
[13] Z. Manna and A. Pnuelli, Temporal Verification of Reactive Systems:

Safety, Springer, 1995.
[14] A. Pnueli, ‘The temporal logic of programs’, in Proc. of the 18th Symp.

on Found. of Comp. Sci. (FOCS’77), pp. 46–57, (1977).
[15] G. Rosu and K. Havelund, ‘Rewriting-based techniques for runtime ver-

ification.’, Automated Software Engineering, 12(2), 151–197, (2005).
[16] K. Rozier and M. Vardi, ‘LTL satisfiability checking’, in Proc. 14th Intl.

SPIN Worksh. (SPIN’07), volume 4595 of LNCS, pp. 149–167, (2007).
[17] S. Thiébaux, C. Gretton, J. Slaney, D. Price, and F. Kabanza, ‘Decision-

theoretic planning with non-markovian rewards’, Journal of AI Re-

search, 25, 17–74, (2006).

