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ABSTRACT 

This paper describes the first results from the AutoMoDe 
project (Automotive Model-based Development), where 
an integrated methodology for model-based 
development of automotive control software is being 
developed. The results presented include a number of 
problem-oriented graphical notations, based on a 
formally defined operational model, which are associated 
with system views for various degrees of abstraction. It is 
shown how the approach can be used for partitioning 
comprehensive system designs for subsequent 
implementation-related tasks. Recent experiences from 
a case study of an engine management system, specific 
issues related to reengineering, and the current status of 
CASE-tool support are also presented. 

1. INTRODUCTION 

AutoMoDe is a joint research project consisting of 
members of the Software & Systems Engineering group 
at the Technische Universität München, Validas AG, 
ETAS GmbH, Robert Bosch GmbH, and BMW AG. The 
overall goal of the project is to develop an integrated 
methodology for model-based development of 
automotive control software based on custom, problem-
specific design notations with an explicit formal 
foundation. A series of prototypical tools is being 
developed which builds on the existing AutoFOCUS 
[HSE97] framework in order to illustrate the key elements 
of the methodology presented. 

1.1 BACKGROUND 

Current challenges in automotive control systems design 
include quickly rising system complexity across all 
domains, tight time-to-market constraints (necessitating 
better predictability for design efforts such as 
integration), the transition from realization of control logic 
in mechanical/electrical systems to software 
implementations, and heterogeneous design chains 
crossing several technical disciplines and organizations 
or companies. 

Traditionally, the focus of embedded software 
engineering has been on the later and thus more detailed 
abstraction levels, which deal mostly with 
implementation-related issues. More abstract system 
descriptions typically take a back seat in the design 
process because they lack suitable notations, 
methodologies, and integration between abstraction 
layers. However, working at higher levels of abstraction 
will be a key factor in tackling the prevalent complexity 
issues in automotive software engineering, and in 
catering to different stakeholders in the design chain. For 
these reasons, the organization of design artefacts along 
abstraction layers tailored for different stakeholders and 
different phases has been identified as a possible 
remedy in the past [BBRS03][Thu03]. A related method 
should then provide support for easy transitions between 
layers, e.g. for restructuring designs. Notations and 
underlying models, such as notations for architectural 
and behavioural design, should be well-integrated. 



Consequently, AutoMoDe aims to address the obvious 
need to organize such artefacts along various abstract 
levels, tailored for different stakeholders and phases in 
the overall systems development process. Additionally, 
transitions between abstraction levels, like restructuring 
operations, are supported by the accompanying tools.  

Exchanging design information in a heterogeneous 
setting is aided by well-established, intuitive, and 
unambiguous notations for design artefacts. The 
AutoMoDe tools aim to provide for such support with 
formally founded notations, with powerful consistency 
checks suited to the different abstraction levels, and by 
providing the ability to validate a design’s behavior with 
built-in simulators. 

1.2  OVERVIEW 

Section 2 of the paper introduces the operational model 
of AutoFOCUS designs, which are based on a formally 
defined system model using explicit data-flow and 
discrete-time semantics. The accompanying tool support 
facilitates early system validation through simulation and 
verification capabilities, as well as powerful consistency 
checks.  In Section 3, we detail the graphical 
representation of AutoMoDe designs, which are specified 
using a number of different views for differently abstract 
system levels – each of which targets specific aspects of 
the design of automotive control systems. Section 4 
explains the results and experiences gained during a 
reengineering case study using the AutoMoDe approach 
and tool prototypes. The conclusions of this paper are 
summarized in Section 5, which also gives an outlook 
and discusses future activities.  

1.3 RELATED WORK 

In the related research project Automotive [BBRS03] 
BMW, Bosch, ETAS, Telelogic and Technische 
Universität München have developed a model-based 
language and method for developing automotive control 
software. To achieve practicable usability, the method 
was based upon relevant and commercially available 
tools like ASCET, DOORS and the UML Suite. The 
Automotive Modeling Language (AML) is based on a 
definition of distinct abstraction levels similar to the 
AutoMoDe abstraction levels presented in this paper, a 
concrete syntax based on the UML 1.x and the ASCET 
notations for structural system descriptions, and an 
easily usable concept for variants and configurations. 

AutoMoDe addresses two inadequacies in Automotive’s 
results: firstly, instead of UML 1.x, AutoMoDe uses the 
AutoFOCUS [HSE97] notation with an explicit concept of 
components and their composition for the description of 
the structures of embedded systems. AutoFOCUS is also 
very closely related to selected UML 2.0 concepts, so 
possible standard conformance in the future is not 
regarded as critical. Secondly, beyond the purely 
structural designs considered in Automotive, AutoMoDe 
is also concerned with behavioral aspects.  

EAST-EEA: The European automotive industry started 
this project running under the ITEA banner in 2001. The 
project was finished in July 2004. An Architecture 
Description language, the so-called EAST-ADL, has 
been defined, along with a definition of a domain-specific 
middleware [Thu03]. The EAST-ADL [Fre04] is 
structured into several abstraction levels by defining the 
following architectures: 

• Vehicle Project (VP) 
• Functional Analysis Architecture (FAA) 
• Functional Design Architecture (FDA) 
• Logical Architecture (LA) 
• Operational Architecture (OA) 
• Hardware Architecture (HA) 
• Technical Architecture (TA) 

The vehicle project describes the electronic features of a 
vehicle and all resulting variants from a customer’s point 
of view. The structure of electronic features themselves 
is described by using inputs and outputs in the functional 
analysis architecture. If necessary, the structure can be 
reinforced by behavioral models. The functional design 
architecture is the most abstract description of software 
structures to be found later in the ECU software 
implementation. This architecture consists of a functional 
hierarchy with a focus on typed structures and signal 
exchange. In addition, it is possible to associate behavior 
with functions of the hierarchy. However, only elementary 
functions, i.e. the leafs of a functional hierarchy, can 
carry behavior to be flexible for the final placement of 
functions on ECUs. Behavior can be described using 
finite state machines, difference equations, or plain 
source code. The logical architecture describes the 
system on a pure instance level. Instances can be 
mapped to ECUs and OS tasks while still respecting all 
timing and memory requirements. ECU properties with 
their sensors and actuators as well as the bus systems 
are described in the hardware architecture. Configurable 
basic software components for the ECUs like OS, HAL 
and the EAST middleware form the technical 
architecture, while the operational architecture describes 
the running system. The latter is conceived by mapping 
the instances of the logical architecture to ECUs, OS 
tasks and bus messages and then by applying code 
generation of the application software and by configuring 
the basic software. 

The use of explicit operational modes for decomposition 
has also been brought forward by other authors, e.g. 
[MR98]. In addition to the idea of using explicit notations 
for operational modes, our approach employs such 
mode representations across several levels of 
abstraction, especially for coarse-grained structuring of 
systems, and in particular investigates transformations 
between different mode representations suited for 
different abstraction levels. 

The concept of expressing frequencies and event 
patterns as Boolean expressions (clocks), and the idea 
of providing a type system for such clocks, originates 



from the field of synchronous programming languages 
[IEE91]. 

2. OPERATIONAL MODEL 

AutoFOCUS uses a message-based, discrete-time 
communication scheme as its core semantic model.  
AutoFOCUS designs are built from networks of 
components or blocks (drawn graphically as a rectangle) 
exchanging messages with each other and with the 
environment via explicit interfaces (drawn as small 
circles) and connectors between interfaces. Messages 
are time stamped with respect to a global, discrete time 
base. This computational model supports a high degree 
of modularity by making component interfaces complete 
and explicit. It also provides a reduced degree of 
complexity: Because the discrete time base abstracts 
from implementation details such as detailed timing or 
communication mechanisms, the use of timing 
information below the chosen granularity of observable 
discrete clock ticks is avoided. Examples for such 
detailed assumptions include the ordering of message 
arrivals within one time slot, or duration and delays of 
transfer. Real-time intervals of the implementation are 
therefore abstracted by logical-time intervals. 

Note that this message-based time-synchronous 
communication model does cater to both periodic and 
sporadic communication as required for a mixed 
modeling of time-triggered and event-triggered behavior. 
As shown in Figure 1, each channel in the abstract 
model either holds a message represented by an explicit 
value or the “�” (“tick”) value indicating the absence of a 
message. Thus modeling of event-triggered behavior is 
naturally covered by the AutoFOCUS notation by reacting 
explicitly depending on the presence (or absence) of a 
message.  
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Figure 1: Message-based, time-synchronous communication. 

 

3. ABSTRACTION LEVELS AND VIEWS 

The different system abstractions and their supported 
views on the system (see Fig. 2) are central to the 
model-based approach of AutoMoDe. The system 
abstractions chosen are similar to those defined in 
[Thu03] (see also Sec. 1.3), but are adapted to match 
the model-based AutoMoDe development process. The 
abstraction levels and the corresponding use of the 
AutoFOCUS notations are introduced in the following. 

 

Figure 2: AutoMoDe abstraction levels. 

 

3.1 FUNCTIONAL ANALYSIS ARCHITECTURE 

The Functional Analysis Architecture (FAA) is the most 
abstract level considered in AutoMoDe. The FAA 
provides a system-level abstraction representing the 
vehicle functionalities to be implemented in either 
hardware or software. 

Use Cases, Feature Tree and Hierarchy Diagrams 

Today a vehicle may have more than 2,500 software 
based functions. Typically, it is up to the requirements 
engineer to decide which functions are required and how 
these should be structured and realized in terms of user 
interactions. 

Feature trees and feature hierarchies provide a structural 
view of these functions. The structuring of feature 
hierarchies is strictly use case oriented: at each level of 
the hierarchy, “function families” are structured into sub-
functions until atomic functions are reached. 

We introduce special relationships between functions 
that indicate dependencies. Functions without 
dependencies are distinguished explicitly and are 
required to remain independent. The behavior of atomic 
functions can be described by using scenarios in terms 
of interaction diagrams (message sequence charts), or in 
a more thorough way via state machines. 

An FAA-level description is typically complete as to the 
functionalities being considered and the functional 
dependencies between them. It enables the identification 
of functional dependencies and potential conflicts 



between vehicle functions to be identified, and the 
validation of functional concepts based on prototypical 
behavioral descriptions.  

Means to achieve these goals include rules as well as 
model simulation. Based on the functional structure and 
dependencies, rules identify possible conflicts and 
suggest suitable countermeasures to resolve them. An 
exemplary rule is the introduction of specific arbitration 
functionality wherever two vehicle functions access the 
same actuator. These rules are E/E-architecture-driven 
and have been developed in the context of the 
CARTRONIC framework [LTS01].  The simulation also 
considers the prototypical behavioral descriptions. These 
descriptions are not optimized for efficient 
implementation and abstract from details such as 
concrete data types. 

System Structure Diagrams 

The dominating notation used on the FAA level is called 
System Structure Diagram (SSD).  SSDs are used for 
describing a high-level architectural decomposition of a 
system, similar to UML 2.0 component diagrams [UML]. 
SSDs consist of a network of components, shown as 
rectangles, with statically typed message-passing 
interfaces (ports), shown as black and white circles. 
Explicit directed connectors (channels) connect ports 
and indicate the direction of message flow between 
components. Components can be either recursively 
defined by other SSDs, or by a number of specifically 
suited notations for behavioral description (see Sec. 3.2). 
On the FAA level, it may be perfectly adequate to leave 
the detailed behavior unspecified. For an example SSD, 
see Fig. 3. 

 
Figure 3: Example SSD component network on the FAA level. 

The component boundaries introduced with SSDs have 
semantic implications as well – each SSD-level channel 
introduces a delay in the communication between 
components. Because of AutoMoDe’s global discrete-
time semantics, such implicit introduction of delays is a 
prerequisite for later partitioning with reduced 
revalidation effort (see Sec. 3.4). 

Note that SSDs are not unique to the FAA, but will be 
used throughout this text on other abstract system levels 
as well (see Sec. 3.2 – 3.3). 

3.2 FUNCTIONAL DESIGN ARCHITECTURE 

The AutoMoDe system abstraction Functional Design 
Architecture (FDA) is a structurally as well as 
behaviorally complete description of the software part of 
the system or a subsystem. The description is in terms of 
actual software components that can be instantiated in 
later phases of the development process. In its current 
version, AutoFOCUS supports classification and 
instantiation of components through the shared 
components mechanism, which groups structurally and 
behaviorally equivalent components without using a 
concept of an explicit component type or class, such as 
in UML. Structural or behavioral modifications to one 
component in the group are automatically propagated to 
all other components in the group. The general question 
of whether explicit component types are beneficial for 
automotive control systems development is the subject 
of ongoing research.   

In contrast to FAA-level functionalities, atomic SSD 
components in the FDA are required to have a well-
defined behavior. Behavior specifications of atomic 
components are allowed in terms of Data Flow 
Diagrams, which specify algorithms in terms of blocks 
communicating through data flows, Mode Transition 
Diagrams, which decompose the component’s behavior 
into distinct operational modes, or State Transition 
Diagrams, which specify reactive, event-driven behavior 
in an automaton-like style. 

Data Flow Diagrams 

Data Flow Diagrams (DFD) define an algorithmic 
computation of a component. Graphically, DFDs are 
similar to SSDs (see Fig. 4): DFDs are built from 
individual blocks with ports connected by channels. 
Typing of ports is dynamic, using type inference 
properties of operators. A block may be recursively 
defined by another DFD. The behavior of atomic DFD 
blocks is given either through a Mode Transition Diagram 
(MTD), through a State Transition Diagram (STD), or 
directly through an expression (function) in AutoFOCUS’s 
base language [HSE97]. For example, block “Minus” in 
Fig. 4 is defined by the function “a - b”, where “a” and “b” 
are port identifiers (not shown). It is possible to define 
adequate block libraries for discrete-time computations 
with this mechanism.  

 

In contrast to the delayed composition primitives in 
SSDs, the semantics of DFD composition is 
“instantaneous”, in the spirit of synchronous languages 
[IEE91]. In the AutoFOCUS tool, instantaneous 

 

Figure 4: Example DFD for a longitudinal momentum controller 
component. 



communication primitives are accompanied by a 
causality check for detecting instantaneous loops. Note 
that computations “happening at the same time” in FAA-, 
FDA- or LA-level models are perfectly valid abstractions 
of sequential, time-consuming computations on the level 
of the Operational Architecture (OA) if the abstract 
model’s computations are observed with a delay, such 
as the delays introduced by SSD composition. The 
duration of the delay then defines the deadline for the 
sequential computation on the OA level.  

Mode Transition Diagrams 

Mode Transition Diagrams (MTDs) are used to represent 
explicit system modes and alternate behaviors within 
modes (see Fig. 5). MTDs consist of modes and 
transitions between modes. Transitions are triggered by 
certain combinations of messages arriving at the MTD’s 
component. The behavior of the component within a 
mode is then defined by a subordinate DFD or SSD 
associated with the mode. As illustrated by the detailed 
example in Sec. 4, MTDs provide a valuable means of 
architectural decomposition specifically suited for 
embedded control systems. 

 

 

 

State Transition Diagrams 

STDs are extended finite state machines with states and 
transitions between states (see Fig. 6). STDs are similar 
to the popular Statecharts notation, but with some 
syntactic restrictions. Through the restrictions chosen - 
no AND states, no inter-level transitions, restricted 
preemption primitives - semantic ambiguities allowed by 
some standard Statecharts dialects [vdBeeck94] are 
avoided.  

3.3 LOGICAL AND TECHNICAL ARCHITECTURE 

The Logical and Technical Architecture (LA, TA) is the 
most implementation-oriented abstraction level 
supported by the AutoMoDe method. FDA-level 
components are instantiated and grouped into clusters at 
the LA level. The TA represents hardware and platform 
components (ECUs, buses, message frames) used to 
implement the system. 

A cluster can be thought of as a “smallest deployable 
unit” in a software system. Consequently, several 
clusters may be mapped to a given operating system 
task on the OA level, but a given cluster will not be split 
across several tasks. 

 

 

Cluster Communication Diagrams 

The notation used for top-level definition of the LA 
structure is called Cluster Communication Diagrams 
(CCD). Like SSD components, clusters have statically 
typed interfaces. In contrast to the recursive definition of 
SSDs and DFDs, CCD clusters must not be defined by 
other CCDs. On the other hand, hierarchical DFD 
descriptions are perfectly adequate for clusters. The type 
system at the LA level is extended by implementation 
types which capture the more or less platform-related 
constraints associated with implementation. Signal 
frequencies and event patterns are required to be explicit 
on the LA level, but not at the FAA and FDA levels. 

Signal frequencies and event patterns are represented in 
the AutoFOCUS notation as clocks: Each message flow in 
AutoFOCUS is associated with such a clock.  The clock 
for any given flow indicates either the frequency of 
message exchange (periodic case), or a condition 
describing the event pattern (aperiodic case). 
Syntactically, a clock is simply a Boolean expression 
evaluating to logical “true” whenever a message is 
present on the clock’s flow. Graphically, clocks may be 
represented as an element of a channel’s or port’s label, 
which has the form <id>:<type-expr>:<clock-expr>. 
Clocks are supported within the AutoFOCUS2 tool through 
by explicit sampling operators (indicated as “w” blocks in 
the examples) and an inference system, similar to type 
inference in programming languages.  

Figure 6: Example STD for exhaust control of an engine. 

Figure 5: Example MTD for operational modes of an engine. 



The graphical representation of CCDs is identical to 
DFDs (see Fig. 7). In particular, the half-shaded 
diamonds indicate explicit delay operators.  

  

3.4 TRANSITIONS BETWEEN ABSTRACTION LEVELS 

Transition FDA->LA 

To make the transition from an SSD representation on 
the FDA level to an LA-level CCD, some of the topmost 
SSD hierarchy may be dissolved in favor of a flat CCD 
representation. Clusters can then be defined in terms of 
(hierarchical) DFDs, MTDs, and STDs.  In addition, 
abstract data types such as “int” are typically mapped to 
an implementation, e.g. “int8” or “int16”. Similarly, a 
floating-point message on the FDA level may be mapped 
to a fixed-point or integer message on the LA level.  

In order to represent high-level MTDs as a network of 
clusters on the LA level, the AutoFOCUS2 tool prototype 
provides a built-in utility to transform an MTD into a 
semantically equivalent, partitionable dataflow model. 

Partitioning in AutoMoDe involves grouping an FDA-level 
description into clusters on the LA level. Because of the 
many design tradeoffs involved, we expect that this task 
can be automated chiefly on the level of elementary 
transformations, while essential design decisions are left 
to the engineer. As an example, the following two 
heuristics are supported by elementary AutoMoDe re-
factoring steps:  

(1) Partitioning along the SSD structure 
decomposition of FDA-level components. This 
strategy provides a clear one-to-one 
correspondence between FDA and LA 
descriptions. 

(2) Partitioning according to common signal and 
communication frequencies. This strategy may 
be preferable for technical reasons, e.g. reduced 
number of control flow (if-then-else) statements, 
reduced execution time jitter, better utilization of 
resources. 

With regard to required delays and dedicated conditions 
concerning the syntactic and semantic validity of CCDs, 
clusters may depend on the characteristics of a given 
Technical Architecture. As an example, consider an 
OSEK-conforming operating system as a target platform, 
with inter-task communication between tasks using data 
integrity mechanisms [PMS+95] and fixed-priority, 
preemptive scheduling. In this framework, 
communication from “slower” clusters to a “faster” cluster 
necessitates the introduction of at least one delay 
operator in the direction of data flow. On the other hand, 
communication in the opposite direction (“fast” to “slow” 
cluster communication) does not require introduction of 
delays in the CCD.  

Note that implementation-driven introduction of delays 
may significantly alter a system’s behavior, depending on 
the nature of an application. Therefore, early introduction 
of delays from the top down between SSD components 
on the FAA and FDA levels is made with the intention  of 
avoiding a costly revalidation of models after the 
transition to the (more implementation-driven) LA/TA 
level. 

4. REENGINEERING 

The aforementioned concepts and descriptions (see 
Sec. 2 – 4) have been applied to an extensive 
automotive case study where the engine controller for a 
four-stroke gasoline engine was modeled. Originally, this 
case study [Bea99] was provided in terms of a detailed 
ASCET [ETAS] design and has been reengineered in 
important parts using  an early AutoMoDe tool prototype, 
AutoFocus (see Sec. 5), along with the related notations 
and underlying semantics. 

4.1 OPERATING MODES 

Compared to ASCET, AutoFOCUS provides a richer set 
of control flow primitives. As it turns out, the AutoMoDe 
concept of modes and MTDs can capture and 
encapsulate implicit operation modes of the original 
ASCET design especially well.  What is more, implicit 
modes of ASCET processes can be made explicit to the 
developer by using MTDs rather than control flow 
operators such as if-then-else (see Fig. 8). 

In other words, MTDs support a comprehensible design 
not only because they hide parts of a complex 
computation in hierarchical components, but also 
because they make clear which mode a certain part of 
the system is in that is actually being modeled by the 
user at any time. The latter is an especially strong 
argument for the use of modes from a methodological 
point of view, since they prevent potentially conflicting 
control flow statements based on a wrong evaluation of 
Boolean variables, or flags. 

For example, the purpose of the component named 
“ThrottleRateOfChange” is to determine the rate at which 
the throttle valve position changes, not only depending 
on its current and the desired position, but also 

Figure 7: Example CCD for engine controller (simplified). 



depending on very specific states of the entire engine 
(control management). Other approaches such as 
MATLAB Simulink or ASCET would typically use a 
separate block for handling the control logic of the 
engine modes. This control logic block would then 
communicate a large number of flags and control values 
to the remaining blocks of the subsystem to influence 
their behavior based on the current operating mode.  The 
control values, however, are evaluated inside the control 
logic block as well as in the respective subsystems, 
which may yield (deadlock-like) conflicts due to subtle 
inconsistencies in the control flow. 

 

Figure 8: AutoFocus component, ThrottleRateOfChange, with an embedded 
MTD which consists of two states: “FuelEnabled” and “CrankingOverrun”. 

Modeling a subsystem such as “ThrottleRateOfChange” 
with MTDs and modes, on the other hand, separates the 
component into distinctive modes – even using 
distinctive name tags for those – which are modeled and 
viewed separately in the tool depending on the 
respective engine state (see Fig. 8). That is, an MTD 
design treats modes as first-class citizens while purely 
control-flow oriented modelling usually lacks the concept 
of mode representation. 

In the case of ThrottleRateOfChange, the top-level MTD 
is attached to two separate DFD descriptions which, 
when executed, each consume incoming signals, if the 
mode being dealt with is currently active. Clearly, the 
calculation of the throttle position change rate is different 
in cranking mode compared to “normal” engine operation 
while driving. Consequently, the incoming Boolean flags 
for mode control can also be thought of as DFD trigger 
signals. 

4.2 DATA- VS. CONTROL-FLOW-ORIENTED DESIGN 

On the other hand, MTDs also provide a great amount of 
flexibility, since they do not impose any restrictions on 
the level of abstraction where modes can be used. 
Hence, MTDs may appear on the structural level inside 
SSD components, or in the FDA and LA/TA inside DFD 
blocks. Additionally, MTDs may be hierarchic, meaning 
one single mode may consist of further MTDs with 
additional modes. 

It is then up to the systems engineer to decide whether 
MTDs should capture a more data-oriented or controlflow 
oriented view of the system. 

A purely dataflow-oriented approach to MTDs would 
result in MTDs at very low levels of abstraction inside 
isolated DFD blocks. This essentially results in a high 
number of single MTDs and yields a greater effort in 
constructing a consistent global state model. 

On the other hand, the purely control flow oriented way of 
using MTDs will impose only a small number of  MTDs in 
top-level components, which then more or less represent 
the global state model of the system.  The downside of 
this approach, however, is there is not much modularity 
and greater redundancy in the model, since a lot of the 
underlying computations would be made in more than 
one mode. 

5. TOOL SUPPORT 

The goal is to validate all concepts developed in 
AutoMoDe by at least some prototypical tools. An 
enhanced tool for specifications used in AutoMoDe is 
currently being developed called AutoFOCUS2, which is 
based on the existing AutoFOCUS framework. The tool 
includes a generic logic programming language 
interpreter for checking and manipulating specifications. 
Fig. 9 shows AutoFOCUS2’s logic language interpreter 
with the model browser and two editor windows.  The 
consistency check mechanism also includes rules to 
identify possible violations of consistency conditions. 

 

Figure 9: Screenshot AutoFocus2 tool. 

The existing AutoFocus tool [HSE97] and the 
AutoFOCUS2 tool include further extensions, in addition to 
basic functionalities like simulation or code generation. A 
concept to describe the implementation of data types 
based on the experiences gained from ASCET was 
developed and included into the AutoFOCUS framework. 
This means that an abstract number data type like 
integer or real could be used in early specifications. 



These data types will be refined in later phases, for 
example into a 16-bit integer or a standard fixed or 
floating point representation. AutoFOCUS supports 
simulation and type consistency mechanisms for abstract 
data types as well as implementation data types, and 
even for specifications using a mix of both. 

The model often has to be re-factored when automotive 
control software is designed.  For example, a component 
within one component hierarchy has to be moved into 
another hierarchy. Typical re-factorings are defined and 
implemented in AutoMoDe. For this reason the 
AutoFOCUS framework was extended by a generic 
language to specify model transformations. 

A central part of the AutoMoDe tool prototype is the 
connection with ASCET. We show the practical 
applicability by integrating a currently used tool for 
automotive control software design. On the one hand, 
AutoMoDe models should be automatically transformed 
into ASCET models so that it is possible to further refine 
these models to generate code for different embedded 
platforms. On the other hand, ASCET models are 
converted into AutoMoDe models to support 
reengineering of existing models. Naturally, 
reengineering is the only tool supported, but it generally 
does not automatically produce reasonable results 
without user interaction. The integration with ASCET 
described here is currently ongoing research. 

6. CONCLUSION 

This paper has presented some of the early results of the 
AutoMoDe project, including a definition of abstraction 
layers, some support, methodically motivated transitions 
between layers, the graphical notations supported by 
AutoFOCUS tools, a case study from the engine 
management domain, and the status of tool support for 
AutoMoDe.  

The complex relationships between single design 
artefacts of a typical automotive software design call for 
a rich set of possible structuring relations between 
artefacts. The AutoMoDe domain model currently lacks 
some of these necessary relationships, such as a 
mechanism for component typing, or for describing 
product variants.  Extensions of the AutoMoDe domain 
model with simple typing and variant mechanisms, 
similar to the results of the Automotive project [BBRS03], 
are envisioned for the near future. 

Obviously, the combination of a globally clocked 
operational model with typical event-triggered 
communication media such as CAN, which is not tightly 
synchronized, raises some interesting questions for 
research. We present in [RB04] a proposal on how to 
use event-triggered media for firm real-time deployment 
of globally clocked models with comparatively small 

implementation overhead. This topic will also be a 
subject of further investigation. 
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