
05AE-268

AutoMoDe – Notations, Methods, and Tools for Model- Based
Development of Automotive Software

Andreas Bauer, Manfred Broy, Jan Romberg, Bernhard Schätz
Institut für Informatik, Technische Universität München

Peter Braun
Validas AG

Ulrich Freund, Nuria Mata
ETAS Engineering Tools GmbH

Robert Sandner
BMW AG

Dirk Ziegenbein
Robert Bosch GmbH

Copyright © 2005 SAE International

ABSTRACT

This paper describes the first results from the AutoMoDe
project (Automotive Model-based Development), where
an integrated methodology for model-based
development of automotive control software is being
developed. The results presented include a number of
problem-oriented graphical notations, based on a
formally defined operational model, which are associated
with system views for various degrees of abstraction. It is
shown how the approach can be used for partitioning
comprehensive system designs for subsequent
implementation-related tasks. Recent experiences from
a case study of an engine management system, specific
issues related to reengineering, and the current status of
CASE-tool support are also presented.

1. INTRODUCTION

AutoMoDe is a joint research project consisting of
members of the Software & Systems Engineering group
at the Technische Universität München, Validas AG,
ETAS GmbH, Robert Bosch GmbH, and BMW AG. The
overall goal of the project is to develop an integrated
methodology for model-based development of
automotive control software based on custom, problem-
specific design notations with an explicit formal
foundation. A series of prototypical tools is being
developed which builds on the existing AutoFOCUS
[HSE97] framework in order to illustrate the key elements
of the methodology presented.

1.1 BACKGROUND

Current challenges in automotive control systems design
include quickly rising system complexity across all
domains, tight time-to-market constraints (necessitating
better predictability for design efforts such as
integration), the transition from realization of control logic
in mechanical/electrical systems to software
implementations, and heterogeneous design chains
crossing several technical disciplines and organizations
or companies.

Traditionally, the focus of embedded software
engineering has been on the later and thus more detailed
abstraction levels, which deal mostly with
implementation-related issues. More abstract system
descriptions typically take a back seat in the design
process because they lack suitable notations,
methodologies, and integration between abstraction
layers. However, working at higher levels of abstraction
will be a key factor in tackling the prevalent complexity
issues in automotive software engineering, and in
catering to different stakeholders in the design chain. For
these reasons, the organization of design artefacts along
abstraction layers tailored for different stakeholders and
different phases has been identified as a possible
remedy in the past [BBRS03][Thu03]. A related method
should then provide support for easy transitions between
layers, e.g. for restructuring designs. Notations and
underlying models, such as notations for architectural
and behavioural design, should be well-integrated.

Consequently, AutoMoDe aims to address the obvious
need to organize such artefacts along various abstract
levels, tailored for different stakeholders and phases in
the overall systems development process. Additionally,
transitions between abstraction levels, like restructuring
operations, are supported by the accompanying tools.

Exchanging design information in a heterogeneous
setting is aided by well-established, intuitive, and
unambiguous notations for design artefacts. The
AutoMoDe tools aim to provide for such support with
formally founded notations, with powerful consistency
checks suited to the different abstraction levels, and by
providing the ability to validate a design’s behavior with
built-in simulators.

1.2 OVERVIEW

Section 2 of the paper introduces the operational model
of AutoFOCUS designs, which are based on a formally
defined system model using explicit data-flow and
discrete-time semantics. The accompanying tool support
facilitates early system validation through simulation and
verification capabilities, as well as powerful consistency
checks. In Section 3, we detail the graphical
representation of AutoMoDe designs, which are specified
using a number of different views for differently abstract
system levels – each of which targets specific aspects of
the design of automotive control systems. Section 4
explains the results and experiences gained during a
reengineering case study using the AutoMoDe approach
and tool prototypes. The conclusions of this paper are
summarized in Section 5, which also gives an outlook
and discusses future activities.

1.3 RELATED WORK

In the related research project Automotive [BBRS03]
BMW, Bosch, ETAS, Telelogic and Technische
Universität München have developed a model-based
language and method for developing automotive control
software. To achieve practicable usability, the method
was based upon relevant and commercially available
tools like ASCET, DOORS and the UML Suite. The
Automotive Modeling Language (AML) is based on a
definition of distinct abstraction levels similar to the
AutoMoDe abstraction levels presented in this paper, a
concrete syntax based on the UML 1.x and the ASCET
notations for structural system descriptions, and an
easily usable concept for variants and configurations.

AutoMoDe addresses two inadequacies in Automotive’s
results: firstly, instead of UML 1.x, AutoMoDe uses the
AutoFOCUS [HSE97] notation with an explicit concept of
components and their composition for the description of
the structures of embedded systems. AutoFOCUS is also
very closely related to selected UML 2.0 concepts, so
possible standard conformance in the future is not
regarded as critical. Secondly, beyond the purely
structural designs considered in Automotive, AutoMoDe
is also concerned with behavioral aspects.

EAST-EEA: The European automotive industry started
this project running under the ITEA banner in 2001. The
project was finished in July 2004. An Architecture
Description language, the so-called EAST-ADL, has
been defined, along with a definition of a domain-specific
middleware [Thu03]. The EAST-ADL [Fre04] is
structured into several abstraction levels by defining the
following architectures:

• Vehicle Project (VP)
• Functional Analysis Architecture (FAA)
• Functional Design Architecture (FDA)
• Logical Architecture (LA)
• Operational Architecture (OA)
• Hardware Architecture (HA)
• Technical Architecture (TA)

The vehicle project describes the electronic features of a
vehicle and all resulting variants from a customer’s point
of view. The structure of electronic features themselves
is described by using inputs and outputs in the functional
analysis architecture. If necessary, the structure can be
reinforced by behavioral models. The functional design
architecture is the most abstract description of software
structures to be found later in the ECU software
implementation. This architecture consists of a functional
hierarchy with a focus on typed structures and signal
exchange. In addition, it is possible to associate behavior
with functions of the hierarchy. However, only elementary
functions, i.e. the leafs of a functional hierarchy, can
carry behavior to be flexible for the final placement of
functions on ECUs. Behavior can be described using
finite state machines, difference equations, or plain
source code. The logical architecture describes the
system on a pure instance level. Instances can be
mapped to ECUs and OS tasks while still respecting all
timing and memory requirements. ECU properties with
their sensors and actuators as well as the bus systems
are described in the hardware architecture. Configurable
basic software components for the ECUs like OS, HAL
and the EAST middleware form the technical
architecture, while the operational architecture describes
the running system. The latter is conceived by mapping
the instances of the logical architecture to ECUs, OS
tasks and bus messages and then by applying code
generation of the application software and by configuring
the basic software.

The use of explicit operational modes for decomposition
has also been brought forward by other authors, e.g.
[MR98]. In addition to the idea of using explicit notations
for operational modes, our approach employs such
mode representations across several levels of
abstraction, especially for coarse-grained structuring of
systems, and in particular investigates transformations
between different mode representations suited for
different abstraction levels.

The concept of expressing frequencies and event
patterns as Boolean expressions (clocks), and the idea
of providing a type system for such clocks, originates

from the field of synchronous programming languages
[IEE91].

2. OPERATIONAL MODEL

AutoFOCUS uses a message-based, discrete-time
communication scheme as its core semantic model.
AutoFOCUS designs are built from networks of
components or blocks (drawn graphically as a rectangle)
exchanging messages with each other and with the
environment via explicit interfaces (drawn as small
circles) and connectors between interfaces. Messages
are time stamped with respect to a global, discrete time
base. This computational model supports a high degree
of modularity by making component interfaces complete
and explicit. It also provides a reduced degree of
complexity: Because the discrete time base abstracts
from implementation details such as detailed timing or
communication mechanisms, the use of timing
information below the chosen granularity of observable
discrete clock ticks is avoided. Examples for such
detailed assumptions include the ordering of message
arrivals within one time slot, or duration and delays of
transfer. Real-time intervals of the implementation are
therefore abstracted by logical-time intervals.

Note that this message-based time-synchronous
communication model does cater to both periodic and
sporadic communication as required for a mixed
modeling of time-triggered and event-triggered behavior.
As shown in Figure 1, each channel in the abstract
model either holds a message represented by an explicit
value or the “�” (“tick”) value indicating the absence of a
message. Thus modeling of event-triggered behavior is
naturally covered by the AutoFOCUS notation by reacting
explicitly depending on the presence (or absence) of a
message.

DoorLockControl

T4S:LockStatus

CRSH:CrashStatus

FZG_V:Voltage

T1C:LockCommand

T4C:LockCommand

T3C:LockCommand

T2C:LockCommand

FZG_V
t+2 t+1 t

20 23 √

Figure 1: Message-based, time-synchronous communication.

3. ABSTRACTION LEVELS AND VIEWS

The different system abstractions and their supported
views on the system (see Fig. 2) are central to the
model-based approach of AutoMoDe. The system
abstractions chosen are similar to those defined in
[Thu03] (see also Sec. 1.3), but are adapted to match
the model-based AutoMoDe development process. The
abstraction levels and the corresponding use of the
AutoFOCUS notations are introduced in the following.

Figure 2: AutoMoDe abstraction levels.

3.1 FUNCTIONAL ANALYSIS ARCHITECTURE

The Functional Analysis Architecture (FAA) is the most
abstract level considered in AutoMoDe. The FAA
provides a system-level abstraction representing the
vehicle functionalities to be implemented in either
hardware or software.

Use Cases, Feature Tree and Hierarchy Diagrams

Today a vehicle may have more than 2,500 software
based functions. Typically, it is up to the requirements
engineer to decide which functions are required and how
these should be structured and realized in terms of user
interactions.

Feature trees and feature hierarchies provide a structural
view of these functions. The structuring of feature
hierarchies is strictly use case oriented: at each level of
the hierarchy, “function families” are structured into sub-
functions until atomic functions are reached.

We introduce special relationships between functions
that indicate dependencies. Functions without
dependencies are distinguished explicitly and are
required to remain independent. The behavior of atomic
functions can be described by using scenarios in terms
of interaction diagrams (message sequence charts), or in
a more thorough way via state machines.

An FAA-level description is typically complete as to the
functionalities being considered and the functional
dependencies between them. It enables the identification
of functional dependencies and potential conflicts

between vehicle functions to be identified, and the
validation of functional concepts based on prototypical
behavioral descriptions.

Means to achieve these goals include rules as well as
model simulation. Based on the functional structure and
dependencies, rules identify possible conflicts and
suggest suitable countermeasures to resolve them. An
exemplary rule is the introduction of specific arbitration
functionality wherever two vehicle functions access the
same actuator. These rules are E/E-architecture-driven
and have been developed in the context of the
CARTRONIC framework [LTS01]. The simulation also
considers the prototypical behavioral descriptions. These
descriptions are not optimized for efficient
implementation and abstract from details such as
concrete data types.

System Structure Diagrams

The dominating notation used on the FAA level is called
System Structure Diagram (SSD). SSDs are used for
describing a high-level architectural decomposition of a
system, similar to UML 2.0 component diagrams [UML].
SSDs consist of a network of components, shown as
rectangles, with statically typed message-passing
interfaces (ports), shown as black and white circles.
Explicit directed connectors (channels) connect ports
and indicate the direction of message flow between
components. Components can be either recursively
defined by other SSDs, or by a number of specifically
suited notations for behavioral description (see Sec. 3.2).
On the FAA level, it may be perfectly adequate to leave
the detailed behavior unspecified. For an example SSD,
see Fig. 3.

Figure 3: Example SSD component network on the FAA level.

The component boundaries introduced with SSDs have
semantic implications as well – each SSD-level channel
introduces a delay in the communication between
components. Because of AutoMoDe’s global discrete-
time semantics, such implicit introduction of delays is a
prerequisite for later partitioning with reduced
revalidation effort (see Sec. 3.4).

Note that SSDs are not unique to the FAA, but will be
used throughout this text on other abstract system levels
as well (see Sec. 3.2 – 3.3).

3.2 FUNCTIONAL DESIGN ARCHITECTURE

The AutoMoDe system abstraction Functional Design
Architecture (FDA) is a structurally as well as
behaviorally complete description of the software part of
the system or a subsystem. The description is in terms of
actual software components that can be instantiated in
later phases of the development process. In its current
version, AutoFOCUS supports classification and
instantiation of components through the shared
components mechanism, which groups structurally and
behaviorally equivalent components without using a
concept of an explicit component type or class, such as
in UML. Structural or behavioral modifications to one
component in the group are automatically propagated to
all other components in the group. The general question
of whether explicit component types are beneficial for
automotive control systems development is the subject
of ongoing research.

In contrast to FAA-level functionalities, atomic SSD
components in the FDA are required to have a well-
defined behavior. Behavior specifications of atomic
components are allowed in terms of Data Flow
Diagrams, which specify algorithms in terms of blocks
communicating through data flows, Mode Transition
Diagrams, which decompose the component’s behavior
into distinct operational modes, or State Transition
Diagrams, which specify reactive, event-driven behavior
in an automaton-like style.

Data Flow Diagrams

Data Flow Diagrams (DFD) define an algorithmic
computation of a component. Graphically, DFDs are
similar to SSDs (see Fig. 4): DFDs are built from
individual blocks with ports connected by channels.
Typing of ports is dynamic, using type inference
properties of operators. A block may be recursively
defined by another DFD. The behavior of atomic DFD
blocks is given either through a Mode Transition Diagram
(MTD), through a State Transition Diagram (STD), or
directly through an expression (function) in AutoFOCUS’s
base language [HSE97]. For example, block “Minus” in
Fig. 4 is defined by the function “a - b”, where “a” and “b”
are port identifiers (not shown). It is possible to define
adequate block libraries for discrete-time computations
with this mechanism.

In contrast to the delayed composition primitives in
SSDs, the semantics of DFD composition is
“instantaneous”, in the spirit of synchronous languages
[IEE91]. In the AutoFOCUS tool, instantaneous

Figure 4: Example DFD for a longitudinal momentum controller
component.

communication primitives are accompanied by a
causality check for detecting instantaneous loops. Note
that computations “happening at the same time” in FAA-,
FDA- or LA-level models are perfectly valid abstractions
of sequential, time-consuming computations on the level
of the Operational Architecture (OA) if the abstract
model’s computations are observed with a delay, such
as the delays introduced by SSD composition. The
duration of the delay then defines the deadline for the
sequential computation on the OA level.

Mode Transition Diagrams

Mode Transition Diagrams (MTDs) are used to represent
explicit system modes and alternate behaviors within
modes (see Fig. 5). MTDs consist of modes and
transitions between modes. Transitions are triggered by
certain combinations of messages arriving at the MTD’s
component. The behavior of the component within a
mode is then defined by a subordinate DFD or SSD
associated with the mode. As illustrated by the detailed
example in Sec. 4, MTDs provide a valuable means of
architectural decomposition specifically suited for
embedded control systems.

State Transition Diagrams

STDs are extended finite state machines with states and
transitions between states (see Fig. 6). STDs are similar
to the popular Statecharts notation, but with some
syntactic restrictions. Through the restrictions chosen -
no AND states, no inter-level transitions, restricted
preemption primitives - semantic ambiguities allowed by
some standard Statecharts dialects [vdBeeck94] are
avoided.

3.3 LOGICAL AND TECHNICAL ARCHITECTURE

The Logical and Technical Architecture (LA, TA) is the
most implementation-oriented abstraction level
supported by the AutoMoDe method. FDA-level
components are instantiated and grouped into clusters at
the LA level. The TA represents hardware and platform
components (ECUs, buses, message frames) used to
implement the system.

A cluster can be thought of as a “smallest deployable
unit” in a software system. Consequently, several
clusters may be mapped to a given operating system
task on the OA level, but a given cluster will not be split
across several tasks.

Cluster Communication Diagrams

The notation used for top-level definition of the LA
structure is called Cluster Communication Diagrams
(CCD). Like SSD components, clusters have statically
typed interfaces. In contrast to the recursive definition of
SSDs and DFDs, CCD clusters must not be defined by
other CCDs. On the other hand, hierarchical DFD
descriptions are perfectly adequate for clusters. The type
system at the LA level is extended by implementation
types which capture the more or less platform-related
constraints associated with implementation. Signal
frequencies and event patterns are required to be explicit
on the LA level, but not at the FAA and FDA levels.

Signal frequencies and event patterns are represented in
the AutoFOCUS notation as clocks: Each message flow in
AutoFOCUS is associated with such a clock. The clock
for any given flow indicates either the frequency of
message exchange (periodic case), or a condition
describing the event pattern (aperiodic case).
Syntactically, a clock is simply a Boolean expression
evaluating to logical “true” whenever a message is
present on the clock’s flow. Graphically, clocks may be
represented as an element of a channel’s or port’s label,
which has the form <id>:<type-expr>:<clock-expr>.
Clocks are supported within the AutoFOCUS2 tool through
by explicit sampling operators (indicated as “w” blocks in
the examples) and an inference system, similar to type
inference in programming languages.

Figure 6: Example STD for exhaust control of an engine.

Figure 5: Example MTD for operational modes of an engine.

The graphical representation of CCDs is identical to
DFDs (see Fig. 7). In particular, the half-shaded
diamonds indicate explicit delay operators.

3.4 TRANSITIONS BETWEEN ABSTRACTION LEVELS

Transition FDA->LA

To make the transition from an SSD representation on
the FDA level to an LA-level CCD, some of the topmost
SSD hierarchy may be dissolved in favor of a flat CCD
representation. Clusters can then be defined in terms of
(hierarchical) DFDs, MTDs, and STDs. In addition,
abstract data types such as “int” are typically mapped to
an implementation, e.g. “int8” or “int16”. Similarly, a
floating-point message on the FDA level may be mapped
to a fixed-point or integer message on the LA level.

In order to represent high-level MTDs as a network of
clusters on the LA level, the AutoFOCUS2 tool prototype
provides a built-in utility to transform an MTD into a
semantically equivalent, partitionable dataflow model.

Partitioning in AutoMoDe involves grouping an FDA-level
description into clusters on the LA level. Because of the
many design tradeoffs involved, we expect that this task
can be automated chiefly on the level of elementary
transformations, while essential design decisions are left
to the engineer. As an example, the following two
heuristics are supported by elementary AutoMoDe re-
factoring steps:

(1) Partitioning along the SSD structure
decomposition of FDA-level components. This
strategy provides a clear one-to-one
correspondence between FDA and LA
descriptions.

(2) Partitioning according to common signal and
communication frequencies. This strategy may
be preferable for technical reasons, e.g. reduced
number of control flow (if-then-else) statements,
reduced execution time jitter, better utilization of
resources.

With regard to required delays and dedicated conditions
concerning the syntactic and semantic validity of CCDs,
clusters may depend on the characteristics of a given
Technical Architecture. As an example, consider an
OSEK-conforming operating system as a target platform,
with inter-task communication between tasks using data
integrity mechanisms [PMS+95] and fixed-priority,
preemptive scheduling. In this framework,
communication from “slower” clusters to a “faster” cluster
necessitates the introduction of at least one delay
operator in the direction of data flow. On the other hand,
communication in the opposite direction (“fast” to “slow”
cluster communication) does not require introduction of
delays in the CCD.

Note that implementation-driven introduction of delays
may significantly alter a system’s behavior, depending on
the nature of an application. Therefore, early introduction
of delays from the top down between SSD components
on the FAA and FDA levels is made with the intention of
avoiding a costly revalidation of models after the
transition to the (more implementation-driven) LA/TA
level.

4. REENGINEERING

The aforementioned concepts and descriptions (see
Sec. 2 – 4) have been applied to an extensive
automotive case study where the engine controller for a
four-stroke gasoline engine was modeled. Originally, this
case study [Bea99] was provided in terms of a detailed
ASCET [ETAS] design and has been reengineered in
important parts using an early AutoMoDe tool prototype,
AutoFocus (see Sec. 5), along with the related notations
and underlying semantics.

4.1 OPERATING MODES

Compared to ASCET, AutoFOCUS provides a richer set
of control flow primitives. As it turns out, the AutoMoDe
concept of modes and MTDs can capture and
encapsulate implicit operation modes of the original
ASCET design especially well. What is more, implicit
modes of ASCET processes can be made explicit to the
developer by using MTDs rather than control flow
operators such as if-then-else (see Fig. 8).

In other words, MTDs support a comprehensible design
not only because they hide parts of a complex
computation in hierarchical components, but also
because they make clear which mode a certain part of
the system is in that is actually being modeled by the
user at any time. The latter is an especially strong
argument for the use of modes from a methodological
point of view, since they prevent potentially conflicting
control flow statements based on a wrong evaluation of
Boolean variables, or flags.

For example, the purpose of the component named
“ThrottleRateOfChange” is to determine the rate at which
the throttle valve position changes, not only depending
on its current and the desired position, but also

Figure 7: Example CCD for engine controller (simplified).

depending on very specific states of the entire engine
(control management). Other approaches such as
MATLAB Simulink or ASCET would typically use a
separate block for handling the control logic of the
engine modes. This control logic block would then
communicate a large number of flags and control values
to the remaining blocks of the subsystem to influence
their behavior based on the current operating mode. The
control values, however, are evaluated inside the control
logic block as well as in the respective subsystems,
which may yield (deadlock-like) conflicts due to subtle
inconsistencies in the control flow.

Figure 8: AutoFocus component, ThrottleRateOfChange, with an embedded
MTD which consists of two states: “FuelEnabled” and “CrankingOverrun”.

Modeling a subsystem such as “ThrottleRateOfChange”
with MTDs and modes, on the other hand, separates the
component into distinctive modes – even using
distinctive name tags for those – which are modeled and
viewed separately in the tool depending on the
respective engine state (see Fig. 8). That is, an MTD
design treats modes as first-class citizens while purely
control-flow oriented modelling usually lacks the concept
of mode representation.

In the case of ThrottleRateOfChange, the top-level MTD
is attached to two separate DFD descriptions which,
when executed, each consume incoming signals, if the
mode being dealt with is currently active. Clearly, the
calculation of the throttle position change rate is different
in cranking mode compared to “normal” engine operation
while driving. Consequently, the incoming Boolean flags
for mode control can also be thought of as DFD trigger
signals.

4.2 DATA- VS. CONTROL-FLOW-ORIENTED DESIGN

On the other hand, MTDs also provide a great amount of
flexibility, since they do not impose any restrictions on
the level of abstraction where modes can be used.
Hence, MTDs may appear on the structural level inside
SSD components, or in the FDA and LA/TA inside DFD
blocks. Additionally, MTDs may be hierarchic, meaning
one single mode may consist of further MTDs with
additional modes.

It is then up to the systems engineer to decide whether
MTDs should capture a more data-oriented or controlflow
oriented view of the system.

A purely dataflow-oriented approach to MTDs would
result in MTDs at very low levels of abstraction inside
isolated DFD blocks. This essentially results in a high
number of single MTDs and yields a greater effort in
constructing a consistent global state model.

On the other hand, the purely control flow oriented way of
using MTDs will impose only a small number of MTDs in
top-level components, which then more or less represent
the global state model of the system. The downside of
this approach, however, is there is not much modularity
and greater redundancy in the model, since a lot of the
underlying computations would be made in more than
one mode.

5. TOOL SUPPORT

The goal is to validate all concepts developed in
AutoMoDe by at least some prototypical tools. An
enhanced tool for specifications used in AutoMoDe is
currently being developed called AutoFOCUS2, which is
based on the existing AutoFOCUS framework. The tool
includes a generic logic programming language
interpreter for checking and manipulating specifications.
Fig. 9 shows AutoFOCUS2’s logic language interpreter
with the model browser and two editor windows. The
consistency check mechanism also includes rules to
identify possible violations of consistency conditions.

Figure 9: Screenshot AutoFocus2 tool.

The existing AutoFocus tool [HSE97] and the
AutoFOCUS2 tool include further extensions, in addition to
basic functionalities like simulation or code generation. A
concept to describe the implementation of data types
based on the experiences gained from ASCET was
developed and included into the AutoFOCUS framework.
This means that an abstract number data type like
integer or real could be used in early specifications.

These data types will be refined in later phases, for
example into a 16-bit integer or a standard fixed or
floating point representation. AutoFOCUS supports
simulation and type consistency mechanisms for abstract
data types as well as implementation data types, and
even for specifications using a mix of both.

The model often has to be re-factored when automotive
control software is designed. For example, a component
within one component hierarchy has to be moved into
another hierarchy. Typical re-factorings are defined and
implemented in AutoMoDe. For this reason the
AutoFOCUS framework was extended by a generic
language to specify model transformations.

A central part of the AutoMoDe tool prototype is the
connection with ASCET. We show the practical
applicability by integrating a currently used tool for
automotive control software design. On the one hand,
AutoMoDe models should be automatically transformed
into ASCET models so that it is possible to further refine
these models to generate code for different embedded
platforms. On the other hand, ASCET models are
converted into AutoMoDe models to support
reengineering of existing models. Naturally,
reengineering is the only tool supported, but it generally
does not automatically produce reasonable results
without user interaction. The integration with ASCET
described here is currently ongoing research.

6. CONCLUSION

This paper has presented some of the early results of the
AutoMoDe project, including a definition of abstraction
layers, some support, methodically motivated transitions
between layers, the graphical notations supported by
AutoFOCUS tools, a case study from the engine
management domain, and the status of tool support for
AutoMoDe.

The complex relationships between single design
artefacts of a typical automotive software design call for
a rich set of possible structuring relations between
artefacts. The AutoMoDe domain model currently lacks
some of these necessary relationships, such as a
mechanism for component typing, or for describing
product variants. Extensions of the AutoMoDe domain
model with simple typing and variant mechanisms,
similar to the results of the Automotive project [BBRS03],
are envisioned for the near future.

Obviously, the combination of a globally clocked
operational model with typical event-triggered
communication media such as CAN, which is not tightly
synchronized, raises some interesting questions for
research. We present in [RB04] a proposal on how to
use event-triggered media for firm real-time deployment
of globally clocked models with comparatively small

implementation overhead. This topic will also be a
subject of further investigation.

REFERENCES

1. [vdB94] M. v. d. Beeck: Comparison of Statecharts
Variants. Third Int’l Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT). pp.
128 – 148, 1994

2. [Bea99] A. J. Beaumont et al.: Automation of ECU
Software Development : From Concept to Production
Level Code, SAE-Paper 1999-01-1174

3. [BBRS03] M. v. d. Beeck, P. Braun, M. Rappl and C.
Schröder. UML for Real: Design of Embedded Real-Time
Systems, Automotive UML. In: Bran Selic, Grant Martin
and Luciano Lavagno (eds), Kluwer Academic Publishers,
ISBN 1-4020-7501-4, May 2003

4. [Thu03] Thurner, T., et al., The EAST-EEA project – a
middleware based software architecture for networked
electronic control units in vehicles. In: Electronic
Systems for Vehicles (VDI Berichte 1789), p 545 ff. VDI-
Verlag, Düsseldorf, 2003.

5. [Fre04] U. Freund et al.: The EAST-ADL: A Joint Effort
of the European Automotive Industry to Structure
Distributed Automotive Embedded Control Software. 2nd
Workshop on Embedded Real-Time Systems, Toulouse
2004.

6. [ETAS] ETAS Engineering Tools GmbH. ASCET User
Manual Version 5.0. 2004. ETAS GmbH.

7. [HSE97] F. Huber, B. Schätz, G. Einert. Consistent
Graphical Specification of Distributed Systems. FME '97,
LNCS 1313, pp. 122 - 141, Springer.

8. [IEE91] Another look at real-time programming. Special
Section of the Proceedings of the IEEE, 79(9), September
1991

9. [Kop93] H. Kopetz. Should Responsive Systems be
Event-Triggered or Time-Triggered? IEICE Trans. Inf. &
Syst., Vol. E76-D (11), 1993

10. [LTS01] A. Lapp, P. Torre Flores, J. Schirmer, D. Kraft,
W. Hermsen, T. Bertram, J. Petersen. Software-
entwicklung für Steuergeräte im Systemverbund – Von
der CARTRONIC-Domänenstruktur zum Steuergeräte-
code. VDI-Berichte 1646 "Elektronik im Kraftfahrzeug".
pp. 249-276. 2001

11. [MR98] F. Maraninchi and Y. Rémond. Mode-Automata:
About Modes and States for Reactive Systems. Proc.
European Symposium on Programming, Lisbon, Portugal,
1998

12. [PMS+95] S. Poledna, T. Mocken, J. Scheimann, T.
Beck. ERCOS: An Operating System for Automotive
Applications. SAE International Congress, 1995

13. [RB04] J. Romberg and A. Bauer. Loose Synchronization
of Event-Triggered Networks for Distribution of
Synchronous Programs. EMSOFT, Pisa, Italy, 2004

