
Model-based runtime analysis of

distributed reactive systems

Andreas Klaus Bauer

Institut für Informatik

der Technischen Universität München

Model-based runtime analysis of

distributed reactive systems

Andreas Klaus Bauer

Vollständiger Abdruck der von der Fakultät für Informatik der Tech-
nischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Alois Knoll

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h. c. Manfred Broy

2. Dr. Perdita Stevens, Reader,
University of Edinburgh, UK

Die Dissertation wurde am 20.12.2006 bei der Technischen Univer-
sität München eingereicht und durch die Fakultät für Informatik am
20.04.2007 angenommen.

iv

Abstract

As interactions and dependencies within distributed reactive systems increase, the
problem of detecting failures which depend on the exact situation and environmental
conditions they occur in grows. As a result, not only the detection of failures is
increasingly difficult, but also the differentiation between the symptoms of a fault,
and the actual fault itself, i. e., the cause of a failure.

This thesis proposes an efficient approach for the analysis of distributed reactive
systems at runtime. It introduces a framework, referred to as monitoring-based run-
time reflection framework, for the detection of failures as well as identification of
their causes. As an interface to the framework, this thesis proposes a specification
language, Salt, to express desired system properties, which then have to hold at
all times while a system executes. Detection of failures in the framework is based
upon monitoring systems with respect to their associated properties, defined in the
high-level specification language Salt. Salt specifications are translatable into the
real-time temporal logic TLTL as well as in the untimed temporal logic LTL, and
as such can also be used with other temporal logic verification frameworks, such as
model checkers. For both logics, an efficient monitor generation procedure is devel-
oped for either monitoring qualitative assertions about a system’s behaviour in the
untimed case, or quantitative assertions reflecting dense real-time constraints. In
order to reflect the semantics of LTL, respectively TLTL, with respect to a finite ob-
servational trace in a suitable and unambiguous manner, a 3-valued interpretation is
proposed. The corresponding 3-valued monitoring procedure is shown to be optimal
with respect to the space-complexity of the generated monitors, and able to detect
all minimal bad prefixes of non-conforming system behaviour. Based on the results of
the monitors, a dedicated failure diagnosis is performed to identify possible explana-
tions for an observed deviation. As such, diagnosis can either confirm that a monitor
detected the root cause for a failure, or indicate that the fault is located elsewhere,
and possibly outside the scope of the monitored system. In the runtime reflection
framework, diagnosis is based upon the principles of first-order model-based diagno-
sis, but developed in the propositional domain. The propositional diagnosis problem
is then shown to correspond to a deterministic implementation of a solution to the
#SAT problem for which a computationally efficient realisation is introduced.

This thesis develops both the theoretical foundations for runtime reflection as well as
efficient means for its implementation.

v

vi

Acknowledgements

First and foremost, I want to express my gratitude to Manfred Broy for taking
me on in his highly energetic research group as well as for the supervision of this
thesis. Manfred Broy created a unique research and work environment for his group
from which I and my ideas have greatly benefited over the last almost four years.
Further, I want to thank Perdita Stevens from the University of Edinburgh for co-
supervising this thesis. Her acceptance of this task was beyond any call of duty, and
not always easy over a considerable spatial distance.

Martin Leucker must be pointed out as my academic role model over the past few
years. He had major influence on my development as an academic and researcher.

Selfishly, I made various people read through and comment on drafts of this thesis.
Timothy Bourke, Peter Braun, Gerwin Klein, Wendy Proctor, Michael Tautschnig,
and Martin Wildmoser even took the time to read and critically comment on almost
the entire document. I would like to sincerely thank them for their efforts.

Moreover, I am grateful for many stimulating and interesting discussions on topics
of this thesis (or, at first sight, rather unrelated themes, which later turned out
to be very influential) with Michael Beetz, Meir Manny Lehman, Reinhold Letz,
Hans-Wolfgang Loidl, Roland Martin, Christian Schallhart, Bernhard Schätz, Anika
Schumann, and Gernot Stenz. Their broad experience and technical insights have
directly or indirectly shaped many different aspects of this thesis.

I also could not have done it without the moral support from various colleagues in
our group, and friends I have found within. In particular, I would like to point
out the members of the BASE.XT team as well as Johannes Grünbauer who has
always been a pleasant office mate and a dear friend. Markus Pizka deserves a special
mention without whom I would probably not even have ended up in Manfred Broy’s
Software & Systems Engineering group at all. He also supported me with counsel
and encouragement when I needed it.

Finally, thanks are due to my colleagues and collaborators from industry with whom
I had the pleasure of working with foremost in the research projects AutoMoDe and
BASE.XT. In particular, I would like to thank Richard Bogenberger and Martin
Wechs from the BMW Group for many pleasant and interesting discussions which,
after all, centred not always around automotive software.

Andreas Bauer
München, November 2006

vii

viii

Chronology

Much of §3 is based upon material developed by Bauer et al. [2006c], and subsequently
published at the Eigth International Conference on Formal Engineering Methods
(ICFEM, see Bauer et al. [2006d]). The approach to runtime verification described in
§4 is based upon results developed first by Arafat et al. [2005], and subsequently pub-
lished at the 26th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS, see Bauer et al. [2006b]). The approach to diagnosis as
developed in §5 has been published in large parts at the International Conference on
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR, see Bauer [2005]). Various aspects of §6 (as well
as earlier chapters) are based upon a contribution to the IEEE Australian Software
Engineering Conference (ASWEC, see Bauer et al. [2006a]). Further implementa-
tion aspects detailed on in §6 are accepted for publication at the 2007 Conference on
Design, Automation and Test in Europe (DATE, see Bauer et al. [2007]).

Moreover, some minor results from papers for the USENIX Annual Technical Con-
ference (see Bauer [2004]), the 2005 ACM Conference on Embedded Software (EM-
SOFT, see Romberg and Bauer [2004]), and for the journal Informatik – Forschung
und Entwicklung (see Bauer et al. [2005]) are used and referred to throughout this
thesis.

ix

x

Contents

1 Introduction 1

1.1 Runtime reflection at a glance . 2
1.1.1 Architectural overview . 3
1.1.2 Practical view on runtime reflection 3

1.2 Detailed problem statement . 5
1.2.1 System failures and their inevitability 5
1.2.2 To know when a failure occurred 7
1.2.3 To know why a failure occurred 9

1.3 Contributions of this thesis . 10
1.4 Results of this thesis . 15
1.5 A brief guided tour through this thesis 16

2 Failures and faults in distributed reactive systems 19

2.1 Distributed reactive and real-time systems 20
2.2 The quest for correctness . 21
2.3 Terminology and classification . 24

2.3.1 Failures, faults, and errors . 24
2.3.2 Alternative correctness criteria 27

2.4 Summary . 29

3 Formal systems specification and verification with temporal logic 31

3.1 Preliminaries . 32
3.1.1 Automata over strings . 33
3.1.2 Linear time temporal logic . 40

3.2 Safety and liveness properties . 45
3.2.1 Safety properties . 46
3.2.2 Liveness properties . 48

3.3 SALT—Structured assertion language for temporal logic 50
3.3.1 Motivation . 50
3.3.2 Classification . 52
3.3.3 Design rationale and language features 55
3.3.4 Formal semantics . 61
3.3.5 Example specifications . 64

3.4 Summary . 66

xi

xii Contents

4 Failure detection through runtime verification 67

4.1 A brief history of runtime verification 68

4.2 LTL over finite words . 70

4.3 A 3-valued semantics for LTL—LTL3 72

4.4 A dynamic decision procedure for LTL3 73

4.4.1 Monitor construction . 76

4.4.2 Example: The C++ static initialisation order fiasco 77

4.4.3 Complexity . 79

4.4.4 Discussion: Informativeness vs. minimality 80

4.5 Reflecting real-time . 82

4.5.1 The real-time logic TLTL . 82

4.5.2 Verification of timed systems 86

4.5.3 A 3-valued semantics for TLTL—TLTL3 95

4.5.4 Dynamic decision procedure 95

4.5.5 Complexity . 100

4.6 Summary . 101

5 Fault detection using model-based diagnosis 103

5.1 Preliminaries . 104

5.1.1 Languages of first-order logic 105

5.1.2 First-order diagnosis . 106

5.2 Diagnosis as a Boolean satisfiability problem 113

5.2.1 From first-order to propositional diagnosis models 113

5.2.2 Computing diagnoses using Boolean satisfiability 118

5.2.3 Optimisation and determination of all minimal diagnoses . . . 123

5.3 Related work . 128

5.4 Summary . 132

6 Implementation, tool-support, and comparative results 133

6.1 Front end: An optimising compiler for SALT 134

6.1.1 Internals of the SALT compiler 134

6.1.2 Experimental results . 135

6.2 Back end . 137

6.2.1 Monitoring: implementation and case-study 137

6.2.2 Diagnosis: implementation and benchmarks 142

6.3 Summary . 153

7 Conclusions 155

7.1 Summary . 155

7.2 Future research directions . 157

7.2.1 Fundamental research questions 157

7.2.2 Domain-specific aspects and applicability 158

Contents xiii

A SALT translation schema 183

A.1 Replacement of non-core Salt operators 184
A.1.1 never . 184
A.1.2 releases . 184
A.1.3 nextn . 184
A.1.4 occurring . 185
A.1.5 holding . 185
A.1.6 Regular expressions, part I . 186
A.1.7 Iteration operators . 187

A.2 Translation of core Salt into Rltl 187
A.2.1 until . 187
A.2.2 upto . 187
A.2.3 from . 188
A.2.4 between . 189
A.2.5 Exception operators . 189
A.2.6 Regular expressions, part II 189

A.3 Translation of Rltl into LTL . 190
A.3.1 acc . 190
A.3.2 rej . 191
A.3.3 stopincl . 191
A.3.4 stopexcl . 192

A.4 Optimisation . 192
A.5 Operator replacement . 193
A.6 Translation of timed operators . 193

A.6.1 Timed Salt into timed Rltl 193
A.6.2 Timed Rltl into extended TLTL 194
A.6.3 Extended TLTL into pure TLTL 195

B Runtime reflection on the web: Obtaining the files 197

B.1 Tools and source code . 197
B.2 CASE-tool integration: SALT in AutoFocus2 199

xiv Contents

Chapter 1

Introduction

Because all models are wrong, we reject
the notion that models can be validated in
the dictionary definition sense of
“establishing truthfulness”, instead
focusing on creating models that are
useful, on the process of testing, on the
ongoing comparison of the model against
all data of all types, and on the continual
iteration between experiments with the
virtual world of the model and
experiments in the real world.

(John D. Sterman, Reflections on
becoming a systems scientist)

Software systems are pervasive in all aspects of society. From everyday objects
such as mobile phones, or automatic teller machines (ATMs) at banks to complex con-
trol systems found in modern cars and aircraft, a significant part of our daily life is
mediated by software. For instance, in cars, there are multimedia and navigation sys-
tems as well as vehicle dynamics systems (cruise control, stability control, electronic
brakes, etc.) to make driving easier, and ultimately safer. Also in the manufactur-
ing industry, the automation, mechanisation and computerisation of processes means
that human operators, more than ever, are at the mercy of the computer-controlled
environment.

As the world around us has become increasingly complicated and dependent on
computer-controlled technology, the nature of the failures that occur has also be-
come more complex, and, in some cases, occurrence also more frequent. For instance,
according to the German Automobile Club (ADAC [2005]) the majority of all re-
cently registered automotive faults relate to the malfunction of electric and electronic
systems. For comparison, only 9% of all faults directly involve the engine, whereas
electric and electronic systems account for 36% of all recent faults, however, not
differentiating any further between software and hardware faults.

Increased technological dependence has also led to various severe accidents in the
past, such as plane crashes (cf. Rushby [1993], Neumann [1995], Sarsfield et al. [2000],

1

2 Chapter 1: Introduction

Lebow et al. [2000], Knight [2002], or Greenwell and Knight [2003]), involving many
people and great damage to property and environment. As a result, public awareness
of such accidents has increased. In the aftermath of an accident, the public often
demands to know what happened and detailed analysis reports are created. For in-
stance, Ladkin [1997] notes that aircraft accidents are known to be the most carefully
researched failures in all of engineering. Much of our knowledge about faults that
lead to big accidents stem from such analyses.

However, it must also be pointed out that the increased use of electric and electronic
systems in cars has, despite an often observed high failure rate, also led to increased
road safety. According to the ADAC [2006], every year, there are roughly 20% fewer
fatal road accidents than in the previous years.

In traditional engineering, failure is often correlated with a persistent failure state,
i. e., something physically broke, and what is broken will stay broken (unless someone
repairs or changes a component). With systems designed for complex behaviour this is
no longer so. Such systems may exhibit unwanted behaviour or may fail, even though
nothing is physically broken. A trivial but suitable illustration, originally stressed
by Gerdsmeier et al. [1997], is putting money into a vending machine, obtaining the
desired item, but failing to receive change. Each action is appropriate in and of itself,
but giving no change is not appropriate given the sequence of actions and states
before it.

When the machine is an isolated system, then these deviations can often be auto-
matically detected and eventually traced back, often to their origins in the design of
the system, be it software or hardware. But suppose a system is not isolated, and
communicates with other such systems, as well as human operators, in a changing
environment. It is then much less clear where faults can be detected and traced, not
only to individual systems, to the operator, and to the environment, but also to the
interactions between these components. Failure analysis becomes technically complex
and intellectually difficult.

1.1 Runtime reflection at a glance

The runtime reflection framework as presented in this thesis performs a dynamic
system analysis, i. e., reasons about the overall system status while it executes. As
such, it is able to tell when a failure occurred and also why. This is achieved in the
framework by providing methods for monitoring a system’s behaviour at runtime as
well as for diagnosing the result of this process. In the case where such a result is
sufficiently detailed and unambiguous, it could be used subsequently to issue control
commands back to the system, i. e., to perform a dynamic reconfiguration in order to
reestablish a well-defined system state.

1.1 Runtime reflection at a glance 3

1.1.1 Architectural overview

The framework consists of different “layers”, each serving a different purpose in the
process of runtime reflection. Fig. 1.1 gives an overview of these layers as they are
used for analysing a distributed reactive system at runtime.

Fig. 1.1: Layered view on the runtime reflection framework.

The sole task of the logging layer is to translate native system events, into so-called
actions that can be understood and processed by monitors. Thus, the monitoring
layer consists of one or many monitors observing the stream of actions provided by
the logger. By comparing the received actions with a reference behaviour, formally
specified in terms of an assertion (or sometimes called an invariant), a monitor then
indicates whether the system is currently in a well-defined state with respect to the
assertion, or not. Any behavioural aberration detected by a monitor is then trans-
mitted to the diagnosis layer for inferring the root causes.

Throughout this thesis, various references are made to concrete implementations of
a logging layer. However, since logging as well as reconfiguration constitute highly
domain-specific tasks, this work focusses on developing the monitoring and diagnosis
layers whose formal foundations are specified in a domain-independent manner. In
a setup where reconfiguration mechanisms exist, however, the diagnosis information
can be used to return a system to a well-defined state, such as a fall-back “limp-
home” mode known from other disciplines (cf. Deur et al. [2003]). If reconfiguration
is not possible, the framework could be used for storing detailed log-files that not
only register symptoms but also causes of failure. (For the technical details, see also
§6.)

1.1.2 Practical view on runtime reflection

The runtime reflection framework depends on various different types of inputs. For
instance, at runtime, the system’s observable events pose the minimal prerequisite

4 Chapter 1: Introduction

for the framework to function; that is, via the logging layer, one or many monitors
continuously analyse the stream of system actions and determine whether or not
the observations satisfy a set of predefined properties usually specified in terms of a
temporal logic formula (see Fig. 1.2). Hence, in the systems development stage, the
required inputs for the framework to be used are the requirements from which the
monitors can be generated from.

Of particular interest are the so-called functional requirements which specify more
or less exactly how a system should operate or behave. In practice, functional re-
quirements are often supplemented by nonfunctional requirements which impose ad-
ditional, but difficult to explicitly quantify or formalise constraints on a desired be-
haviour. For instance, “the system needs to execute as fast as possible” would be
normally considered a non-functional requirement, whereas “a task should be exe-
cuted every 5ms” would impose a functional requirement on a system (cf. Maciaszek
[2001]).

Fig. 1.2: Overview runtime verification.

Runtime reflection as presented in this thesis does not make it necessary for the
developer to manually encode the monitors. However, the formal specification from
which a monitor can be automatically generated from has to be derived from a set
of (possibly informal) system requirements which describe a desired behaviour of the
system. There exists no constraint on the types of properties that can be monitored as
long as they are formally expressible in the temporal logics presented in this thesis (see
§3.3 and §4). In other words, every requirement which can be written down precisely
in terms of a temporal logic formula is suitable for the automatic monitor generation
and subsequent system analysis as it is described in §4. How to actually obtain, in a
stepwise process, a formal specification from an initial set of informal requirements,

1.2 Detailed problem statement 5

although practically challenging (see, e. g., Broy et al. [1993], Broy [1997], Maciaszek
[2001] or Schätz et al. [2005]), is not the subject of this thesis. However, this process
is technically supported in terms of a structured assertion language, Salt, which acts
as a front-end to the framework and offers, as this thesis argues, convenient means
for the formal capturing of functional or temporal requirements (see §3.3).

In the event of one or more monitors detecting violations of a property, the runtime
reflection framework performs a system’s diagnosis. In a nutshell, the diagnostic task
consists of a comparison of the monitors’ (negative) results with a reference system
model where all monitors report a non-erroneous state. Basically, this reference model
captures the overall causality of the system under scrutiny in terms of a dependence
graph consisting of signals and communication paths between subcomponents of a
system and its accompanying monitors (see §5). Since such dependencies are either
implicitly defined by the actual code of a system, or explicitly captured in an abstract
system model or a communication matrix (cf. Heinecke [2005], Köhl et al. [2005]), the
required information for diagnosis can in many cases be extracted automatically with
little or no human interaction. Examples for such automatic extractions include mod-
els of (embedded) control systems , which are often created using dedicated, graphical
CASE-tools such as MATLAB/Simulink (Mathworks [2000]), for instance. For this
particular tool set, Bauer et al. [2007] describe an approach to automatically extract
abstract system models that are useful for diagnosis and formal analysis using the
tools described in greater detail in §6. However, depending on the application and
the types of systems to be analysed at runtime, the methods of model extraction may
practically vary.

1.2 Detailed problem statement

From an academic point of view, there exist many methods that aid the construction
of correct systems. For instance, the use of so-called formal methods aims primarily
at cutting down on system errors (cf. Clarke et al. [1996]). Formal methods used in
software engineering commonly include the precise, in a mathematical sense, spec-
ification of systems or properties, specification analysis and proof, transformational
development, and various verification tasks, many of which are tool-supported (cf.
Broy [1999]). Yet, the development of complex distributed reactive systems remains
a potentially error-prone activity, since the use of formal methods cannot, in general,
guarantee the non-occurrence of failures at runtime.

1.2.1 System failures and their inevitability

Formal verification is used to determine whether a system satisfies a specification.
Ideally, this happens statically and automatically, without executing the system un-
der scrutiny, such as it happens when checking program data types, for instance.

6 Chapter 1: Introduction

However, it is well-known that program and systems verification in general is an un-
decidable problem (Turing [1936]), and human interaction necessary to guide this
process (unless specific abstractions are made, such as focusing merely on the type-
correctness issue). Hence, for many real-world systems, we cannot eliminate all errors
prior to deployment and real-world employment.

However, failures at runtime, especially in distributed reactive systems can happen for
many different reasons and may not be addressed by static verification methods at all;
for example, unforeseen side effects of an operation, or assumptions made about the
operational environment of a system prove inadequate in the real-world or for real-
world employment. System models, whether they are formal, semi-formal, or informal
ones, used in the design and development stages of systems only reflect certain aspects
that were anticipated and thus, specified, e. g., by a carefully undertaken requirements
engineering process, forming the borderline between an informal system description
and formal system development with specification and subsequent verification (cf.
Broy et al. [1993]).

However, all system models reflecting design artifacts about systems and their en-
vironment are, up to an extent, incomplete by definition, since modelling always
involves abstraction from certain aspects and truths. Thus, systematic modelling
(and subsequent verification) helps to cut down on errors, but not at establishing
system correctness as truthfulness in a dictionary-sense of the word. Sterman [2002]
mused about this in his by-now frequently cited Jay Wright Forrester Prize Lecture.
Therein, he emphasised that all models are wrong in a sense that they are incom-
plete with respect to the real-world and real-world influences. A similar observation
was also made in an earlier study based on empirical investigation, and restated only
recently by Lehman [2005], who identified underlying assumptions in system mod-
els as the driving force behind the evolution of systems, in that models have to be
continuously revised and refined to better match reality (see also Lehman and Parr
[1976]).

In embedded systems, which engage the physical environment, interacting directly
and continuously with sensors and actuators, failures can be particularly subtle and
highly dependent on the exact environmental conditions they occur in. Hence, they
are difficult to anticipate and almost irreproducible under controlled conditions. As
system interactions and dependencies even in small embedded systems increase, it
becomes a costly and non-trivial challenge for manufacturers trying to analyse failure
situations in detail, let alone doing so at runtime when the failure situation occurs.

Consistency and adequacy of (verification) models. Moreover, specifications
can also be inconsistent in and of themselves, or may not reflect the intention of the
person who created a specification or a model. However, system failures caused by
that are not a direct result of the complex influences, say, the environment has on the
later system, but rather of the inability to reflect such influences in an appropriate
or unambiguous manner. It could also be argued that widely used modelling and

1.2 Detailed problem statement 7

specification languages such as the Unified Modelling Language (UML, Booch et al.
[1998]) contribute to this problem by offering users on the one hand side a very high
level of abstraction, but on the other no detailed and rigorous semantics (cf. France
et al. [1998] and Amálio and Polack [2003]).1

1.2.2 To know when a failure occurred

In order to be able to react to unforeseen events or even failures that occur during a
system’s operation, it is essential that such events and failures are detectable in the
first place.

The monitoring layer of the runtime reflection framework arranges for this detection,
in that it continuously reasons about a system’s behaviour at runtime based on ob-
serving the validity of a formal specification of desired system properties over time.
This process is also known from the emerging scientific area of runtime verification
(see §4).

For reasons outlined above, the formal specifications used in runtime verification are
meant to complement existing behavioural specifications which are primarily used to
build systems, but not necessarily to monitor them. As also outlined in the previous
section, a main reason why runtime verification came into being is because the state-
space of the systems under scrutiny is potentially infinitely large, and can often not
be captured prior in a comprehensive system model for verification. For instance,
the physical environment of systems can often only be approximated by complex,
continuous differential equations (cf. Edwards et al. [1997]). In other situations,
explicit system models are not even available, such as is the case when reasoning
about black or grey-box systems (cf. Büchi and Weck [1999]).

What makes failure detection additionally difficult in practice is, aside from the in-
herent complexity of interconnected systems interacting continuously with and at the
pace of their environment, that failures may not always be determined by just one
specific deviation or event. As the simple example of the vending machine demon-
strates, observed behavioural sequences are often considered correct under normal
circumstances, but may lead to undesired effects in another, and probably less fre-
quently encountered scenario.

Naturally, other, but not less frequently experienced reasons for failures in software
systems include the actual breakage of underlying computer hardware, or other phys-
ical components the software depends upon, which typically results in unpredictable
behavioural system aberrations and thus, unwanted overall system behaviour.

From a practical point of view, failure detection by means of runtime verification
can be considered as a supplementation to other dynamic validation and verification

1Although it could also be argued that this is an important reason for UML’s evident success,
since its users are able to create models without having to think through all of its details, or
having to worry about a rigorous semantics. However, for the sake of argument, this line of
thought is not developed further at this point.

8 Chapter 1: Introduction

methods such as model-based testing (cf. Broy et al. [2005]), in that dedicated monitor
components are executed in parallel with the system under scrutiny. Their task is to
notice any aberrations of a predefined behaviour or invariant, such that an alarm or
notification can be issued. As such, monitors detect symptoms of faults.

Reasoning with truncated paths

Most runtime verification approaches known from the literature are based on ideas
derived from or used similarly in the area of model checking (cf. Clarke et al. [1999])
but adapted for use at runtime and for application over finite sequences of observed
system behaviours. The monitors used in runtime verification base their verdict upon
a behavioural sequence of actions, which is at most finite, i. e., from the initialisation
phase of a system to the current instant of time. As such, the known runtime verifica-
tion approaches (for a detailed overview see §4) also have various limitations, namely
that the semantics of temporal logic which is used for specifying system properties
and invariants is defined over infinite sequences of actions, whereas at runtime only
finite prefixes of such infinite behaviours are available.

Detection of minimal bad prefixes

Additionally, the verdict of most monitoring procedures (as is the case with the
commonly used “watchdogs” used in traditional engineering disciplines) is usually
focused on the current instant of time, in that no failures are reported unless an ex-
plicitly marked erroneous state in the monitor is reached. However, when observing
a sequence of system events, there may be situations where the verdict could be pre-
dictive; that is, the monitors could raise an alarm based on the observations so far,
and even before an inevitable failure has actually happened. Current runtime verifi-
cation approaches address this issue, only unsatisfactorily, if at all, in that additional
means for trace evaluation are created, or in that they work only for a limited class
of properties and systems, such as quasi-synchronous systems (see §4.5 for a more
precise definition of this term).

Addressing real-time systems and requirements

However, execution of many critical systems does not adhere to an ideally synchronous
model, but is spontaneous and event-triggered. For instance, embedded real-time sys-
tems impose strict deadlines on execution and communication time. Reasoning about
such systems at runtime involves dealing with a different paradigm and, ultimately,
different algorithms, models, and verification techniques when compared to common
runtime verification techniques based on, e. g., linear time temporal logic (Pnueli
[1977]), where real-time is not directly reflected.

1.2 Detailed problem statement 9

1.2.3 To know why a failure occurred

When a failure or general behavioural aberration is detected in a distributed reactive
system, a central question is whether or not a monitor noticed the symptom of a
fault, or points to the actual part or component which is directly responsible for the
observed deviation. Current approaches to runtime verification do not answer this
question, focusing on the detection of “bugs”, rather than the steps which could and
should follow afterwards, such as checking the plausibility of a verdict.

The runtime reflection framework caters for this differentiation in terms of its diagno-
sis layer. The diagnosis layer provides an efficient realisation of model-based diagnosis
(see §5), originally referred to as consistency-based diagnosis due to its formal foun-
dations in consistency checking of first-order logic theories. It provides deductive
methods to differentiate between the symptoms of a fault in a distributed system and
the root causes.

Basically, model-based diagnosis provides methods to reason about a distributed, or
rather a component-based system using a structural and also behavioural system
model as well as a finite set of observations for the system. The method aims at
isolating (all) possible causes for an observed failure, i. e., so-called diagnoses, that
explain the root causes of failure. A diagnosis is then defined with respect to a set of
faulty system components.

Since the term model-based diagnosis was first coined by Reiter [1987], much diagnosis-
related research has been undertaken in many different disciplines. Consequently the
term does not necessarily relate back to first-order consistency-based diagnosis any-
more, but nowadays also to the use of neural networks, and fuzzy or probabilistic
models, such as realised by Bayesian networks, to name just a few common exam-
ples2.

Computational complexity of model-based diagnosis

Diagnostic problem solving is formalised as a method for finding the source of incon-
sistency in the logical (first-order) description of the normal functioning of a system
when supplied with observed findings, where some of the findings are a direct conse-
quence of a system defect or failure in reality. For a system consisting of n diagnosable
components, there exist (at least) 2n possible diagnoses, describing the current sys-
tem state with respect to the number and distribution of faults in the system. Some
approaches to diagnosis additionally cater for the fact that, in reality, not everything
relevant about a system may always be observable; that is, so-called unknowns are
taken into account. Basically, an unknown corresponds in the logical underpinning
of model-based diagnosis to a variable whose value cannot be truthfully determined.

2From this point onward, the terms model-based and consistency-based diagnosis are used inter-
changeably, referring to logic-based methods for solving the diagnosis problem.

10 Chapter 1: Introduction

Moreover, the introduction of unknowns results in an additional “blowup” of the con-
flict search space; thus, making the proposed methods often unwieldy in practice, and
inconclusive as a result, e. g., given m unknowns and n components, 2(n+m) different
possibilities have to be considered.

Application to dynamic systems

Although model-based diagnosis has been successfully applied even in mission-critical
and industrial environments, its prime application remains the analysis of static sys-
tems, such as hardware systems (cf. Mikaelian et al. [2005]). There are mainly two
reasons for this: 1. reasoning based on the underlying diagnosis models in first-order
logic must either be guided by humans (i. e., interactive theorem proving), or, if au-
tomated, can be a computationally complex and possibly non-terminating task; 2.
the logical models used in model-based diagnosis are not suited for adequately ex-
pressing real-time requirements and entire behavioural sequences which are needed
for reasoning about many present-day reactive systems3. Moreover, continuous di-
agnostic reasoning about a system that may in fact never show a failure is also a
computationally expensive undertaking, in particular, in strictly resource-bounded
environments.

1.3 Contributions of this thesis

This section highlights specific contributions of this thesis divided into contributions
to the area of runtime verification, model-based diagnosis, and property specification
using temporal logic. Moreover, the feasibility as well as limitations of the runtime
reflection approach to systems analysis are briefly discussed.

Contributions to runtime verification

The approach to runtime verification developed in this thesis covers both untimed
and real-time systems. It is based upon a 3-valued interpretation of finite behavioural
traces resembling a system’s observable actions over time. The 3-valued interpretation
remedies the problems that currently exist in the dynamic interpretation of temporal
specifications over finite traces: at the end of a trace, i. e., on the last observation, it is
not possible to determine future obligations in an unambiguous way to (1) satisfy the
standard semantics of temporal logic as well as take into account (2) the unpredictable
future behaviour of the system. This problem is solved by introducing, besides true
and false, a third truth value, namely inconclusive, to denote that a specification

3At this stage, the possibility of expressing certain temporal logic formulae using first-order logic
over words as suggested first by Kamp [1968] is deliberately disregarded. It is considered as a
possibility of merely theoretical value.

1.3 Contributions of this thesis 11

could not (yet) be verified or respectively falsified with respect to a prefix of a possibly
infinite behavioural extension.

Furthermore, an efficient method is developed that, given a specified property in
LTL, constructs a monitor component which observes a system, and whose output
corresponds to the three truth values with respect to the finite behaviour observed
so far.

This construction allows detection of all minimal bad prefixes that predict an even-
tual but unavoidable violation of a system property as early as possible. Note that
predictive analyses also play an increasingly important rôle in industry, e. g., in the
automotive sector, where the aim is to predict critical failures before their occurrence.
In the automotive sector, this is commonly referred to as “preventive diagnosis” (cf.
Varchmin [2005]).

The overall approach to monitoring is first developed in the untimed setting using
standard LTL as a formalism, and then “lifted” to the timed setting, where a linear
real-time logic—TLTL, short for timed LTL—is used. In the untimed setting, a
translation into executable, extended Moore machines is given, whereas in the timed
setting, this thesis develops a monitor generation algorithm based on the notion of
event-clock automata which have been introduced formally by Alur et al. [1999]. The
real-time case constitutes a change of paradigm, in that the monitors are no longer
observing merely quasi-synchronous system actions in a stepwise manner, but rather
patterns of real-time events; that is, each observed action is associated with a time-
stamp t ∈ R

≥0 denoting when exactly the event was observed, or has occurred. As
a consequence, the established verification methods from LTL, e. g., generation of
Büchi automata (Büchi [1962]) for LTL properties, do not transfer to this setting in a
straightforward manner, and need to be changed substantially when considering the
real-time case in a dense-time domain.

Contributions to model-based diagnosis

As noted by Mikaelian et al. [2005], model-based diagnosis has been applied, fore-
most, to the analysis of hardware or mechanical systems. Software systems exposing
complex behavioural patterns, exchanging and accessing information concurrently,
and operating in resource-bounded environments, such as embedded systems, have
not been the focus of this method. Complexity and undecidability issues in first-
order reasoning impose strict constraints on what can be achieved by model-based
diagnosis, whose system models are general first-order sentences.

This thesis circumvents some of these limitations by reducing the original diagnosis
problem to propositional logic, based on the verdicts of the monitors as observations.
As such, runtime reflection does pay respect to dynamic behavioural patterns, and
allows for the localisation of faults when aberrations are detected. The determination
of diagnoses is then mapped to a problem whose technical solution has experienced
dramatic improvements over the past few years, namely k-satisfiability, in short k-

12 Chapter 1: Introduction

SAT, using state-of-the-art SAT-solvers. Due to Cook [1971], the general or k-SAT-
problem was the first known NP-complete problem, for which very efficient solving
algorithms now exist (cf. Davis and Putnam [1960], Davis et al. [1962] as well as
Zhang [1997], Moskewicz et al. [2001]).

Modern SAT-solvers, such as the one developed in this thesis, often solve even difficult
instances of a SAT-problem, involving many thousands of variables, within seconds.
The mapping of the diagnostic problem to Boolean satisfiability is thus shown to be
an efficient means for the implementation of an engine for model-based diagnosis.

Example (Moore vs. SAT). The feasibility of this particular approach can be il-
lustrated using Fig. 1.3, which shows (a) the advances achieved in SAT-solving in
recent years, compared to (b) the advances in processor speed. Moore’s Law (Moore
[1965]) adds roughly a factor 100 to the clock speed since 1990, while SAT-solving
experienced factor of roughly 1030. The left curve, which depicts the problem size
in terms of the number of Boolean variables, is similar to the right one depicting
Moore’s Law with respect to clock speed in MHz. However, the increase on the left
is, effectively, far greater than on the right, since not only the number of variables
grows exponentially, but also the overall search space of the satisfiability problem
spanned by the total number of variables.

1960 1986 1992 1996 2001

10

100

1000

10000

(a) Advances in SAT-solvers.

200019951990198519801975
0.1

1

10

100

1000

10000

(b) Advances in processors.

Fig. 1.3: Technology advances. (Sources: http://www.satcompetition.org/ and
http://www.intel.com/)

The variables in the propositional diagnosis model correspond to (1) the respective
components of a system that may fail (whether these are hardware or software compo-
nents), (2) their causal relationships, and (3) to the verdict of the attached monitors
or, if not available, unknowns. From a practical point of view, this resembles an
abstract failure model, which constitutes the foundation for inferring the concrete
diagnoses. Hence, in the context of the runtime reflection framework a custom, opti-
mised Boolean solver is developed, Lsat, which is tailored for model-based diagnosis.

http://www.satcompetition.org/
http://www.intel.com/

1.3 Contributions of this thesis 13

In diagnosis, however, one is not only interested as to whether a given problem has a
solution, i. e., the SAT-problem, but also in the overall number and types of assign-
ments, i. e., all the diagnoses, and, more importantly, the minimal sets of these.

Instead of determining the minimal sets of all possible (and possibly irrelevant) diag-
noses, only those diagnoses are computed in the chosen approach, which contain at
most n faulty components, where n ∈ N is a value that can be arbitrarily fixed by the
user of the system. This is referred to as the n-fault assumption, which constitutes
an effective pruning criterion of the unfolded problem search space representing all
the supersets of possible diagnoses. Setting n = ∞, the problem corresponds to the
at least equally complex #SAT problem which is in the complexity class #P (cf. Pa-
padimitriou [1994]). Lsat addresses this problem with only linear space requirements
in its algorithm, and a custom data structure to facilitate a deterministic computation
of the #SAT and the diagnosis problem using the n-fault assumption.

Facilitating property specification with temporal logic

Salt, the structured assertion language for temporal logic, acts as a high-level and
intuitive-to-use interface to the runtime reflection framework (see §3.3). It allows the
specification of custom, temporal system properties in a programming-language-like
manner while still being fully translatable into timed temporal logic (TLTL), and
untimed temporal logic (LTL). Which of the targets is used, is determined solely by
the operators occurring in a Salt specification.

Salt offers many constructs not present in either temporal logic formalism, such
as scope operators, exceptions, macro definitions, or a subset of regular expressions.
While the dynamic analysis techniques described above aim at cutting down runtime
failures, Salt intends to reduce specification errors by providing intuitive, human-
readable, and abstract means for systems specification.

This thesis describes the language features, its expressiveness, the translation into
temporal logics with rigorous semantics, as well as results from an optimising Salt

compiler that accepts a Salt specification and produces TLTL or LTL specifications.
The latter can also be used for formal verification frameworks other than runtime
reflection, such as model checkers, for instance. The experimental results from the
compiler presented in this thesis, suggest that the translation of a Salt specification
to temporal logic adds little or no redundancy to the specification, when compared
to a manually constructed formula expressing the same property. In many cases, the
Salt specification even results in more compact formulae (see §6).

Feasibility and limitations

A schematic functional setup of the overall runtime reflection framework is provided
in Fig. 1.4. The four system components monitored, C1, . . . , C4, are represented in
squares, whereas the monitors, M1, . . . ,M4, depicted as hexagons, each give feedback

14 Chapter 1: Introduction

to the centralised model-based diagnosis engine, when a failure occurs. Each monitor
verifies specific properties regarding the input and output channels, denoted i and o,
of adjacent components. The diagnosis engine then infers whether an alarm raised by
a monitor Mi corresponds to a faulty component Ci, or whether the fault is located in
a remote component Cj 6=i (whose accompanying monitor, if present, may have missed
an aberration).

i22

i21

i12

i11

C3

C4

i42

i41

i32

i31

o2

o1

o3

o4

M3

Diagnosis

C1

C2

M2 M4

M1

Fig. 1.4: Functional view on the runtime reflection framework.

Failures detectable by the runtime reflection framework, are generally those which
can be noticed by the monitors; that is, local behavioural aberrations of components
that result in a violation of a specified property or system invariant. For example,
if aub and afb are two behaviours, where f represents a faulty and u the desired
behaviour of a component, a directly adjacent monitor cannot differentiate the two,
if u (respectively, f) is an internal event not communicated to another component, or
directly to the monitor. However, given the detection of an aberration or a symptom,
more complex types of failure are diagnosable, e. g., distributed or causal failures
which may be due to single aberrations that have gone unnoticed by directly adjacent
monitors. For example, if the corresponding monitor in the present example misses
the faulty behaviour f , subsequent failures which are caused by f may be noticed
by other, remote monitors in (physically) different parts of the system, and will thus
lead to a diagnosis that locates the actual fault in the system.

As such, the proposed approach covers a wide range of failures that may occur in
distributed reactive systems, but it does not cater for the analysis of the underlying
program logic that may have lead to a failure within components, e. g., division by

1.4 Results of this thesis 15

zero, stack overflow, null-pointer dereference, etc. Moreover, it cannot differentiate
whether a failure is due to environmental influences or whether it relates to, say, early
design errors. However, a more detailed discussion regarding the nature and types of
failures in distributed reactive systems is given in §2.

Also, with application domains for distributed reactive systems on the rise, such as
avionics or automotive, the issue of analysing such systems at runtime will become
or already is an important factor not only for safety reasons, but also as a distin-
guishing and marketable feature between different manufacturers of systems. In the
aforementioned domains, however, already a large number of systems are supplied by
third-party companies who do not necessarily provide documentation on a system’s
internals or the source code; that is, manufacturers already integrate a big proportion
of black and grey-box systems into their products. Hence, dynamic systems analysis
not only needs to provide methods for detection and diagnosis of failures, but also
a means for reflecting the needs of analysing black and grey-box systems, without
actively influencing their actual behaviour. Thus, the proposed runtime reflection
approach caters for transparent integration of monitors that do not necessarily need
insight into the systems under scrutiny, as long as system events are technically ob-
servable, e. g., by means of a (standardised) middleware (cf. Heinecke et al. [2004]),
or other low level logging facilities (cf. Gunter et al. [2002]).

1.4 Results of this thesis

Due to the results of this thesis, many of the problems sketched in §1.2 can be
circumvented. In summary, those particular results as developed in this thesis are,
(almost) in chronological order:

• A formal foundation for the analysis of distributed reactive (and real-time)
systems at runtime.

• A methodological differentiation between the detection and diagnosis of failures.

• A high-level, intuitive-to-use specification language for temporal logic that fa-
cilitates the expression of untimed and timed system properties in a domain-
independent manner.

• A 3-valued semantics for untimed and timed temporal logic (called LTL3 and
TLTL3, respectively) for dynamically reasoning about systems using finite be-
havioural traces.

• Two constructions of optimal-size monitor components from a given formula
ϕ, which can either be in LTL3 or TLTL3, and which allows the detection of
minimal bad prefixes that violate ϕ.

• An efficient diagnosis engine based on propositional logic for the localisation of
faults from the observation of symptoms (that are given by the monitors).

• An efficient solution to the #SAT problem whose deterministic realisation is

16 Chapter 1: Introduction

shown to correspond to the model-based diagnosis problem in the propositional
domain.

• Comprehensive (and freely available) tool-support of the runtime reflection
framework, in terms of an optimising compiler for Salt, a code generator for
monitors, an efficient diagnosis engine, and several use-cases demonstrating the
capabilities and use of the tool-chain.

1.5 A brief guided tour through this thesis

This section provides a brief summary of the subsequent chapters of this thesis.

Chapter 2—Failures and faults in distributed reactive systems. This chap-
ter outlines the background of this thesis in more detail. It introduces the notion of
distributed reactive and real-time systems, and sketches problems in their design and
development as well as operation. Also, some basic terminology regarding common
terms such as failure, fault, error, and symptom is given, and described how these
concepts relate to one another, and are used throughout this thesis.

Chapter 3—Formal systems specification and verification with temporal
logic. In this chapter, first, some of the theoretical foundations for runtime veri-
fication are discussed; that is, it details on the syntax and semantics of LTL, the
classification of properties into safety and liveness, and different types of automata as
means of verifying system models with respect to temporal properties. Then, some of
these concepts are extended, in that the custom specification and assertion language
for temporal logic, Salt, is presented whose core semantics corresponds exactly to
LTL, and in the timed setting, to TLTL.

Chapter 4—Failure detection through runtime verification. In this chapter,
an approach for runtime verification of reactive and real-time systems is developed.
After examining some existing approaches, LTL3 is introduced, a 3-valued seman-
tics for LTL, and a dynamic automata-based decision procedure is given. Then the
approach is discussed in the timed setting, in that TLTL3 is introduced, a 3-valued
variant of TLTL. Afterwards, a decision procedure for TLTL3 is presented, which is
based on symbolic runs over event-clock automata.

Chapter 5—Fault detection using model-based diagnosis. Chapter 5 de-
scribes how, given an observed symptom for failure, to differentiate the symptom
from an actual cause of failure, i. e., from actual system faults. First, the formal
foundations of the diagnosis problem are introduced and then an efficient solution for
consistency-based diagnosis developed. The approach is tailored for runtime analysis

1.5 A brief guided tour through this thesis 17

of distributed component-based systems, and is based upon a mapping of diagnosis
to a deterministic implementation of a solution to the #SAT problem.

Chapter 6—Implementation, tool-support, and comparative results. This
chapter presents tool-support, and summarises some experimental results of the tech-
niques used in the runtime reflection framework. In particular the technical reali-
sations, employed data structures, and algorithms are reviewed, and some objective
benchmarks for comparison given where feasible. Further, some example use-cases are
sketched and a comprehensive runtime verification case-study for C++ applications
discussed.

Chapter 7—Conclusions. Conclusions of this work as well as potential for further
research are provided in the final chapter of this thesis.

Appendix A—SALT translation schema. In Appendix A, a detailed transla-
tion scheme for Salt is given. It thereby reflects the formal semantics of the language
in terms of a translation to LTL as well as TLTL.

Appendix B—Runtime reflection on the web: obtaining the files. In Ap-
pendix B, some pointers are given where the runtime reflection framework as pre-
sented in this thesis can be obtained from. The tools realising the runtime reflection
framework as well as the Salt compiler are open source software.

Some important keywords of this thesis are collected in the Index starting on p. 207.

18 Chapter 1: Introduction

Chapter 2

Failures and faults in distributed

reactive systems

Much software culture today is based on
the notion of trying to achieve perfect
software, which of course is an in-your-face
manifestation of designer centered design.

(P. Koopman and R. Hoffman,
IEEE Intelligent Systems, 2003)

The aim of this chapter is to give a brief outline of the background and some of
the terminology used in this thesis. It gives detail on the systems this thesis is focused
on, and an overview of the methods used to correctly specify and develop them, and
explains why they are necessary but often insufficient to avoid system failures, and
in some rare events even disasters.

Section §2.1 introduces the notion of a distributed reactive and real-time system, and
explains the necessity for the use of formal methods in their development process as
well as subsequent operation (see §2.2). In §2.3.1, the different problems which can
occur during the execution of distributed and reactive systems are classified, and a
practical common denominator identified, namely the notion of a symptom, which
underlies the used concept of system correctness at runtime.

Unfortunately, over more than two decades, the different research communities (reli-
ability, safety, security, etc.) have given different definitions of common terms such
as failure, fault, or error, somewhat complicating proper classification. However, in
this thesis, the commonly accepted definitions of the community of so-called depend-
able systems are used. A large part of this terminology was introduced by very early
works of Avižienis [1967], Carter [1979] or Laprie [1992] to name just a few of the
most influential authors, and acts as a reference for many disciplines even today (cf.
Lee and Anderson [1990], Avižienis et al. [2001], and Breitling [2001]).

The author’s intention is not to give a comprehensive list of all the terms which are
commonly associated with the concept of dependability, fault tolerance, or safety.
This is done more thoroughly and in various “handbooks”, or practical guides for

19

20 Chapter 2: Failures and faults in distributed reactive systems

dependability and reliability engineering, such as those by Musa et al. [1987], Ebel-
ing [1997], and Pham [2003], for instance. This chapter focuses on those concepts
mandatory for an understanding of the remainder of this thesis.

2.1 Distributed reactive and real-time systems

A real-time system is one in which the temporal aspects of its behaviour are part of
its specification. Therefore, the correctness of a real-time system not only depends
on its generated output, but also on the time at which it becomes available. Many
contemporary computer systems qualify as being real-time sensitive, ranging from
complex business information systems to telecommunication routers, and even highly
specialised controllers to be found in modern vehicles such as cars, passenger aircraft,
or space shuttles. The degree of sensitivity or responsiveness determines whether the
system operates under hard or soft real-time constraints. The constraint for hard
real-time systems is that no deadlines must be missed during execution, whereas for
soft real-time it is acceptable to miss some deadlines, occasionally. Although there
exists no universally precise definition of “occasionally”, it should be obvious that the
timing requirements of, say, a business information system are inherently different to
those of an airbag control system.

A common characteristic of real-time systems, however, is that they may, and increas-
ingly do, consist of many components operating in parallel; they are then known as
concurrent (real-time) systems. As many real-time systems must react to every stim-
ulus from the environment, they are then often also referred to as reactive systems
(Pnueli [1986]); a characterisation which incidentally accounts for real-time sensitive
business information systems, and not only controller devices.

In the past, reactive systems were mostly centralised systems (or single-processor
systems) consisting of a single CPU, its memory, peripherals, terminals or other
physical inputs such as sensor devices. However, the development of increasingly
compact and powerful microprocessors, as well as advances in network technology,
have led to a more decentralised architecture of many such systems, now consisting of
a collection of independent computers or CPUs, each connected by a shared network.
Such systems are called distributed systems and are conceived by the user as being
one single system. For example, an anti-lock brake system (ABS) is a physically
distributed real-time system that the driver perceives as a single functionality in
the car. In reality, several CPUs, sensors, and actuators are involved in order to
activate the system in a timely precise manner. The overall correctness of the ABS
therefore depends on the correctness of every subsystem. However, the ability to show
correctness of a distributed real-time system is usually indirectly proportional to the
number of subsystems, interactions, and general dependencies, physical or logical.

As noted by Harel and Pnueli [1985], a reactive system “resembles a cactus rather
than a box”, containing multiple inputs, outputs and various relations between them

2.2 The quest for correctness 21

Fig. 2.1: Reactive systems resemble a cactus rather than a box. Various dependen-
cies exist between various inputs and outputs. (Source: Möller [2002]).

(see Fig. 2.1). Capturing the entire state space of such systems is, therefore, gen-
erally infeasible. That is why they must be specified and verified in terms of their
behaviours. A fact which has to be taken into account not only during specification
and development, but as this thesis argues, also and especially at runtime.

A recent and rapidly evolving development complicates reasoning over distributed
reactive systems even further: distributed reactive and real-time systems are in-
creasingly embedded ; that is, they are integrated into physical devices other than
computers, such as cars, aircraft, mobile phones, or even washing machines, which
impose more or less strict deadlines on the controlling software, and are often part of
safety-critical applications.

2.2 The quest for correctness

It is a primary goal of software and systems engineering to develop systems which are
correct with respect to a precise specification describing the systems to be constructed
in an unambiguous manner. Therefore, formal methods such as static verification by
means of model checking (cf. Clarke et al. [1999]), or deductive reasoning by means of
theorem proving (cf. Gabbay et al. [1994]) get employed in the design and development
process, if at all, in order to prove that a system satisfies a set of predetermined and
desired properties. In contrast to a dynamic verification method, static verification
subsumes all methods which can be applied without actually executing the system
for analysis.1

The term formal method refers to mathematically rigorous techniques and tools for
the specification, design and verification of software and hardware systems. Gen-

1The term “static verification” must not be confused with a reference to the area of static analysis

(cf. Ball and Rajamani [2002]). Here and in the remainder, the term “static” is used in combina-
tion with those tasks of analysis that can be performed without having to actually execute the
system under scrutiny.

22 Chapter 2: Failures and faults in distributed reactive systems

erally, specifications used in formal methods are defined by well-formed statements
in a mathematical logic and the formal verifications are rigorous deductions in that
formalism, i. e., each step follows from an inference rule and can thus be checked by a
mechanical process (cf. Broy [1999]). Naturally, many such techniques are nowadays
tool-supported and even fully automated, e. g., model checking finite state spaces.

Common examples of formal methods often target the early design stages of the
system development process, such as checking of design documents and models, or
facilitating their creation in the first place. Other techniques, like model-based testing
(cf. Broy et al. [2005]) aim at later stages in the process, where prototypes exist and
systems have been fully developed. In essence, model-based testing not only covers
the actual test process of a system, but also caters for the generation of a test suite
from abstract system models and use-cases.

System testing can mitigate some well-known limitations of the aforementioned tech-
niques: for example, automated model checking works only over finite state systems
which are, if necessary, obtained from adequate abstractions, but may nonetheless
lead to exponentially large state spaces which even modern computers are incapable
of processing (cf. Clarke et al. [1999]). Further, a common problem in using theorem
provers, for instance, aside from finding proofs that actually do verify a system prop-
erty, is the even more time consuming task of analysing proofs that have failed (cf.
Pike et al. [2004]).

Usually, system testing is the last step before finalising a system, or shipping a prod-
uct, although newer methodologies, such as agile methods, emphasise testing also for
the early stages (cf. Beck and Fowler [2000], Beck [2002]). It has long been recog-
nised in software systems development that testing costs range from 50% to 70% of
the cost of producing the first working version of a system (cf. Boehm [1981], Jones
[1998], Dustin et al. [1999]). As illustrated in Fig. 2.2, in the widespread V-model
each development step is associated with a test or validation effort at the same level of
abstraction; thus, putting strong emphasis on this activity (cf. Dröschel and Wiemers
[2000], or for recent updates Broy and Rausch [2005]).

However, model-based testing is by far not the only test method used in practice.
For instance, Pretschner [2003] assigns all those activities, which aid in showing ac-
cordance or aberration of a system’s implementation with its actual and intended
behaviour to the wide area of testing.2

Obviously, testing is a useful and mandatory step in the development of complex
distributed reactive systems, but there are various issues to keep in mind. Foremost,
faults in the implementation are usually the most costly ones for removal: as a rule of
thumb, one can say the later a fault is discovered in the process, the more expensive
it is to resolve, e. g., prototypes may need to be changed, test cases may need to be
redeveloped, re-executed, and reassessed, and so on (cf. Boehm and Papaccio [1988],

2Depending on the research community one looks at, the term testing sometimes refers to a
dynamic, and sometimes to a static method, e. g., when applied to early requirements or design
documents in terms of so-called “walkthroughs”, or reviews.

2.2 The quest for correctness 23

Fig. 2.2: The V-model for software and systems development.

Jones [1998], Dustin et al. [1999]). However, an even more fundamental problem with
testing as a validation activity, has already been acknowledged in an early contribution
by Dijkstra (see Dahl et al. [1972]) who pointed out that testing merely allows us to
detect the presence of a fault, but not its absence.

The feasibility as well as the limitations of the aforementioned (formal) methods can
be illustrated by a simplified, but nonetheless realistic example. Suppose a custom
communication protocol has to be designed and implemented. At some stage in
the design and development process, the designer may then want to use a model
checking tool in order to show the protocol’s correctness with respect to a formal
specification; this is standard today (cf. Holzmann [1991]). However, a satisfactory
result does not necessarily lead to a correct implementation (let alone using the model
checker to verify the suitability of the protocol’s properties for real-world use, in which
inherent design assumptions may be violated and thus lead to unintended behaviour).
However, the confidence in the correctness of the system can be increased further,
by performing tests on the actual system which implements the protocol. But here
Dijkstra reminds: testing efforts alone, regardless of how elaborate, cannot guarantee
that the system will actually operate as is intended under all possible conditions.
These efforts merely show conformance to preselected test cases, but not anything
more.

In many scenarios it is therefore desirable, and in the case of so-called safety-critical
systems often even mandatory, to arrange for additional, dynamic verification and
analysis methods, performed transparently at runtime, which help detection and re-
sponse to unforeseen and therefore highly situation-dependent faults occurring in
relation only to very specific environmental conditions.

Note that a safety-critical system is referred to as such, if a failure of the system

24 Chapter 2: Failures and faults in distributed reactive systems

can have catastrophic impact on the environment, or cause injury and even death to
human beings. Examples of safety-critical systems are airbag or brake controllers in
modern cars as well as control systems of nuclear power plants. Due to the perva-
siveness and compactness of computer systems, an increasing number of modern dis-
tributed real-time systems are commonly regarded as being safety-critical, although
there are various, and also variously precise terms associated with criticality. The
working group 10.4 on Dependable Computing and Fault Tolerance of the Interna-
tional Federation of Information Processing (IFIP) defines safety-criticality in terms
of an attribute of the more general class of dependable systems (cf. Laprie [1992],
Avižienis et al. [2001], IFIP/WG-10.4).

2.3 Terminology and classification

An incorrect, but nonetheless popular belief—that also led to what later became
known as the “Ariane 5 disaster”—is that software does not break. For the launch
of the Ariane 5 rocket, a software component was re-used that had been employed in
the predecessor Ariane 4. In their minds, the responsible engineers had no reason to
doubt that the software for Ariane 4 would have deteriorated since, and that it could
impose a serious risk to the successor mission that it was later used in (cf. NASA
[1996], Leveson [2004]).

At first glance, this reasoning may even seem plausible, because unlike mechanical
parts such as bolts, levers, or electronic devices, software does stay as is—unless there
are problems in the hardware that change the storage content or its data path. Indeed,
software does not wear out, rust, deform or crack, and there is no environmental
constraint for software to operate as long as the CPU it runs on is functioning.
However, as Ariane 5 has demonstrated vividly, software systems do undergo various
types of faults, deteriorating their operation, reducing their availability, and often
even safety.

Essentially, software and systems engineers often refer to software errors merely in
terms of bugs (which can be tackled, e. g., using so-called debugging tools; cf. Zeller
[2005]). And once “these last few bugs have been removed, the system will be perfect
and ready to go.” In reality, such engineers are often in an ambivalent position as can
be seen from various negative examples in computer history (cf. Lee and Anderson
[1990], Zeller [2005]). This is because the notion of a “bug” grossly oversimplifies the
matter and thus, gives a false sense of security. Various subtle differences between
the cause of a problem and its visible system deviations exist, which usually deserve
different methods of detection and treatment. Consequently, a classification and more
precise terminology is needed for an understanding of the remainder of this thesis.

2.3 Terminology and classification 25

2.3.1 Failures, faults, and errors

Intuitively, a “bug” or a runtime error is defined by something going wrong in a system
that may lead to undesired consequences and effects. In this section, the underlying
concepts of “bugs”, such as system failures, faults, and errors, are examined in greater
detail, and a classification of how these relate to one another is provided.

Failure. Laprie [1992] describes a system failure as an event that occurs when the
delivered service of a system deviates from correct service. A system may fail either
because it does not comply with the specification, or because the specification did not
adequately describe its function. A failure is thus a transition from correct service to
incorrect service, i. e., to not implementing the system function.

For the sake of simplicity, a service that a system delivers is defined merely in terms of
the behaviour as it is perceived by its user. A user, in turn, may be another system,
human or computer, that interacts at a dedicated service interface. An example
is the fitting service model introduced by Powell [1995]: the service delivered by a
system with a single user can be defined in terms of a sequence of service items, si,
with i = 1, 2, 3, . . ., each characterised by a tuple (vsi, tsi), where vsi is the value, or
content of service item si, and tsi is the time, or instant of observation of service item
si. A service item si = (vsi, tsi) is correct, if and only if vsi ∈ SVi ∧ tsi ∈ STi, where
SVi and STi are respectively the specified sets of values and times for service item si.
Both SVi and STi are generally defined as functions of the (history of) inputs, but
may also be independent of the inputs. For many systems, the value and time sets
are reduced to SVi = {svi}, and STi = [stmin(i), stmax(i)].

For example, a timer service could be defined in terms of the minimum scheduled
time of the ith service item, stmin(i), the maximum scheduled time of the ith service
item, stmax(i), and a maximum clock reading jitter of ∆ as follows:

STi = [stmin(i), stmax(i)]

SVi = [stmin(i) − ∆, stmax(i) + ∆]

Various types of failure are distinguished in the literature. Let si = (vsi, tsi) be a
service item. Laprie [1992], amongst others (cf. Powell [1995], Burns and Wellings
[2001]), points out that the impact of a failure can then be either in the value domain,
time domain, or both:

• Value failure: the service delivers a wrong value, i. e., si : vsi 6∈ SVi.

• Time failure: the service does not deliver in a timely precise manner, i. e.,
si : tsi 6∈ STi.

– Too early: the service is delivered earlier than required, i. e., si : tsi <
min(STi)

– Too late: the service is delivered later than required (often referred to as
performance error), i. e., si : tsi > max(STi)

26 Chapter 2: Failures and faults in distributed reactive systems

– Infinitely late: the service is never delivered (often referred to as omission
failure), i. e., si : tsi = ∞

• Impromptu failure: the service delivers unexpectedly such that si : vsi 6∈ SVi ∧
tsi 6∈ STi.

Mean time to failure. The reliability of a system is often expressed in terms of
the mean time to failure (MTTF). Therefore it is necessary to establish the formal
correlation between the reliability of a system and the occurrence of a failure. Suppose
that the time to failure T has the probability density function f(t). The failure
distribution function is then the integral of the failure density function within interval
0 ≤ τ ≤ t:

F (t) = P (T ≤ t) =

∫ t

0

f(τ)dτ, where t ≥ 0.

In contrast, the reliability function is the probability of a system not to fail between
0 ≤ τ ≤ t:

R(t) = 1 − F (t) = P (T > t).

The MTTF can now be defined as the integral of either the failure or the reliability
distribution:

MTTF = E(T) =

∫ ∞

0

tf(t)dt =

∫ ∞

0

R(t)dt.

Related to MTTF is the concept of mean time between failure (MTBF) which is often
better suited for systems in which failures may be reacted upon, and thus the rate of
failure occurrence is of importance. For example, when the time required to repair a
system is much shorter than MTTF it is safe to assume, without loss of generality,
that:

MTTF ≈MTBF.

Error. When reasoning about distributed and reactive systems, as is also pointed
out by Breitling [2001], the concept of an error only makes sense in reference to state-
based systems. An error is then defined as part of the overall system state with respect
to an aberration to a specified valid state. In other words, an error is that part of the
system state which is liable to lead to subsequent failure. An error is latent, when
it has not been recognised as such or detected by an algorithm, or mechanism (cf.
Laprie [1992]).

Errors do not always lead to failure, e. g., an undefined value stored in some inter-
nal system variable may be overwritten before creating damage. Wrong values, for
example, may be due to physical faults in memory hardware. The time that elapses
before an error becomes noticeable is called “error latency”. The time that elapses
between a fault, and the manifestation as an error is called “fault latency”.

2.3 Terminology and classification 27

Error

Latency

Fault

Latency

Cause State Event

Fault

MTBF

Fault Error

System A

Cause t

. . .

. . .
System B

. . .Failure

MTTF

Fig. 2.3: Concepts and causality in a possible “fault chain”.

Fault. In general, a fault is defined as the cause of an error (cf. Laprie [1992],
Breitling [2001]). More specifically, a fault is called active if it produces an error, and
dormant otherwise. For example, faults may be due to physical breakage, or caused
by wrong assumptions regarding a system’s execution environment.

In summary, failures and faults are probably best understood from the diagram de-
picted in Fig. 2.3. It illustrates in a systematic manner the different relations to each
other and causality of events in a possible “fault chain” of a hypothetical distributed
system consisting of part A and B. The original fault is in A, which causes an error
in A leading to a failure. Since B depends on the correctness of A, the failure results
in a fault in B, and so on.

If a fault originates from the physical environment a system operates in, i. e., is not
caused by the system itself, it is often termed an external fault. A formal definition
of an external fault in the context of this thesis is given in §5. Further, differentiation
between faults which are internal, external, temporary, permanent, and so forth can
also be made (cf. Laprie [1992]). Again, different research communities prefer different
classification schemes.

2.3.2 Alternative correctness criteria

As could be seen in the previous section, the term correctness is always a relative one;
that is, it is often possible to state that a system is correct with respect to a specifi-
cation, e. g., by means of automatic verification techniques. However, when reasoning
about systems during normal operation, this notion of correctness not necessarily
helps in dealing with occurring runtime errors and faults. More so, this static notion
of correctness can give users of a system a false sense of safety, where, in reality, there
is no safety. Amongst other infamous “software disasters” (cf. Gilb [1988], NASA
[1999], McCurdy [2001], Mann [2002], Zeller [2005]), Ariane 5 has shown that correct-
ness with respect to a formal design document is not always sufficient to establish
system safety at runtime. Clearly, when focusing on runtime errors and safety issues
of (possibly safety-critical) distributed reactive and real-time systems, additional or

28 Chapter 2: Failures and faults in distributed reactive systems

alternative correctness criteria need to hold that can then be addressed dynamically,
i. e., when the system operates.

Correctness at runtime

Benveniste [2002] defines correctness at runtime intuitively in terms of systems that
behave the way they are intended to and are supposed to. This informal notion of
correctness trivially asserts that under no circumstances, whatsoever, must a safety-
critical system endanger the safety of its users and environment. If it does, even if
strictly following its specified (and possibly also verified) behaviour, it is not correct in
the above, intuitive sense. However, the definition by Benveniste is far too imprecise
and based on it alone, no firm criteria can be established how to actually know
when a running system deviates from its intended behaviour. What is required is a
formal notion of correctness which addresses all sorts of behavioural aberrations in
systems.

Symptom-freeness

Two important concepts, which are going to be used later-on in this thesis (see §4)
include the notions of a symptom and also symptom-freeness as part of a correctness
criterion for a system’s behaviour at runtime.

Originally, the term symptom (Greek śımbtomma, consisting of the words syn mean-
ing con or plus, and pipto meaning fall; together to coexist) had two similar meanings
in the context of physical and mental health (cf. Beys and Jansen [1999]):

• In the strict sense, a symptom is a sensation or change in health function expe-
rienced by a patient. Thus, symptoms may be loosely classified as being strong,
mild or weak. In this medically correct sense of the word, a symptom is a sub-
jective report, as opposed to a sign, which is objective evidence of the presence
of a disease or disorder.

• A symptom may loosely be said to be a physical condition which shows that
one has a particular illness or disorder (cf. Procter [1995]). An example of a
symptom in this sense of the word would be a skin rash.

In the context of this thesis, a symptom represents a subjective report, whereas
a failure is an objective evidence (of a fault). In other words, a symptom merely
indicates that a failure might have occurred, but does not necessarily indicate where,
if, or why. More so, in distributed systems, symptoms are often observed in or at
components that turn out not to be faulty at all. Consequently, symptoms indicating
faults in non-faulty systems are referred to as false positives, and symmetrically false
negatives.

As in medical science, it can be difficult, time consuming, and take an unpredictable
amount of time to find the root cause of a symptom, i. e., the fault that caused the

2.4 Summary 29

failure, so that a system engineer or service technician knows what to replace or
modify. Distributed reactive systems may show symptoms of failures, faults, and
errors for a variety of different reasons; in fact, as is argued above, usually for an
unlimited number of reasons when environmental influences are taken into account.
For instance, physical failure is not only due to actually broken parts, but may also
be due to temporary influence of other environmental conditions affecting, say, the
communication medium used by a distributed system. Very high or low temperatures,
strong electromagnetic interferences caused by nearby power lines or mobile phones,
are just a few examples of what may degrade the efficiency of a communication
bus with unpredictable consequences for the software systems sending and receiving
signals over it.

At runtime, one is interested in detecting either problem whether it was anticipated by
the designers of a system, pure coincidence, or physical breakage. As such, symptoms
resemble a common denominator between the concepts of failure, fault, and error; that
is, if either one is present in a system it will typically be noticed at some stage by
means of showing noticeable behavioural aberrations. Using the notion of a symptom-
free system, i. e., a system not revealing a failure, from this point forward, a system’s
execution is considered correct, if it does not reveal symptoms indicating the presence
of a fault.

As such, the concept of a program invariant (cf. Gries [1982]) as originally introduced
in Hoare-logic (Hoare [1969]) comes to mind, which basically resembles an assertion
about a system’s operation that has to hold before and after the operations are exe-
cuted. If the operations, for whatever reason, lead to the invariant being invalidated,
a natural conclusion would be that somewhere in the system a fault is present.

How to formally specify which system executions actually resemble aberrations, how
to detect them technically at runtime, and then how to locate their causes, will be
subject of the remaining chapters, where §5 provides a formal definition of symptom-
freeness.

2.4 Summary

This chapter briefly outlines the general background of this thesis, and introduces the
notions of reactive, real-time, concurrent, and distributed systems. It discusses means
for developing and establishing correctness of these systems statically with respect to
their specification and design documents, and identifies typical shortcomings of the
employed methods, thus motivating the runtime reflection approach. Moreover, this
section gives detailed definitions of common terms such as failure, fault, and error,
and identifies symptoms as a general concept applicable for reasoning about systems
correctness at runtime.

30 Chapter 2: Failures and faults in distributed reactive systems

Chapter 3

Formal systems specification and

verification with temporal logic

Beware of bugs in the above code; I have
only proved it correct, not tried it.

(Donald E. Knuth, Notes on the van
Emde Boas construction of priority

deques: An instructive use of recursion)

Detecting a system failure by means of runtime verification means having
to continuously check user-defined system properties, e. g., invariants, specified over
sequences of system executions. For the specification of desired system properties,
temporal logic (see §3.1.2) has become an established and in some domains even
standardised (see, e. g., §3.3.2) formalism not only to model, but also to verify system
properties, statically and dynamically. Temporal logic allows one to reason about the
behaviour of one or many cooperating systems over time. In this chapter, therefore,
temporal logic is explored as a monitoring requirements specification language and
details given on its formal syntax, semantics, and interesting properties with regard
to systems verification.

Since the verification of temporal logic formulae is usually based upon a translation
of the specifications into state-transition systems which constitute possible compu-
tations of a system, the link between state-transition systems, executable (finite and
infinite) automata, and temporal logic itself is established first (see §3.1). In §3.2, im-
portant properties of temporal logic specifications are examined, such that they can
be efficiently verified statically or even checked dynamically at runtime. This is done
because not all specified properties can be checked by equal means, and, this section
also explains why. Without going into detail at this point, one should keep in mind
that runtime verification (i. e., observing a system while it executes) means having an
only finite view on the system’s behaviour. Therefore, properties which would require
knowledge about the potentially infinite future of a system, inherently pose a prob-
lem in that setting. Practically, such properties are often “request-acknowledgement
patterns” asserting that the system eventually acknowledges a request, but does not
specify when this has to happen.

31

32 Chapter 3: Formal systems specification and verification with temporal logic

Despite temporal logic having a well-understood formal background, and despite its
success in various practical domains, such as hardware verification (cf. Janssen [1989],
Dill and Rushby [1996], Delgado Kloos and Damm [1997]), it is still widely considered
as a tool for experts only. Therefore, most importantly, in §3.3, a structured and more
high-level assertion and specification language is introduced, named Salt, which aims
to address problems often experienced by users of plain temporal logic. However,
Salt is fully embedded into formally defined temporal logics, and in that sense acts
as a front end to the runtime reflection approach as presented in this thesis. Chapter
§3.3 examines Salt’s main language constructs, its expressiveness and semantics
in detail, and concludes with various specification examples highlighting individual
features of the language.

Note that using Salt, it is also possible to specify quantitative properties of event
traces over time, which is often a prerequisite to deal with real-time systems that
adhere to a continuous event-based execution scheme rather than a synchronous one.
The underlying formal logic used in this setting is TLTL and introduced more formally
in §4.5.1 of this thesis.

3.1 Preliminaries

Formal verification methods, such as model checking , often represent reactive systems
as Kripke structures. A Kripke structure is a transition system or digraph, where the
nodes correspond to system states. As such, they can be used in order to reason
about a system’s behaviour over time in terms of paths through the structure.

Formally, a Kripke structure can be defined as follows.

Definition 3.1.1: Let AP be a finite set of propositions. A Kripke structure is a
tuple M = (S, s0, δ, l), where

• S is a finite set of states,

• s0 ∈ S some distinguished initial state,

• δ ⊆ S × S a total transition relation, and

• l : S → 2AP a labelling function assigning propositions to states.

A state s ∈ S has a transition to state t ∈ S, if and only if (s, t) ∈ δ. A transition is
total , if and only if ∀s ∈ S : ∃t ∈ S : (s, t) ∈ δ.

From the verification perspective, a reactive system’s execution then corresponds to an
infinite sequence of states w = a0a1 . . . in a Kripke structure, such that s0 is the initial
state and (si, si+1) ∈ δ for all i ≥ 0. It can be seen that for every infinite sequence
w = a0a1 . . ., there exists a sequence ζ = l(a0)l(a1) . . ., called the interpretation of w.
For convenience, l(w) = ζ will be used as well.

3.1 Preliminaries 33

From Kripke structures to model checking. Kripke structures, being syntacti-
cally close to automata, form the foundation for static verification by means of model
checking (see §3.1.1). The model checking problem is relatively easy to describe as
follows. A finite-state model of the system, M , and a property to be checked, ϕ,
formulated in some temporal logic (see §3.1.2), are given. The verification tool then
constructs an automaton, AM , which accepts all behaviours of M . Additionally, an
automaton Aϕ is constructed which accepts all models for ¬ϕ. The verification pro-
cess then consists of checking for an automaton, A = AM ∩ Aϕ, the intersection of
AM and Aϕ for emptiness, i. e., whether the accepted language of the automaton,
denoted as L(A), is not empty. L(A), if defined, corresponds to all counter examples
of M violating the property to be checked (see Fig. 3.1).

”yes/no” (+ diagnostic information)

Model

Checker

ϕM

Fig. 3.1: The structure of a model checker.

That is, model checking exploits the idea that Kripke structures define a language
of infinite words over 2AP . The language accepted by a Kripke structure is denoted
by L(M) = {l(w) | w is an execution of M}, and extend l(s) to state sequences in
a natural way. An execution, w, projected with the labelling function, l(w), is then
called a computation (of a system).

The basic approach was pioneered by works of Queille and Sifakis [1982], Clarke and
Emerson [1982], and finally based on the notion of ω-automata by Vardi and Wolper
[1986]. It was later greatly optimised and first put into wider practice by works
of Holzmann [1991] (i. e., the SPIN tool), and McMillan [1992] (i. e., the symbolic
model verifier tool SMV). The latter introduced an efficient symbolic representation
of a system’s state space in terms of ordered binary decision diagrams (OBDD).
Employing OBDDs, it was possible to symbolically check state spaces far beyond 106

states, which had roughly been state-of-the-art before McMillan’s findings (cf. Clarke
et al. [1999]).

3.1.1 Automata over strings

Automata are generally defined over alphabets. Therefore, first the notion of an
alphabet is introduced.

34 Chapter 3: Formal systems specification and verification with temporal logic

Definition 3.1.2: An alphabet Σ is a non-empty finite set. The elements of Σ are
called actions.

Generally a, b, c, . . . are used to denote (a system’s) actions. Further, let Σ∗ be the
set of finite strings over Σ, and Σω the set of (countably) infinite strings generated
by Σ with ω = {0, 1, 2, . . .}. Set Σ∞ = Σ∗ ∪ Σω, and let ǫ denote the empty word.

Finite automata

Before continuing with a formal introduction of infinite automata as they are used
for model checking, the notion of a finite automaton is recalled as it also plays an
important part in the particular runtime verification approach developed in this thesis
(see §4.4 and §4.5.4, respectively).

Definition 3.1.3: A (nondeterministic) finite automaton over Σ is a tuple A =
(Σ, Q,Q0, δ, F), where

• Σ is an alphabet,

• Q a finite set of states,

• Q0 ⊆ Q a distinguished set of initial states,

• δ : Q× Σ → 2Q a transition function, and

• F ⊆ Q a distinguished set of final states.

Definition 3.1.4: A (nondeterministic) finite automaton A is called complete, if and
only if for all q ∈ Q and a ∈ Σ there exists a state q′ ∈ Q with {q′} ⊆ δ(q, a).

Theorem 3.1.1 (Folklore): For every non-complete (nondeterministic) finite au-
tomatonA = (Σ, Q,Q0, δ, F), there exists a complete automatonA′ = (Σ, Q′, Q′

0, δ
′, F ′),

such that L(A) = L(A′).

Proof:
Let A′ be the same automaton as A except for one more state qe ∈ Q′, which is not
in Q. Then, δ′ extends δ to include the additional state. If a run reaches qe it means
that the word leading to it is not in the language of A′. Let q ∈ Q, then

δ′ = δ ∪ {(qe, a, qe) | a ∈ Σ} ∪ {(q, a, qe) | there is no q′ ∈ Q with (q, u, q′) ∈ δ}.

Obviously, A′ is complete by the third union above, and then it holds that L(A′) =
L(A), since the transitions added only go to the new state if the read word is not
accepted by A and leaves A′ in the “error state” (second union). �

The reference “(nondeterministic)” is omitted from this point forward, whenever the
type of automaton is either irrelevant or clear from the context.

A finite automaton A = (Σ, Q,Q0, δ, F) is assumed for the rest of this section.

3.1 Preliminaries 35

Definition 3.1.5: A finite run of a finite automaton A over a string u = a0a1 . . . an ∈
Σ∗ is a mapping ρ : N → Q such that

• ρ(0) ∈ Q0, and

• ρ(i+ 1) ∈ δ(ρ(i), ai) for all i < n, where i, n ∈ N.

Definition 3.1.6: A run ρ = q0q1 . . . qn, where q0 is an initial state in A, is called
accepting if and only if qn ∈ F .

To tie everything together, L(A), the language of finite strings over Σ∗ accepted by
A, is L(A) = {u ∈ Σ∗ | there exists an accepting run of A over u}.

It is well-known (cf. Hopcroft and Ullman [1979]) that a language L ⊆ Σ∗ is accepted
by some nondeterministic automaton if and only if it is accepted by some deterministic
finite automaton, i. e., where Q0 is a singleton set, and for all q ∈ Q and a ∈ Σ it
holds that |δ(q, a)| = 1.

The class of languages of finite strings over Σ accepted by finite automata are the
regular languages. These languages are also referred to as being the recognisable
languages . Another formalism used to describe regular languages of finite strings is
the concept of regular expressions (Kleene [1956]).

Definition 3.1.7: The syntax of regular expressions is inductively defined by the
following grammar:

π ::= ∅ | ǫ | a | π + π | π;π | π∗ (a ∈ Σ),

with π ∈ RE(Σ), ∅ denoting the empty set, and ǫ denoting an empty word.

The semantics of a regular expression can be laid down by a mapping associating the
set of finite strings described by it.

Definition 3.1.8: With each regular expression, a set of finite strings is associated
via the map J·K : RE(Σ) 7→ 2Σ∗

. This map is defined in an inductive manner as
follows:

J∅K = ∅
JǫK = {ǫ}
JaK = {a} (for each a ∈ Σ)
Jπ1 + π2K = Jπ1K ∪ Jπ2K (union)
Jπ1;π2K = Jπ1KJπ2K (composition)
Jπ∗K =

⋃

i∈N
JπKi (iteration),

where π∗ denotes the Kleene-star or iterator which is recursively interpreted as fol-
lows:

JπK0 = {ǫ}, and
JπKi+1 = {uv | u ∈ JπK and v ∈ JπKi} (for every i ∈ N).

36 Chapter 3: Formal systems specification and verification with temporal logic

Let the language L = JπK be the set of finite strings defined by π, then L∗ defines the
set of all those strings which can be made by concatenating zero or more strings from
L. For example, in the most simple form Σ = {a, b}; then application of the iterator
yields Σ∗ = {ǫ, a, b, aa, bb, ab, aaa, . . .}.

Notice the above operations and constants of regular expressions together form an
algebra better known as Kleene algebra (cf. Kozen [1990]).

On the other hand, automata are typically represented as edge-labelled digraphs ,
where nodes correspond to states and edges to transitions labelled with actions. As
such an edge labelled with a ∈ Σ from node q ∈ Q to a state q′ ∈ Q exists if and
only if q′ ∈ δ(q, a). Initial states in Q0 are marked with an incoming arrow, final (or,
accepting) states in F with double circles.

q0 q1

a b

a, b

Fig. 3.2: Graphical representation of a nondeterministic finite automaton.

Example. Fig. 3.2 depicts a representation of a nondeterministic finite automaton,
A = ({a, b}, {q0, q1}, {q0}, δA, {q0, q1}), where

δA = {(q0, a, q0), (q0, a, q1), (q0, b, q1), (q1, b, q1)},

and each (q, s, q′) ∈ δA means that there exists a transition from state q to q′ with
symbol a. This automaton accepts arbitrarily many a’s followed by arbitrarily many
b’s (including zero occurrences of either action); that is, the language defined by the
regular expression a∗; b∗. In this example, it formally holds that L(A) = Ja∗; b∗K.

This correspondence has been recognised and generalised in Kleene’s famous theo-
rem:

Theorem 3.1.2 (Kleene [1956]): A language L ⊆ Σ∗ is regular if and only if there
exists a regular expression π ∈ RE(Σ) such that L = JπK.

From that, it follows that both regular expressions and finite automata characterise
the class of regular languages of finite strings over Σ.

Omega automata

Omega automata (in short, ω-automata) are structurally equivalent to finite automata
as introduced above, i. e., they are represented in terms of a 5-tuple, denoted as A =
(Σ, Q,Q0, δ, F), but yield a suitably modified acceptance condition. More specifically,

3.1 Preliminaries 37

ω-automata provide acceptance over infinite strings. This is different to the previous
setting of ordinary finite automata (in contrast to ω-automata, abbreviated from
this point forward as ∗-automata), where the last state visited by a run ultimately
determines its acceptance. Infinite strings of actions resemble the nature of continuous
interactions of reactive systems with their environment in a more natural way than
finite strings. Moreover, certain system properties cannot be verified at all on finite
prefixes of strings of actions (see §3.2.2).

Probably the most widely used class of ω-automata are Büchi automata (Büchi
[1962]). A Büchi automaton is an ω-automaton equipped with a Büchi acceptance
condition over infinite runs. The according definition is as follows.

Definition 3.1.9: An infinite run of an ω-automaton A = (Σ, Q,Q0, δ, F) over a
string w = a0a1 . . . ∈ Σω is a mapping ρ : N 7→ Q such that

• ρ(0) ∈ Q0, and

• ρ(i+ 1) ∈ δ(ρ(i), ai) for all i ∈ N.

For an infinite run ρ and an ω-automaton A = (Σ, Q,Q0, δ, F), the set of states
visited infinitely often is denoted by

Inf(ρ) = {q ∈ Q | for infinitely many k ∈ N, it holds that ρ(k) = q}.

Definition 3.1.10: An infinite run ρ ∈ Qω of a (nondeterministic) ω-automaton
A = (Σ, Q,Q0, δ, F) is called Büchi-accepting, if and only if Inf(ρ) ∩ F 6= ∅.

In other words, a Büchi-accepting run passes infinitely often through at least one final
state in F .

The language accepted by a Büchi automaton A is then defined as L(A) = {w ∈
Σω | there exists an accepting run of A over w}. A language L ⊆ Σω is definable
by a Büchi automaton, i. e., is Büchi recognisable, if and only if there exists a Büchi
automaton A with L(A) = L. If L(A) = ∅, the automaton is called empty .

For the remainder of this section, unless otherwise noted, a Büchi automaton A =
(Σ, Q,Q0, δ, F) is assumed. A is deterministic, if and only if for all q ∈ Q, and a ∈ Σ
it holds that |δ(q, a)| ≤ 1, and Q0 is a singleton set.

q0 q1

a, b a

a

Fig. 3.3: Graphical representation of a Büchi automaton.

38 Chapter 3: Formal systems specification and verification with temporal logic

Example. Consider the graphical representation of a Büchi automaton as depicted in
Fig. 3.3. It accepts the language L = J(a+ b)∗aωK, if the Kleene-star is complemented
with an infinite iteration or ω-operator as in πω. In other words, the language spans
all words which consist of finitely many a’s or b’s, followed by infinitely many a’s.

The previous is also an example for a class of languages referred to as the ω-regular
languages.

Definition 3.1.11: A subset L ⊂ Σω is called an ω-regular language, if and only if
L is a finite union of U ;V ω, where U, V ⊆ Σ∗ are regular sets of finite words, and
V ω = {v1v2 . . . | vi ∈ V for all i ∈ N}.

Büchi showed (see Theorem 3.1.3) that Kleene’s Theorem carries over to the setting
of ω-regular languages in a straightforward manner. Like in the previous example,
ω-regular languages can be captured by regular expressions complemented with the
ω-operator, then also called ω-regular expressions, to denote infinite recurrence. Thus
it seems natural to take the ω-regular languages to be the Büchi recognisable lan-
guages.

Theorem 3.1.3 (Büchi [1962]): A language L ⊆ Σω is definable by a nondeter-
ministic Büchi automaton, if and only if L is ω-regular.

The theorem hints to the fact that nondeterministic Büchi automata are strictly more
expressive than deterministic ones. In other words, it is possible to define an ω-regular
language using a nondeterministic Büchi automaton, which cannot be recognised
by a deterministic Büchi automaton. For example, there exists no deterministic
Büchi automaton which accepts the language used in the previous example, i. e.,
L = J(a+ b)∗aωK.

To be able to use deterministic ω-automata, various other acceptance conditions
have been introduced in the literature, which all capture the full class of ω-regular
languages. An important one is, e. g., Muller acceptance, which is defined over a set
of accepting state sets F = {Fi}

n
i=1, where each Fi ⊆ Q:

Definition 3.1.12: An infinite run ρ of a (nondeterministic) ω-automaton A =
(Σ, Q,Q0, δ,F) is called Muller-accepting, if and only if Inf(ρ) ∈ F .

In other words, an infinite run is Muller accepting, if and only if the infinitely recurring
states exclusively match those in a set Fi ∈ F . ω-automata equipped with Muller
acceptance are referred to as Muller automata, denoted by M. Muller automata can
be turned into deterministic ones, while still accepting the same language as their
nondeterministic counterparts. This is summarised in the theorem of McNaughton
[1966] as follows.

Theorem 3.1.4 (McNaughton’s Theorem—Part 1): If a language L is deter-
ministically Muller recognisable, then L is (nondeterministically) Büchi recognisable.

3.1 Preliminaries 39

Most importantly, the opposite direction also holds.

Theorem 3.1.5 (McNaughton’s Theorem—Part 2): If a language L is (nonde-
terministically) Büchi recognisable, then L is deterministically Muller recognisable.

Safra [1988] and Michel [1988] then demonstrated—the former by algorithmic con-
struction—that for every nondeterministic Büchi automaton, A, comprising n states
and accepting the language L(A), there exists a deterministic Muller automaton, M,
comprising of at most 2O(n logn) states, such that L(M) = L(A).

Unlike in the case of determinisation, Büchi automata are closed under complemen-
tation. That is, given a Büchi automaton, A, accepting the language L(A), Safra’s
construction can be used to obtain a Büchi automaton, A, which accepts L(A) such
that L(A) = L(A), where L(A) = Σω\L(A). This, again, involves an exponential
“blowup” as is summarised in the following theorem.

Theorem 3.1.6 (Safra [1988]): Let A = (Σ, Q,Q0, δ, F) be a Büchi automaton
with |Q| = n. Then there exists a Büchi automaton A = (Σ, Q′, Q′

0, δ
′, F ′), where

|Q′| = 2O(n logn).

Besides Muller there exist alternative acceptance conditions for infinite runs, such as
realised in Rabin or Streett automata, all of which span the full class of ω-regular
languages as well. For completeness, these are outlined only very briefly here as they
compare to Muller automata and do not play an important role in the remainder
of this thesis. However, given their expressiveness, they could also be considered as
possible alternatives for an implementation of the runtime reflection framework.

Rabin acceptance is defined over pairs of state sets as in F = {(Fi, F
′
i)}

n
i=1. In this

scheme an infinite run ρ ∈ Σω is accepting if there exists some 1 ≤ i ≤ n such that
Inf(ρ) ∩ Fi = ∅ and Inf(ρ) ∩ F ′

i 6= ∅. In other words, the run visits finitely often
states from Fi, and infinitely often states from F ′

i . Streett acceptance is somewhat
dual to Rabin in that it is also defined over pairs of sets, but for every i it has to hold
that Inf(ρ) ∩ Fi 6= ∅ implies also Inf(ρ) ∩ F ′

i 6= ∅. Since Muller, Streett, and Rabin
automata are all closed under complement as well as determinisation, it shall suffice
at this point to refer to Farwer [2001] for a good overview on the exact correlations
and properties of these automata.

Another important property of Büchi automata, which has been implicitly used al-
ready, but which needs to be discussed in more detail in the context of this thesis
is the emptiness check . A Büchi automaton is non-empty, if and only if there exists
a cyclic path, reachable from an initial state that contains one or more accepting
states. The automaton depicted in Fig. 3.3 is non-empty, since it accepts the lan-
guage defined by (a + b)∗aω. Since the number of states in a Büchi automaton is
finite, there must exist a cycle on which a final state occurs for the automaton to be
non-empty. Checking that such a cycle is reachable from some initial state can be
achieved by a depth-first search algorithm, and in linear time as summarised in the
following theorem.

40 Chapter 3: Formal systems specification and verification with temporal logic

Theorem 3.1.7 (Emerson and Lei [1985]): The non-emptiness problem for Bü-
chi automata is decidable in linear time.

Now, coming back to the original problem of model checking models of reactive sys-
tems, observe that Kripke structures, the computational model introduced in the
beginning of this section, correspond directly to ω-automata, where all the states are
accepting. Let M = (S, s0, δ, l) be a Kripke structure over a set of propositions AP .
Then, a Büchi automaton AM = (Σ, SM , S

0
M , δM , FM) can be defined, where

• Σ = 2AP ,

• SM = S ∪ {si},

• S0
M = {si},

• FM = SM , and

• for all s, s′ ∈ SM , a ∈ Σ it holds that (s, a, s′) ∈ δM if and only if l(s) = a and
((s, s′) ∈ δ) or (s = si and s′ = s0).

The Büchi automaton AM accepts exactly those infinite sequences of labellings which
correspond to infinite paths of the Kripke structure starting from some initial state.
The next section discusses how, given a formula ϕ, formulated in some linear temporal
logic, a Büchi automaton Aϕ can be created, which accepts exactly all the infinite
sequences of valuations satisfying ϕ.

3.1.2 Linear time temporal logic

As seen in the previous section, ω-regular expressions can be used to specify proper-
ties over infinite strings; although, the use of ω-regular expressions may not always
turn out to be the most convenient means of specification. Thinking of infinite strings
in terms of infinite computations, a more intuitive means of specification is the use
of logical operations transforming simple expressions into more complex expressions
(see §3.3). Linear time temporal logic (LTL) as proposed by Pnueli [1977] for the veri-
fication of reactive systems, can be used to specify computations of Kripke structures
and ω-automata. However, the languages definable using LTL actually form a strict
subset of the languages definable using ω-regular expressions (cf. Thomas [1990] and
§3.3.2).

In this section, the formal syntax and semantics of LTL is recalled, and the satisfia-
bility problem of arbitrary LTL formulae discussed based on Büchi automata.

Syntax

A finite set AP of atomic propositions is assumed, and a finite alphabet Σ = 2AP de-
fined. ai denotes a single element of Σ, i. e., ai is a (possibly empty) set of propositions
taken from AP . Finite strings over Σ are elements of Σ∗, and are usually denoted by
u, u′, u1, u2, . . . , whereas infinite strings are elements of Σω, and usually denoted by
w,w′, w1, w2, For some trace w = a0a1 . . . , w

i denotes the suffix aiai+1

3.1 Preliminaries 41

Definition 3.1.13: The set of well-formed propositional linear time temporal logic
formulae over an alphabet Σ is denoted by LTL(Σ), and given by the following ab-
stract syntax:

ϕ ::= true | a | ¬ϕ | ϕ op ϕ | ϕUϕ | Xϕ (a ∈ Σ),

with ϕ ∈ LTL(Σ), and where op represents a binary Boolean operator defined by the
set op ∈ {∨,∧,⇒,⇔}.

A formula ϕ ∈ LTL(Σ) that does not contain any temporal operators, i. e., X or U,
is called a propositional formula and temporal formula, otherwise.

If the parameterisation of the set of formulae is clear from the context, the set of
propositions or the concrete alphabet in its name can be omitted, and simply LTL
rather than LTL(Σ) be used, when referring to the set of well-formed LTL formulae.

Semantics

LTL formulae are generally interpreted over infinite strings of sets of atomic propo-
sitions chosen from AP , i. e., elements of the alphabet Σ = 2AP . The classic se-
mantics of LTL is then defined using a binary relation, |=, between infinite strings
w = a0a1 . . . ∈ Σω of subsets of AP and, inductively, formulae of that logic. In the
following, w, i is used to denote the ith position in an (infinite) string w.

Definition 3.1.14 (Basic operators): Let ϕ ∈ LTL(Σ) and i ∈ N denote a posi-
tion. The semantics of LTL formulae is then defined inductively over infinite strings
w = a0a1 . . . ∈ Σω as follows:

w, i |= true
w, i |= ¬ϕ ⇔ w, i 6|= ϕ

w, i |= p ∈ AP ⇔ p ∈ ai
w, i |= ϕ1 op ϕ2 ⇔ (w, i |= ϕ1 op w, i |= ϕ2)
w, i |= ϕ1Uϕ2 ⇔ ∃k ≥ i : ((w, k |= ϕ2) ∧ ∀l : (i ≤ l < k ⇒ w, l |= ϕ1))
w, i |= Xϕ ⇔ w, i+ 1 |= ϕ

Further, let w |= ϕ, if and only if w, 0 |= ϕ.

w ∈ Σω satisfies (alternatively, is a model of) the formula ϕ ∈ LTL(Σ), if and only
if w |= ϕ holds. The set given by L(ϕ) = {w ∈ Σω | w |= ϕ} of all models of ϕ is
called the language of ϕ. The formula ϕ is satisfiable if L(ϕ) 6= ∅ and unsatisfiable,
otherwise. A formula ϕ is valid, if and only if ¬ϕ is unsatisfiable.

LTL is now looked at from a more intuitive or from a user’s perspective. Recall, the
infinite strings in Definition 3.1.14 are the computations of a system observed over an
(infinite) period of time. Intuitively, a formula ϕ ≡ p ∈ AP then asserts that in the

42 Chapter 3: Formal systems specification and verification with temporal logic

current instance an event (or, an observable system action), encoded by the proposi-
tional symbol p, has occurred. The truth value true, and the Boolean operators are
interpreted as expected. The temporal operators, in turn, are interpreted as follows.
An “until” formula, e. g., ϕ ≡ ψUη, states that η holds at a present or some future
instant, and that ψ holds until then. A “next” formula, e. g., ϕ ≡ Xψ, states that
ψ holds in the next time instant. As such, the next operator mandates the notion of
a discrete time-step. There also exist so-called next-free variants of LTL, where this
discrete notion of time does not apply. Such variants, however, cannot distinguish
between, e. g., the next and the second next state of a string and are, therefore, a
strict subset of standard LTL (cf. Pnueli [1977], Lamport [1983], or Lichtenstein and
Pnueli [1985]).

Besides the basic set of LTL-operators, there exist a number of practically useful
derivations, which help make specifications more concise, and thus, readable, while
still being relatively straightforward to translate back into standard LTL.

Let w and ϕ be defined as in Definition 3.1.14, respectively. The following can be
defined on top of that.

Definition 3.1.15 (Derived operators):

w |= Fϕ ⇔ w |= trueUϕ (eventually)
w |= Gϕ ⇔ w |= ¬F¬ϕ (globally)
w |= ϕ1Uwϕ2 ⇔ w |= Gϕ1 ∨ (ϕ1Uϕ2) (weak until)
w |= ϕ1Rϕ2 ⇔ w |= ϕ2U(ϕ1 ∧ ϕ2) (release)
w |= ϕ1Rwϕ2 ⇔ w |= ϕ2Uw(ϕ1 ∧ ϕ2) (weak release)

For specifications, the most important derivations are the eventually and the globally
operators (see also §3.2.1). The eventually or future operator, denoted by F, asserts
that a certain property has to hold in some present or future instant, while the globally
operator, denoted by G, expresses that a given property has to hold as long as the
system’s computations are observed and analysed, e. g., in the case of most reactive
systems, infinitely. The remaining operators, typically, play no important role for
the forward specification of system properties as they are mainly used to transform
arbitrary LTL formulae into very specific temporal normal forms. Their meaning is
not necessarily intuitive at all.

For instance, in negative normal form (NNF), LTL formulae are written such that
all occurring negations directly precede atomic propositions. Additionally, only the
connectives ∧, ∨, X, U, and R are allowed. As such, the release operator acts
foremost as duality for the more intuitive-to-handle until operator:

¬(ϕ1Rwϕ2) ≡ (¬ϕ1U¬ϕ2)

¬(ϕ1Rϕ2) ≡ (¬ϕ1Uw¬ϕ2)

3.1 Preliminaries 43

Vice versa, the following equivalences also hold:

¬(ϕ1Uϕ2) ≡ (¬ϕ1Rw¬ϕ2)

¬(ϕ1Uwϕ2) ≡ (¬ϕ1R¬ϕ2)

Formulae which are in negative normal form are often referred to as normalised or as
positive formulae, since they make a formula “positive” with respect to its constituent
literals. Thus, normalisation clearly identifies positive and negative occurrences of the
constituent atoms in a formula. If the objective were simply to push down negations
then also the symbols ⇔, ⇒ could be allowed, and the potentially exponential blowup
avoided, using the tautology ¬(ϕ ⇔ ψ) ⇔ (¬ϕ ⇔ ψ). However, in the resulting
formula it is no longer clear which variables occur positively and which negatively.

So far, only LTL operators have been considered that allowed the formalisation of
requirements dealing with present and future obligations; that is, the so-called future
fragment of LTL . The dual to pure future LTL is past LTL , and defined as follows.

Definition 3.1.16 (Past operators): Let ϕ ∈ LTL(Σ) and i ∈ N denote a posi-
tion. The past operators of LTL are then defined inductively over infinite strings
w = a0a1 . . . ∈ Σω as follows:

w, i |= Yϕ ⇔ i > 0 ∧ w, i− 1 |= ϕ

w, i |= Zϕ ⇔ i = 0 ∨ w, i− 1 |= ϕ

w, i |= Oϕ ⇔ ∃k ≤ i : k ≥ 0 ∧ w, k |= ϕ

w, i |= Hϕ ⇔ ∀k ≤ i : k ≥ 0 ⇒ w, k |= ϕ

w, i |= ϕ1Sϕ2 ⇔ ∃k ≤ i : ((k ≥ 0 ∧ w, k |= ϕ2) ∧ ∀l ≤ i : (l > k ⇒ w, l |= ϕ1))
w, i |= ϕ1Tϕ2 ⇔ ∀k ≤ i : ((k ≥ 0 ⇒ w, k |= ϕ2) ∨ ∃l ≤ i : (l > k ∧ w, l |= ϕ1))

The past operators are dual to the future operators, in that Y is the opposite of X
with special handling of the initial state: a formula Xϕ states that in the next instant
ϕ must hold, whereas Yϕ states that previously ϕ did hold. Z is similar to Y, but
deals with the initial instant differently. O is the once-operator, and therefore dual
to F, the eventually-operator. H is the past time version of the globally-operator
and asserts in a formula Hϕ that ϕ did hold at all instances in the past. The dual
for the until-operator is the since-operator, i. e., ϕ1Sϕ2 is true if and only if ϕ2 holds
somewhere in the past and ϕ1 is true from then up to the present instant. Finally,
T is a useful dual for normal form representations as it can be used to express the
since-operator differently: ϕ1Tϕ2 ≡ ¬(¬ϕ1S¬ϕ2).

Various authors such as Cimatti et al. [2004] have proposed and use the moniker
PLTL (short for “past LTL”) when referring only to the past fragment of LTL.

Gabbay [1989] provided a proof that every temporal logic formula using only the
past fragment of operators can be transformed into a temporal logic formula using

44 Chapter 3: Formal systems specification and verification with temporal logic

only future operators. The results spans all kinds of temporal logics, besides LTL,
such as CTL, µ-calculus, etc. Hence, adding the past fragment to LTL does not add
expressiveness, but may be more natural for users when reasoning particularly about
past modalities.

For instance, the property “a grant follows and is issued only upon an according
request” can be represented as

G(grant⇒ Y(¬grantSrequest))

compared to the corresponding future fragment translation

(requestR¬grant) ∧ G(grant⇒ (request ∨ (X(requestR¬grant)))).

Obviously, the former variant is more concise and thus, easier for users to read.
The intuition that adding past operators to LTL, indeed, does lead to more succinct
formulae, has been formally justified by Markey [2003]. Since Markey’s result, it is
known that the succinctness gap between past and future LTL is, in fact, exponential
with respect to the temporal operators. However, restating the formal proof is not
carried out at this point as past LTL will play only a subsidiary role for the results
of this thesis.

Some example properties

After having introduced the formal syntax and semantics of LTL, some typical exam-
ples of LTL-specifications are examined in greater detail. The following list contains
some abstract LTL formulae, ϕ, and their intuitive semantics with respect to an in-
finite string of actions w = a0a1 . . . ∈ Σω, and propositions p, q ∈ AP . Formally, a
property can be considered as a subset of Σω, i. e., a possibly infinite set of strings of
actions.

• p⇒ Fq: if p holds at a0, then q holds at ai for some i ≥ 0.

• G(p⇒ Fq): every p is eventually followed by a q.

• GFq: the sequence w contains infinitely many q’s.

• FGq: all but finitely many states in w satisfy q; q eventually stabilises.

• ¬pUq: the sequence w must not contain p, before eventually q holds.

• G(p ∨ G¬p): either p holds entirely over w, or if there is no ai ∈ w where p
holds, then p does not hold in all future states from the current instant forward.

These example specifications are universal to use, but rather abstract in their present
form since the respective propositions are not defined by any means. In practice,
propositions like these are typically “instantiated” with more meaningful identifiers,
such as names of programming language variables. For instance, mutual exclusion for

3.1 Preliminaries 45

two processes of a program may be specified by formula

ϕ ≡ G¬(at l3 ∧ at m3),

stating that no computation of a program includes a state in which some process P1

is at l3, while some other process P2 is at m3 at the same time.

A property asserting that, while a car is moving, its key cannot be removed may be
specified in terms of

G(¬(speed = 0) ⇒ ¬(ignition = keyout)),

where (speed = 0), (ignition = keyout) ∈ AP , i. e., are propositions. How to actually
make sure that the vehicle speed compares to zero is not part of the specification.
The formula merely captures the fact, speed = 0, in terms of a proposition.

Considering the call sequence of a program handling a complex data structure, one
may want to specify that between a call to a function enqueue(data) and empty(true)
there must be a call to dequeue(data):

G((call enqueue(data) ∧ Freturn empty(true)) ⇒

(¬return empty(true)Ureturn dequeue(data))).

Finally, a more complex example taken from Dwyer et al. [1999] is studied below,
which asserts that between the time an elevator is called at a floor and the time it
opens its doors at that floor, the elevator can arrive at that floor at most twice:

G((call ∧ Fopen) ⇒

((¬atfloor ∧ ¬open)U

(open ∨ ((atfloor ∧ ¬open)U

(open ∨ ((¬atfloor ∧ ¬open)U

(open ∨ ((atfloor ∧ ¬open)U

(open ∨ (¬atfloorUopen)))))))))).

However, this last example is also showing some practical limitations of using LTL:
the deep nesting of opening and closing brackets as well as of temporal operators may
lead to subtle specification errors even for simple requirements, such as the elevator,
if not engineered carefully.

Further use-cases for LTL are not examined until later-on in this thesis (see §4). The
next two sections instead look at a classification scheme for properties and more or
less convenient ways to express these.

46 Chapter 3: Formal systems specification and verification with temporal logic

3.2 Safety and liveness properties

The notion of safety and liveness properties has been first introduced by Lamport
[1977], who also noted that all “interesting” properties of systems can be expressed
using these classes of properties.

3.2.1 Safety properties

Intuitively, a safety property expresses that “something bad never happens” (during
a system’s execution). Formally, a safety property is defined with respect to a bad
prefix as follows:

Definition 3.2.1: Let L ⊆ Σω be a language on infinite strings over alphabet Σ. A
finite prefix u ∈ Σ∗ is a bad prefix for L, if and only if for every w′ ∈ Σω the following
holds: uw′ 6∈ L. If ∀w ∈ Σω\L : ∃u ∈ Σ∗ such that w = uw′ for some w′ ∈ Σω, and
∀w′′ ∈ Σω : uw′′ 6∈ L, L is a safety language (also called a safety property).

In other words, a language, L ⊆ Σω, is a safety language, if and only if every infinite
string not in L has a finite bad prefix. Thus, it follows that all counterexamples of
safety properties are finite—an important characteristic which is exploited in runtime
verification approaches.

The differentiation between safety and liveness properties has turned out a useful
concept since it allows for specific and efficient verification methods (cf. Kupferman
and Vardi [2001]), but there are many cases where this common classification is still
too coarse. As a matter of fact, sometimes it is not easy to establish, based on the
above definition, as to whether a given formula specified in LTL actually defines a
safety language, or not.

Therefore, Sistla [1994] gave a syntactic, and more intuitive characterisation of LTL
safety formulae, which is referred to in the following as syntactic safety formulae.

Theorem 3.2.1 (Sistla [1994]): Every propositional formula is a safety formula.
If ϕ, φ are safety formulae, then so are ϕ ∧ φ, ϕ ∨ φ, Xϕ, ϕUwφ, and Gϕ.

Proof:
A detailed proof of this theorem can be instructional for the understanding of the
overall concept of safety properties. The proof here is slightly different to Sistla and
proceeds by induction on the term structure of syntactic safety formulae.

Base case: Given that ϕ and φ are propositional formulae, it is straightforward to
show that both express safety properties as follows. Let w ∈ Σω be a string such that
w 6|= ϕ (respectively φ). From the semantics of LTL, it follows that w, 0 6|= ϕ, which
is a finite bad prefix for ϕ (respectively φ).

Induction: Let ϕ and φ be safety formulae and w ∈ Σω a model such that w 6|= ψ,
where ψ is defined as

3.2 Safety and liveness properties 47

1. ψ ≡ ϕ ∧ φ. By definition of the ∧-relation it is sufficient to show that either
w 6|= ϕ, or w 6|= φ holds, based on a finite bad prefix. It follows directly from
the base case that there exists w 6|= ϕ such that w, 0 6|= ϕ.

2. ψ ≡ ϕ ∨ φ. By definition of the ∨-relation it must hold that w 6|= ϕ as well
as w 6|= φ, based on a finite bad prefix u ∈ Σ∗, where w = uw′. Since both ϕ

and φ are safety properties, there exist finite bad prefixes, uϕ and uφ. Setting
uφ ⊆ uϕ (or, vice versa), then uϕ (respectively uφ) is a finite bad prefix for ψ.

3. ψ ≡ Xϕ. By definition of the next operator, the existence of a string w1 6|= ϕ

which has a finite bad prefix must be shown. It follows directly from the base
case that there exists an i ≥ 0, such that for an element w1

i it holds that w1
i 6|= ϕ.

Hence, any uw1
i , where u ∈ Σω, is a finite bad prefix for ψ.

4. ψ ≡ Gϕ. It follows from the base case that there is a string w 6|= ϕ, where
w = uϕw

′ and uϕ ∈ Σ∗. By definition of the globally operator every uϕ which
is a finite bad prefix for ϕ is also a finite bad prefix for ψ.

5. ψ ≡ ϕUwφ. Since ϕUwφ ≡ Gϕ ∨ (ϕUφ) and by 2., one basically has to show
that every finite bad prefix u ∈ Σ∗, where w = uw′, w′ ∈ Σω, and w 6|= ψ, is a
finite bad prefix for both Gϕ and ϕUφ.

From the base case and 4. it follows directly that if there exists an l≥0, such
that w, l 6|= ϕ, then w, l 6|= Gϕ. From the safety of ϕ and φ, and from 2. it then
follows that there exists a position l in a “bad string” w, such that w, l 6|= ϕ

and w, l 6|= φ. By the definition of the until operator, w, i |= ϕUφ, if and only
if ∃k ≥ i : ((w, k |= φ) ∧ ∀l : (i ≤ l < k ∧ w, l |= ϕ)), every such w, l is then a
finite bad prefix for ψ. �

In principle, the proof follows another one presented by Latvala [2002], but in that
paper a different (although equivalently expressive) subset of LTL is used. As such,
the present proof is more in the vein of Sistla’s, using exactly the original set of
operators, but more detailed to illustrate the underlying concepts.

It is easy to see, that the mutual exclusion and the car-key examples are not only
safety properties, but also qualify as syntactic safety properties (see §3.1.2). However,
the elevator example is not a syntactic safety property, since it contains the operators,
U and F. As a matter of fact, it will soon become clear that it is not even a safety
property at all.

A concept which, in combination with monitoring safety properties, turns out to
be useful is the one of a stuttering run. A property defined by ϕ ∈ LTL is said
to be closed under stuttering if and only if w = w0w1 . . . wiwi+1 . . . |= ϕ as well
as w = w0w1 . . . wiwiwi+1 . . . |= ϕ. That is, the finite repetition of isolated states
does not affect the validity of the property. Stuttering-invariant properties could be
used, e. g., to tolerate minor measurement aberrations when actually monitoring real
systems.

The next-free variant of LTL is known to express properties invariant to stuttering
(cf. Clarke and Schlingloff [2001]). Sistla continues to show:

48 Chapter 3: Formal systems specification and verification with temporal logic

Proposition 3.2.1 (Sistla [1994]): Every positive formula using only X and Uw

as temporal operators is a safety formula. Every positive formula using only Uw as
temporal operator then specifies a safety property closed under stuttering.

Proof:
Merely the idea for this straightforward proof is sketched. It can be shown by induc-
tion that a formula using only the until operator expresses a property closed under
stuttering. The second part of the theorem follows directly from this observation and
Theorem 3.2.1.

Finally, the least expressive class of LTL safety properties presented in the context
of this thesis is the one of strong safety properties.

Definition 3.2.2: Every positive formula ϕ using only G as temporal operator, is
called a strong safety formula.

In other words, if p ∈ AP represents something “bad” it follows that G¬p is a strong
safety formula.

Another important argument for the syntactic classification of safety formulae ap-
pears in light of the complexity involved to decide, in the general case, whether a
given formula ϕ ∈ LTL specifies a safety property, or not. The problem of deciding
whether ϕ expresses a safety property is known to be Pspace-complete in the size
of the formula (Kupferman and Vardi [2001]). It basically involves constructing a
corresponding (Büchi) automaton, A, which is known to be worst-case exponential
in the size of the formula, and then performing an adapted test for emptiness; that
is, one is interested to know whether there exists an accepting run in A for all finite
prefixes such that the property is eventually satisfiable by an extension of the pre-
fixes. Clearly, a less complex and for the user also more intuitive categorisation is the
previous one based on the term syntax alone.

3.2.2 Liveness properties

Intuitively, a liveness property asserts that eventually something “good” happens
(during a system’s execution). There exist, just as in the case of safety languages,
(see §3.2.1), various shades of liveness properties (cf. Sistla [1994], Gärtner [2001]).
In the context of this thesis, a liveness language, shall be defined according to Alpern
and Schneider [1984] as follows.

Definition 3.2.3: Let L ⊆ Σω be a language on infinite strings over alphabet Σ. L
is called a liveness language, if and only if for all finite prefixes u ∈ Σ∗ the following
holds: ∃w ∈ Σω : uw ∈ L (then also called a liveness property).

From the definition it follows that to detect violations of liveness properties infinite
strings (of actions) are required. For this reason, liveness properties are generally

3.2 Safety and liveness properties 49

considered unsuited for runtime verification, where only finite strings of actions are
at hand, i. e., the observations from the start of a system until the last action observed.
However, the definition also implies that any superset of a liveness property is, again,
a liveness property.

Fairness

This last observation leads to the concept of fairness , which is important for many
verification tasks, such as model checking communication protocols (cf. Holzmann
[1991]). A typical example of fairness is a recurring request-acknowledgement pattern.
Generally, there are two types of fairness, strong and weak. Let pi, qi ∈ AP , a weak
fairness property is then expressed by the following LTL formula

∧

1≤i

(FGpi ⇒ GFqi) which is, in fact, equivalent to
∧

1≤i

(GF(¬pi ∨ qi)).

It states that certain conditions are true infinitely often. In contrast, strong fairness
asserts that if certain conditions are true infinitely often, then certain other conditions
must also be true infinitely often. Strong fairness is captured by the following LTL-
pattern:

∧

1≤i

(GFpi ⇒ GFqi).

The aforementioned request-acknowledgement sequence of a communication protocol
belongs to the latter category of fairness. Notice, all fairness properties are also
liveness properties, since counterexamples are generally infinite.

Bounded liveness

In practice, there exist properties with infinite counterexamples that are being checked
in bounded time and space. These properties are the so-called bounded (liveness)
properties. For example, consider the requirement that a process eventually termi-
nates, expressed in terms of LTL as ϕ ≡ Fterminates, where terminates ∈ AP .
Reactive systems, as they are the subject of this thesis, typically, do not terminate;
they operate infinitely long on stimuli provided by their environment. Hence, monitor-
ing ϕ over the standard infinite-trace semantics of LTL, using only finite behavioural
strings would be impossible in such a setting. On the other hand, in a different set-
ting, it may be possible to be more specific, and one can search for possible violations
of this requirement within a certain bound, i. e., the process must terminate within
30 steps of recurring observations.

So-called bounded model checking is based on this idea and uses a bounded semantics
of LTL which safely under-approximates the standard semantics. It allows the use of
a prefix u = a0a1 . . . ak of an infinite string w = uw′ ∈ Σω to check the formula. Biere
et al. [2003] have shown that if a formula ϕ holds in the bounded semantics, denoted

50 Chapter 3: Formal systems specification and verification with temporal logic

w |=k ϕ, where k is the bound, it also implies that w |= ϕ. For a good overview on
bounded model checking, see also Biere et al. [2003], and Clarke et al. [2004].

Property decomposition

Based on previous findings by Schneider [1987], it is shown in a subsequent work by
Alpern and Schneider [1987] that any property on infinite strings can be decomposed
into a safety property and a liveness property whose conjunction is the original.

Theorem 3.2.2 (Decomposition theorem): For any property P defined over in-
finite strings w ∈ Σω there exists a safety property Psafe and a liveness property Plive
(both over Σω), such that P = Psafe ∩ Plive.

Proof:
The proof for the decomposition theorem is based on the observation that the safety
properties resemble the closed sets on Σω, whereas the liveness properties are the
dense sets. The attributes “closed” and “dense” refer in this context to the Cantor
topology over infinite strings in Σω (cf. Finkel [2003], Finkel and Simonnet [2003]).

To relate this back to LTL and ω-automata, it is concluded that it is possible to
decompose any Büchi automaton, A, into the automata, Asafe and Alive, such that
the set of strings accepted by Asafe is a safety property and the set of strings accepted
by Alive is a liveness property.

3.3 SALT—Structured assertion language for

temporal logic

3.3.1 Motivation

Temporal logic as introduced in the previous sections is a specification formalism
suited to express desired properties of a set of traces and comes with rigorous se-
mantics. Importantly, automatic verification techniques, such as model checking, are
successfully used to verify such specifications over finite state system models.

However, despite obvious advantages over semi-formal and informal notations, tem-
poral logic is often disregarded in industrial practice; the exception being the hard-
ware verification domain (see §3). Instead, a considerable amount of verification
related questions are answered only partially by means of testing and simulation with
well-known drawbacks (see §2.2). Temporal logic, on the other hand, is still widely
considered to be a vehicle for specially skilled verification engineers, if not even an
“academic toy” to some.

In this section it is argued that the latter point of view is misleading. It is admitted,
however, that, for example, LTL’s syntax—together with the typical reduction to a

3.3 SALT—Structured assertion language for temporal logic 51

minimal set of operators which is done in most research papers—makes it additionally
hard for formulating concise and correct specifications, even for specialists.

For example, consider the simple requirement “s precedes p after q”, which is for-
mulated in LTL by Dwyer et al. [1999] as (G¬q) ∨ F(q ∧ (¬pUws)). At first sight,
this looks correct: “either q never holds or, when q becomes true, there is no p be-
fore an s”. Nevertheless, the formula contains a subtle error: it states that eventually
q∧(¬pUws) holds, but does not require it to be the first occurrence of q. The sequence
qpqs satisfies the formula, although it is clear that it should not. Consequently, the
correct formula would be (G¬q)∨¬qU(q ∧ (¬pUws)). Avoiding this kind of mistake
in specifications altogether is practically impossible. LTL’s minimalistic set of oper-
ators, however, forces its users to build complex, error-prone formulae for even very
simple requirements as can be seen in this example.

It is very unlikely, however, that a completely different temporal specification formalism—
of whatever kind—would stand a chance to compete with LTL (and its derivatives,
for that matter) for at least two different reasons:

1. LTL has well-accepted and precise semantics,

2. powerful model checking tools and runtime verification approaches based on
LTL exist already.

To address these problems, Salt is introduced in this section, whose name is an
acronym for Structured Assertion Language for Temporal Logic. Salt was first de-
scribed in greater detail by Bauer et al. [2006c], and a realisation in terms of an
optimising compiler was given by Streit [2006]. The latter contains a detailed dis-
cussion of the translation process of Salt specifications as well as its realisation in
terms of an optimising compiler, now available from http://salt.in.tum.de/ under
an open source license. Note that the author of this thesis co-supervised the work of
Streit.

To programmers, Salt looks similar to a general-purpose imperative programming
language, while still being translatable to LTL, or, in case real-time operators are
used, to TLTL (see §4.5.1). As such, Salt is not only suitable as a front end to
the runtime reflection framework, but also to already existing model checking and
runtime verification tools which are based on standard LTL (e. g., SPIN or SMV).
More importantly, being syntactically close to a general-purpose language, Salt is,
as the examples throughout this section will show, more intuitive to use and under-
stand than pure LTL. For example, besides LTL’s temporal operators, Salt provides
scoping rules, support for (limited) regular expressions, exceptions, iterators, count-
ing quantifiers, and user-defined macros. In other words, using Salt, one is able to
specify properties on a higher level of abstraction than with many other formalisms,
such as standard LTL and derivatives.

While compiling a high-level programming language to a more low level representa-
tion often has a negative impact in terms of efficiency (see, e. g., Bauer [2004] for a
discussion of this problem in light of efficiently compiling high-level functional code),
it can be demonstrated that LTL (respectively TLTL) formulae resulting from Salt

http://salt.in.tum.de/

52 Chapter 3: Formal systems specification and verification with temporal logic

specifications tend to be considerably compact when compared to their manually
written counterparts in LTL; one reason lies in that humans tend to choose the most
readable formula among equivalent ones, while the Salt compiler can optimise solely
for the size of a formula.

Although, Salt’s syntax is exemplified by various practical examples throughout
the following sections, its formal syntax is not reprinted in full length as it is also
available in terms of a context-free grammar from Streit [2006]. A detailed discussion
concerning the formal semantics, however, follows in §3.3.4 and is supplemented by
Appendix A, which contains details regarding the translation of the language.

3.3.2 Classification

In the following, the broader context of Salt is detailed upon in terms of a discussion
regarding other well-known approaches with similar goals in mind (that is, providing a
more high-level abstraction for temporal logic and, in particular, LTL), and secondly,
in terms of sketching the overall expressiveness of Salt.

Related approaches

Plain LTL’s limited flexibility in real-world scenarios has also been noted by other
authors. For various domains, such as hardware design and verification, the use
of more high-level and abstract specification languages has become an established
means for reasoning about system properties. The success of some of these methods
manifests itself in various standardisation efforts undertaken by the IEEE. For brevity,
only some of the established approaches are outlined below.

Sugar/PSL. Sugar/PSL (Property Specification Language) (Beer et al. [2001])
is a high-level specification language tailored for hardware design, originally aimed
as a “syntactic sugaring” of the branching time logic CTL (Emerson and Halpern
[1982]). However, from version 2.0 on, Sugar is based on a linear view of time while
keeping branching time as an optional extension. Sugar is currently undergoing
standardisation by the IEEE under the name PSL, short for Property Specification
Language (cf. Foster et al. [2005]).

The PSL language is structured into Boolean, temporal, verification, and modelling
layers. The Boolean layer provides operators for propositional logic, while the oper-
ators of the temporal layer are used to combine propositional formulae to temporal
ones. The verification layer allows to define what the verification tool is expected
to do with the specified properties (e. g., check that a property holds, assume that a
property holds, etc.). The modelling layer, in turn, is used to model the input to the
design or external hardware.

PSL provides a rich set of operators for reasoning over Boolean conditions (e. g., bit-
vector operations) and for regular expressions. A so-called clocking operator allows

3.3 SALT—Structured assertion language for temporal logic 53

to state that an expression is evaluated only in cycles where its clocking condition
holds. PSL comes with an abort operator that can be used to model resets: it
evaluates a pending expression to false on the occurrence of an exceptional (abort)
condition. Furthermore, PSL allows the use of macro directives similar to those of
the C preprocessor. Parameterised properties can be instantiated for a set of concrete
values. However, PSL does not contain temporal past operators which can be rather
intuitive to use as well as make specifications more succinct (see Definition 3.1.16),
and no real-time constraints used frequently for modelling and verifying properties
of reactive systems imposing strict execution times and deadlines, such as embedded
systems.

PSL is often directly used as input to a verification tool, both for formal verifica-
tion and for generating checks that are executed by a simulation tool. The latter
corresponds to a runtime analysis of a simulated hardware design. However, PSL
is specific to the hardware domain and a translation into LTL is possible only for a
subset of PSL (cf. Tuerk and Schneider [2005]). Therefore it cannot be easily used
with existing LTL-based verification tools.

PSL’s goals are orthogonal to Salt: On the one hand, Salt provides a more
convenient-to-use language; on the other, Salt is not dedicated to either model
checking, runtime verification, or to the hardware domain. As such, Salt does not
impose its own verification and modelling layer on the user. Although, Salt serves
as an interface to the runtime reflection approach as outlined in this thesis.

SpecPatterns. Salt is also influenced by work of Dwyer et al. [1999], in which
various real-world specifications have been analysed. Frequently used patterns have
been identified and a pattern system for property specifications, similar to the design
patterns in software engineering (Gamma et al. [1994]) has been elaborated. Basically,
a pattern provides a solution to a reoccurring problem, often including notes about
its advantages, drawbacks, and alternatives. As such it enables inexperienced users
to reuse expert knowledge.

The patterns of Dwyer et al. consist of requirements, such as “absence” (i. e., a condi-
tion is false) or “response” (i. e., an event triggers another one), that can be expressed
under different scopes, such as “globally”, “before an event r”, “after an event q”, or
“between two events r and q”. The specification pattern approach has been adopted
by the Bandera Specification Language and a compiler that translates such
specifications into LTL is part of the Bandera system (Corbett et al. [2001]).

Dwyer et al. convincingly argue that scopes are needed in many real-world specifi-
cations. However, specification patterns as defined by Dwyer et al. suffer from the
fact that they cannot be nested: only propositional formulae may be used as their
parameters. In other words, adding a new requirement to the pattern system means
having to manually write an LTL formula for each scope.

54 Chapter 3: Formal systems specification and verification with temporal logic

Further approaches. The previous two approaches are not the only specification
languages tailored for domain-specific tasks. For instance, the ForSpec Temporal

Logic (FTL) (Armoni et al. [2002]) is a specification language developed at Intel,
and is based on a linear view of time, aimed at the formal verification of hardware
circuits. Much like Sugar/PSL, ForSpec provides regular and clocked expressions
as well as accept and reject operators for modelling resets. However, ForSpec does
not contain real-time operators, only limited support for references to the past, and
cannot be completely translated to LTL.

EAGLE (Barringer et al. [2004]) is a temporal logic with a small but flexible set of
primitives. The logic is based on recursive parameterised equations with fix-point
semantics and merely three temporal operators: next-time, previous-time, and con-
catenation. Using these primitives, one can construct the operators known from
various other formalisms, such as LTL or regular expressions. While EAGLE allows
the specification of real-time constraints, it lacks many high-level constructs such as
the nested scopes, exceptions, and counting quantifiers present in Salt.

Notably, Bradfield and Stevens [1998] describe a symmetric approach by providing a
more low-level and formal framework in which the various different aspects of different
temporal logics can be expressed. They introduce the observational mu-calculus as an
“assembly language” for various extensions of temporal logic. In a follow-up paper,
Bradfield et al. [2002] describe first results from an integration of the observational
mu-calculus into the Object Constraint Language (OCL), which also forms part of
the UML (cf. Warmer and Kleppe [1998]). However, the goal of this work was not
to provide a more rich and natural syntax, but rather a sufficient set of temporal
operators.

Expressiveness

Existing approaches as outlined above have shaped various practical considerations
in the overall design rationale of the input language Salt. However, from a purely
theoretical point of view, Salt’s features are more oriented towards the varying
expressiveness of the supported logics.

Salt supports translation into LTL, as well as TLTL, which forms the natural exten-
sion of LTL for the formulation of real-time constraints: D’Souza [2003] has shown
that TLTL corresponds exactly to the first-order fragment (FO) of monadic second
order logic (MSO) interpreted over timed words (see §4.5.1). This resembles the
correspondence of LTL and first-order logic over words as shown by Kamp [1968].
However, LTL is strictly less expressive than second-order logic over words, which
is expressively equivalent to ω-regular expressions. This implies that full support of
regular expressions is not possible when only LTL properties are in question.

However, for practitioners, regular expressions have always been an accepted and
established formalism, often used to specify custom search patterns or input tokens
for programming language parsers (cf. Thompson [1968], Aho et al. [1988]). Therefore,

3.3 SALT—Structured assertion language for temporal logic 55

LTL PastLTL

Prop. Logic

TLTL

FO

FOec
MSO

ec

MSO

RExp

RExp(*)

Fig. 3.4: Relationships between propositional, first-order, and temporal logics.

Salt does provide support for regular expressions that do not go beyond star-free
regular languages, where “star” refers to the Kleene operator (see Definition 3.1.7),
and which can, therefore, be efficiently translated into LTL.

The design of the language Salt also follows a strictly layered approach, in that the
language supports specifications that can be translated into either formalism depicted
in Fig. 3.4. Moreover, by reflecting and differentiating between the different levels
of expressiveness in the language, Salt is theoretically extensible to support other
logics in the future as well.

3.3.3 Design rationale and language features

A Salt specification contains one or more assertions that, together, formulate the
requirements associated with a system under scrutiny. Each assertion is translated
into a separate LTL/TLTL formula, which can then be used in a model checker or
the runtime reflection framework. Salt uses mainly textual operators, so that the
frequently used LTL formula G(p⇒ Fq), encoding request-acknowledgement, would
be written as:

assert always (p implies eventually q).

Basically, the Salt language consists of the following three layers, each covering
different aspects of the specification:

The propositional layer provides the atomic, Boolean propositions as well as the
well-known Boolean operators.

The temporal layer encapsulates the main features of the Salt language for spec-
ifying temporal system properties. The layer is divided into a future fragment
and a symmetrical past fragment.

The timed layer adds real-time constraints to the language. It is equally divided
into a future and a past fragment, similar to the temporal layer.

Within each layer, macros and parameterised expressions can be defined and in-
stantiated by iteration operators, enlarging the expressiveness of each layer into the
orthogonal dimension of functions. Depending on which layers are used for speci-
fication, the Salt compiler generates either LTL or TLTL formulae (each, with or

56 Chapter 3: Formal systems specification and verification with temporal logic

without past operators). For instance, if only operators from the propositional layer
are used, the resulting formulae are purely propositional formulae. If only operators
from the temporal and the propositional layer are used, the resulting formulae are
LTL formulae, whereas if the timed layer is used, the resulting formulae are TLTL
formulae.

Propositional layer

Atomic propositions. Boolean propositions are the atomic elements from which
Salt expressions are built. They usually resemble variables, signals, or complete
expressions of the system under scrutiny. Salt is parameterised with respect to the
propositional layer: any term that evaluates to either true or false can be used as
atomic proposition. For example, this allows propositions to be Java expressions
when used for runtime reflection of Java programs, or simple bit-vectors when Salt

is used as a front end to verification tools like SPIN or SMV.

Every identifier that is used in the specification and that was not defined as a macro or
a formal parameter is treated as an atomic proposition, which means that it appears
in the output as it has been written in the specification. Additionally, arbitrary
strings can be used as atomic propositions. For example,

assert always "state!=ERROR"

is a valid Salt specification and, using the Salt compiler, results in the output

LTLSPEC G state!=ERROR,

here, in SMV-syntax.

Unlike other approaches such as Sugar/PSL, Salt does not make any assumptions
regarding the validity or consistency of used propositions. However, the realisation
(see §6) allows the use of external parsers that are able to perform additional checks
on the specification terms used.

Boolean operators. The well-known set of Boolean operators op = {∨,∧,⇒,⇔}
can be used in Salt both as symbols (|, &, ->, <->), or as textual operators (or,
and, implies, equals). Negation is denoted in Salt as !.

Additionally, the conditional operators if-then and if-then-else can be used, which
appear similarly in the ForSpec language. Conditional operators tend to make
specifications easier to read, because if-then-else constructs are familiar to pro-
grammers of almost every language. Using this operator, the introductory request-
acknowledgement example could be reformulated as

assert always (if p then eventually q).

More so, any such formula can be arbitrarily combined using the Boolean connectives
given by the set op.

3.3 SALT—Structured assertion language for temporal logic 57

Temporal layer

To support all aspects of modelling with temporal logic, the temporal layer of Salt

consists of a future and a past fragment. However, in the following description of the
temporal layer, only the future fragment of Salt is presented, for reasons explained
earlier in Definition 3.1.16. The past fragment, however, is completely symmetrical
to the future fragment. Salt future operators are translated using only LTL future
operators, and past operators are translated using only LTL past operators. This
leaves users the complete freedom as to whether they do or do not want to have past
operators in the result.

Standard operators. Salt provides the common LTL operators U, Uw, R, G,
F and X, written as until, until weak, releases, always, eventually, and next.
Thus, untimed Salt (i. e., Salt without real-time operators) has exactly the same
expressiveness as standard LTL.

Derived and extended operators. Similarly to Sugar/PSL, Salt also provides
a number of extended operators that help express frequently used requirements.

• never: The never operator is dual to always and requires that a formula never
holds. While this could of course be easily expressed with the standard LTL
operators, using never, can help make specifications easier to understand.

• Extended until: Salt provides an extended version of the LTL U operator.
The user can specify whether she or he wants it to be exclusive (i. e., in ϕUψ, ϕ
has to hold until the moment ψ occurs) or inclusive (i. e., ϕ has to hold until and
during the moment ψ occurs).1They can also choose whether the end condition
is required (i. e., must eventually occur), weak (i. e., may or may not occur), or
optional (i. e., the expression is only considered if the end condition eventually
occurs). The until operator family of Sugar/PSL provides a similar choice
between inclusive/exclusive and weak/strong end conditions.

• Extended next. Instead of writing long chains of next operators, users of Salt

can specify directly that they want a formula to hold at a certain step in the
future. It is also possible to use the extended next operator with an interval,
e. g., specifying that a formula has to hold at some time between three and
six steps in the future. Note that this operator refers only to states at certain
positions in the sequence, not to real-time constraints.

1This has nothing to do with strict or non-strict U: strictness refers to whether the present state
(i. e., the left end of the interval where ϕ is required to hold) is included or not in the evaluation
(Fisher [1991]), while inclusive/exclusive defines whether ϕ has to hold in the state where ψ
occurs (i. e., the right end of the interval). Strict Salt operators can be created by adding a
preceding next-operator.

58 Chapter 3: Formal systems specification and verification with temporal logic

Counting quantifiers. Salt provides two operators, occurring and holding,
that allow events that have to occur a certain number of times to be specified.
occurring deals with events that may last more than one step and are separated
by one or more steps in which the condition does not hold. holding considers single
steps in which a condition holds. Both operators can also be used with an inter-
val, e. g., expressing the fact that some condition has to be true at most during two
steps in the future. To express this requirement manually in LTL, one would have to
write

¬pUw(pUw(¬pUw(pUwG¬p))).

The corresponding Salt specification is written as

assert occurring[<=2] p.

Exceptions. Salt includes the exception operators rejecton and accepton that
interrupt the evaluation of a formula upon occurrence of an abort condition. rejecton
evaluates a formula to false if the abort condition occurs and the formula has not
been accepted before. For example, monitoring a formula Fϕ when there has been no
occurrence of ϕ yet would evaluate to false. The dual operator, accepton, evaluates
a formula to true if it has not been rejected before.

Exceptions can be useful, e. g., when specifying a communication protocol that re-
quires certain messages to be sent, but allows the communication to be aborted at
any time by sending a reset message. This would be expressed in Salt as

assert (con_open and next (data until con_close)) accepton reset.

Similar rejecton and accepton operators can be found in ForSpec and in PSL.
The formal semantics of LTL enriched with those two operators (called Reset-LTL)
was explored in detail by Armoni et al. [2003].

Scope operators. Many temporal specifications contain requirements restricted to
a certain scope, i. e., they state that the requirement has to hold only before, after,
or between some events, and not on the whole sequence. This can be expressed in
Salt using the operators upto (or before), from (or after) and between.

Fig. 3.5 illustrates scopes. In the figure, it can be seen that it is mandatory in Salt

to specify whether the delimiting events are part of the interval (i. e., inclusive) or
not (i. e., exclusive). Furthermore it has to be stated whether the occurrence of the
delimiting events is strictly required.

Scopes have been identified by Dwyer et al. [1999] as an important issue in the
specification pattern system and, consequently, the Bandera language. However,
their pattern system is restricted to predefined requirements. It does not allow
nested scopes, and by default only certain combinations of inclusive/exclusive and
required/optional delimiters. A subset of scopes can also be expressed in Sugar/PSL
using the next event and before operators. Salt’s distinguishing feature here is

3.3 SALT—Structured assertion language for temporal logic 59

Fig. 3.5: Scopes of upto, from and between.

that scope operators can be used with arbitrary formulae, even with nested scope
operators.

While it is relatively straightforward to implement a translation of the from operator
into LTL, the upto operator proves to be more difficult, as can be seen in the following
example.

A specification always ϕ upto b expresses that ϕ must always hold until the occurrence
of the end condition b. A näıve translation into LTL would be ϕUwb. This is in order
for a purely propositional ϕ, but might be wrong when temporal operators are used:
Consider for example ϕ ≡ p -> (eventually s) yielding the formula (p ⇒ Fs)Uwb,
intending to say “p should be followed by s before b”. The sequence pbs is a model
for the latter formula, although s occurs after the end condition b, which violates the
intentional meaning. To meet the intentional meaning, the negated end condition b

has to be inserted into the U and X statements of ϕ in various places, e. g., like this:
(p ⇒ (¬bU(¬b ∧ s)))Uwb. Dwyer et al. [1999] describe this procedure in the notes
of their specification pattern system. It is, however, a tedious and highly error-prone
task if undertaken manually.

Salt supports automatic translation by internally defining a stop operator. With this
operator, the above example can be formulated as ((p⇒ Fs) stop b)Uwb with stop b
expressing that (p⇒ Fs) shall not take into account states after the occurrence of b.
It is then transformed into an LTL expression in a similar way as the rejecton and
accepton operators. For details on this translation, see §3.3.4.

Regular expressions. Besides their use in programming and compilers, regular
expressions provide a convenient way to express complex patterns of events, and
appear also in many specification languages, e. g., such as Sugar/PSL. However,
arbitrary regular languages can be defined using regular expressions, while LTL only

60 Chapter 3: Formal systems specification and verification with temporal logic

allows the definition of so-called star-free languages. Thus, regular expressions have
to be restricted to be usable in Salt.

The Salt regular expressions provide concatenation (;), union (|), and Kleene-star
operators (*), but no complement. The argument of the Kleene-star is required to be
a propositional formula. The advantage of this operator set (in contrast to the usual
operator set for star-free regular expressions, which contains concatenation, union
and complement) is that it can be translated efficiently into LTL. Note in the case of
Sugar/PSL, which also provides regular expressions without a complement operator,
it is argued that many relevant properties which are interesting for verification can
be expressed conveniently without it (cf. Beer et al. [2001]).

Additionally, Salt provides operators that do not increase the expressiveness of its
regular expressions, but makes dealing with them more convenient for users. The
overlapping sequence operator : is inspired by Sugar/PSL and states that one ex-
pression follows another one, overlapping in one step. The ? and + operators (optional
expression and repetition at least once) are common extensions of regular expressions.
The * operator extended with a range of natural numbers allows to specify that an
expression has to hold at least, at most, exactly, or in between n and m times.

Traditional regular expressions, as used in programming and for compilers, match
finite sequences (see Definition 3.1.7). In contrast, a Salt regular expression holds
on a (possibly) infinite sequence, if it matches a finite prefix of the sequence.

With the help of (ω-) regular expressions, the example using exception operators,
enclosed in dashes, can be reformulated as

assert /con_open; data*; con_close/ accepton reset.

Timed layer

Salt contains a timed extension that allows the specification of real-time constraints
that go beyond the expressiveness of plain LTL. Basically, timed operators are trans-
lated into the logic TLTL, a timed variant of LTL introduced formally in §4.5.1 which
constitutes the foundation for the dense-time runtime verification approach developed
in this thesis.

Timing constraints in Salt are expressed using the modifier timed[∼], which can be
used together with several untimed Salt operators in order to turn them into timed
operators. ∼ is one of <, <=, =, >=, > for next timed and either < or <= for all other
timed operators.

• next timed[∼ c]ϕ

states that the next occurrence of ϕ is within the time bounds ∼ c. This
corresponds to the operator ⊲[∼ c]ϕ in TLTL.

• ϕ until timed[∼ c] ψ

states that ϕ is true until the next occurrence of ψ, and that this occurrence of

3.3 SALT—Structured assertion language for temporal logic 61

ψ is within the time bounds ∼ c. The extended variants of until can be used
as timed operators as well.

• always timed[∼ c] ϕ

states that ϕ must always be true within the time bounds ∼ c.

• never timed[∼ c] ϕ

states that ϕ must never be true within the time bounds ∼ c.

• eventually timed[∼ c] ϕ

states that ϕ must be true at some point within the time bounds ∼ c.

At this point, more detail regarding real-time specifications is not provided. The next
chapter extensively deals with this topic.

Macros and parameterised expressions

Salt supports user-defined sub-expressions as macros and to parameterise macros
and sub-expressions. Macros can be called in the same way as built-in Salt operators.
Within certain limits, this allows users to extend the Salt language using their own
operators. For example, the following macro is called in infix notation:

define respondsto(x, y) := y implies eventually x

assert always (reply respondsto request)

Iteration operators allow the instantiations of a parameterised sub-expression or
macro with a list of values provided by the user. For example, the following specifi-
cation states that either a or !b or c must hold forever.

assert someof list [a, !b, c] as i in always i

Parameters defined in a macro or an iteration expression can also be used to param-
eterise Boolean variables, as in the following example, which states that exactly one
of the four variables, state_1, state_2, state_3 and state_4, must be true.

assert exactlyoneof enumerate[1..4] as i in state_i

Macros can help to make a specification easier to understand, because complicated
sub-expressions can be transparently hidden from the user, and accessed via an in-
tuitive name that explains what the expression actually stands for. Sub-expressions
that are used several times have to be written down only once.

3.3.4 Formal semantics

As outlined in §3.3.2, Salt can be translated into either LTL or TLTL; the latter
only when timed operators are used in a specification. Therefore, some of Salt can
be considered purely as syntactic sugaring and its formal semantics defined in terms
of an inductive translation to either formalism. This translation is described in the
following for some of Salt’s operators, where a reductive transformation function T
is defined to transform a Salt expression ψ into a temporal logic formula T (ψ), such

62 Chapter 3: Formal systems specification and verification with temporal logic

that for every infinite word w from an alphabet of actions, w |= ψ ⇔ w |= T (ψ). In
what follows, let ψ, ϕ, and ϕ′ denote Salt specifications.

For example, the operator never is then translated as T (never ϕ) = ¬FT (ϕ), whereas
a weak inclusive until as in ϕ1 until incl weak ϕ2 is then defined as

T (ϕ1 until incl weak ϕ2) = T (ϕ1) Uw (T (ϕ1) ∧ T (ϕ2)).

However, not all Salt operators translate in such a straightforward inductive manner,
since their translation depends on what is defined by the according sub-formulae
occurring in a given expression. To guide the translation process for such operators,
an artificial or helper operator, stop, is introduced which is inductively defined by T
as follows:

T (b stopexcl s) = b

T ((¬ϕ) stopexcl s) = ¬T (ϕ stopexcl s)

T ((ϕ ∧ ψ) stopexcl s) = T (ϕ stopexcl s) ∧ T (ψ stopexcl s)

T ((ϕ ∨ ψ) stopexcl s) = T (ϕ stopexcl s) ∨ T (ψ stopexcl s)

T ((ϕ U ψ) stopexcl s) = (¬s ∧ T (ϕ stopexcl s)) U (¬s ∧ T (ψ stopexcl s))

T ((ϕ Uw ψ) stopexcl s) = T (ϕ stopexcl s) Uw (s ∨ T (ψ stopexcl s))

T ((Xϕ) stopexcl s) = X(¬s ∧ T (ϕ stopexcl s))

T ((Gϕ) stopexcl s) = T (ϕ stopexcl s) Uw s

T ((Fϕ) stopexcl s) = (¬s) U (¬s ∧ T (ϕ stopexcl s))

where b denotes an atomic proposition from the action alphabet and s a well-formed
suffix, possibly being atomic also.

Thus, stop selects certain aspects of a formula, and in ψ ≡ ϕ1 stop ϕ2, intuitively as-
serts that the validity of ψ does not depend on events occurring after ϕ2 has occurred.
Again, for brevity, only the exclusive variant of stop is considered, and only for the
future fragment of Salt. The past fragment and inclusive semantics, however, are
each symmetrical.

The more complicated scope operator upto, which was discussed earlier in §3.3.3, and
whose translation depends on stop, is then defined as:

T (ϕ upto excl req b) =
if T (ϕ) = Gψ: (ψ stopexcl b) U b

if T (ϕ) = ¬Fψ: (¬ψ stopexcl b) U b

else: (Fb) ∧ (T (ϕ) stopexcl b)

3.3 SALT—Structured assertion language for temporal logic 63

T (ϕ upto excl opt b) =
if T (ϕ) = Fψ: ¬((¬ψ stopexcl b) U b)
else: (Fb) ⇒ (T (ϕ) stopexcl b)

T (ϕ upto excl weak b) = (T (ϕ) stopexcl b)

T (req ϕ upto excl req b) =
if T (ϕ) = Gψ: ¬b ∧ ((ψ stopexcl b) U b)
if T (ϕ) = ¬Fψ: ¬b ∧ ((¬ψ stopexcl b) U b)
else: (Fb) ∧ ¬b ∧ (T (ϕ) stopexcl b)

T (req ϕ upto excl opt b) =
if T (ϕ) = Fψ: ¬((¬ψ stopexcl b) U b)
else: (Fb) ⇒ (¬b ∧ (T (ϕ) stopexcl b))

T (req ϕ upto excl weak b) = ¬b ∧ (T (ϕ) stopexcl b)

T (weak ϕ upto excl req b) =
if T (ϕ) = Gψ: (ψ stopexcl b) U b

if T (ϕ) = ¬Fψ: (¬ψ stopexcl b) U b

else: (Fb) ∧ (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl opt b) =
if T (ϕ) = Fψ: b ∨ ¬((¬ψ stopexcl b) U b)
else: (Fb) ⇒ (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl weak b) = b ∨ (T (ϕ) stopexcl b)

T (ϕ upto incl req b) = (Fb) ∧ (T (ϕ) stopincl b)

T (ϕ upto incl opt b) = (Fb) ⇒ (T (ϕ) stopincl b)

T (ϕ upto incl weak b) =
if T (ϕ) = Gψ: ¬(¬b U ¬(ψ stopincl b))
if T (ϕ) = ¬Fψ: ¬(¬b U (ψ stopincl b))
else: (T (ϕ) stopincl b)

where, stopexcl and stopincl are references to the exclusive and inclusive variants of
stop, respectively.

Similar translation schemes are defined for Salt’s exception operators, i. e., accepton
and rejecton. For details, see Appendix A.

The above translation is carried out stepwise; that is, a Salt expression is first turned
into the Salt core language consisting of the operators until, upto, from, between,
accepton, rejecton, and the set of regular expressions which can be described by
using only the repetition operator in the constrained form of *[>=n].

The second step includes translation of core Salt into the subset Salt--, which
basically resembles either LTL or TLTL but using also exception operators as well as
exclusive and inclusive stop-operators for both the future and past fragments. The

64 Chapter 3: Formal systems specification and verification with temporal logic

stop-operator can be thought of as a helper which is introduced during the translation
of upto and between.

Finally, Salt-- gets converted in a third step into either plain LTL or TLTL, both
of which may contain past operators if originally used for specification.

3.3.5 Example specifications

In this section, a concluding look at some more Salt specifications is taken, and their
corresponding LTL versions examined. The examples are mostly borrowed from the
survey presented by Dwyer et al. [1999], except where indicated otherwise. Note that
propositions appearing in the specifications are not necessarily marked as such and
are denoted in plain text only, indicating their intuitive meaning with respect to the
specification.

1. The requirement that a system should operate until a queue of jobs is either
empty, or an abort signal issued can be formulated in LTL as

¬((¬(queuelength == 0∨abort))U(¬working∧(¬(queuelength == 0∨abort)))).

The accompanying Salt specification would be:

assert working until weak ("queuelength == 0" | abort).

2. To specify idle behaviour, the following LTL specification could be used:

G(¬return Execute ∨ (return Execute ∧ ((Fcall Execute) ⇒

(¬(¬call ExecuteU(call doWork ∧ ¬call Execute)))))).

It asserts that between the moment in which an execution completes, and before
a new one beings, there is no work done. In Salt, this example would be written
as:

assert always

(never call_doWork

between inclusive optional return_Execute,

exclusive optional call_Execute).

3. Coming back to the initial example from the area of protocol specification, one
might assert that an answer was immediately preceded by a request. In LTL
this would be written as:

G(answer ⇒ (Xrequest)).

Using a macro, in Salt, precedes can be expressed as follows:

define precedes(x, y) := if y then once x

assert always (request precedes answer).

3.3 SALT—Structured assertion language for temporal logic 65

4. A system with n input channels, may be using at most one at a time. Given
that n = 4, this simple requirement would require

G(((in 0 ∧ (¬(in 1 ∨ (in 2 ∨ in 3))))∨

((in 1 ∧ (¬(in 0 ∨ (in 2 ∨ in 3))))∨

((in 2 ∧ (¬(in 0 ∨ (in 1 ∨ in 3))))∨

(in 3 ∧ (¬(in 0 ∨ (in 1 ∨ in 2)))))))∨

(¬(in 0 ∨ (in 1 ∨ (in 2 ∨ in 3)))))

if specified in LTL. The shorter Salt specification appears to be less error-prone
and more readable (not only because of proper indenting):

assert always

(exactlyoneof enumerate [0..3] as i in in_i) |

(noneof enumerate [0..3] as i in in_i).

5. To show that regular expressions can be very useful for specification purposes, in
the following it is expressed that a connection signal is eventually answered by
an acknowledgement, followed by at least four data packets and a close signal.
Again, this is first examined in LTL:

G(connection⇒

(F(answer ∧ (X(dataU(data∧

(X(data ∧ (X(data ∧ (X(data ∧ (X close))))))))))))).

Now, consider the Salt counterpart using a regular expression:

assert always (if connection then

eventually /answer; data*[>=4]; close/)

6. Reconsider the elevator from p. 45. The requirement was that between the time
an elevator is called at a floor and the time it opens its doors at that floor, the
elevator can arrive at that floor at most twice. In Salt, this can be specified
as:

assert always

(occurring[<=2] atfloor

between inclusive optional call, exclusive optional open)

7. This section is now concluded by extending this example further and thus,
showing most of Salt’s features in one use-case. The following specification
describes the following behaviour: On all three floors in a building, calling the
elevator at floor i implies that it may pass at most two times at that floor
without opening its doors, and that it must finally open its doors at that floor
within 60 seconds.

define max_twice_at_floor_before_open(i) :=

66 Chapter 3: Formal systems specification and verification with temporal logic

always(occurring[<=2] atfloor_i

between inclusive optional call_i,

exclusive optional open_i)

define max_60s_before_open(i) :=

always (call_i implies

eventually timed[<=60.0] open_i)

assert allof enumerate[1..3] as floor in

max_twice_at_floor_before_open(floor)

and max_60s_before_open(floor)

The modifiers optional in the between-statement make sure that atfloor_i is only
checked provided call_i occurs.

Note that the equality between the LTL specifications in the above examples and their
Salt counterparts, was established using the model checker SMV. For this purpose
the Salt specifications were first compiled into plain LTL using the Salt compiler
(see §6) and then compared with the manually written requirements.

3.4 Summary

The first part of this chapter recalls the foundations of linear time temporal logic as a
means for systems specification and verification, whereas the second part introduces
the custom specification and assertion language, Salt, for creating concise temporal
specifications that are intuitive to read and formulate. Salt incorporates ideas of
existing approaches, such as specification patterns, but also provides nested scopes,
exceptions, support for regular expressions and real-time. The latter is needed in
particular for verification tasks to do with reactive systems imposing strict execution
times and deadlines. However, unlike other formalisms used for temporal specification
of properties, Salt does not target a specific domain; that is, it can be used with any
formal verification framework, besides runtime reflection, which is based on linear time
temporal logic, such as model checkers, for instance. Moreover, the chapter details
on the design rationale, the syntax and semantics of Salt in terms of a translation
to temporal (real-time) logic, and gives a number of example use-cases.

Chapter 4

Failure detection through runtime

verification

My second remark is that our intellectual
powers are rather geared to master static
relations and that our powers to visualize
processes evolving in time are relatively
poorly developed.

(Edsger W. Dijkstra, Go To Statement
Considered Harmful)

This chapter introduces an automata-based approach to runtime verifi-
cation using a 3-valued interpretation of temporal properties, capable of monitoring
real-time specifications, e. g., for event-triggered reactive or real-time systems. Such
systems usually exhibit events at arbitrary points in time which are often modelled
using rational or real numbers. This is then referred to as dense time. However,
dynamic reasoning depends naturally on the resolution of the employed interrupt
timers.

Although there exist various “flavours” of runtime verification, the basic underlying
idea is normally the same and can be summarised as follows. A user-provided spec-
ification of intended system behaviour is compared by an observer with the actual
behaviour of a system during its execution. The observer or system monitor will
then come to a verdict as to whether the system behaviour satisfies the specification.
Therefore, runtime verification belongs to the class of dynamic verification methods,
for which system execution is mandatory. Another dynamic method is, e. g., testing
as outlined in §2. Consequently, runtime verification not only aids in establishing
correctness while a system is in normal operation, after it has been fully developed
and shipped, but monitors are also useful to complement traditional or model-based
testing (cf. Broy et al. [2005]).

It is mainly the different approaches to systems specification which have led to the
differing flavours of runtime verification. Thus, one can consider a wide spectrum of
approaches, ranging from predicate assertions stating properties about single states
at single system or program locations, to temporal assertions stating properties about

67

68 Chapter 4: Failure detection through runtime verification

temporally separated states at multiple program locations. The latter is clearly in-
spired by works of model checking temporal specifications and, at the same time, the
predominant approach to formal runtime verification encountered in the literature
(cf. Havelund and Goldberg [2005]).

The approach described in this chapter not only covers dense-time systems, but it
also has the following properties, each of which will be explained in greater detail
throughout this chapter:

minimality, i. e., behavioural violations are detected as early as possible,

predictiveness, i. e., depending on the property being monitored, violations can
be detected before a violating event has occurred, (This is a direct result of
minimality.)

minimal space complexity, i. e., the generated monitors are minimal with respect
to the language/property being monitored,

universality, i. e., monitoring is not restricted to a particular class of properties,
such as safety.

4.1 A brief history of runtime verification

When compared to the area of static verification, e. g., by means of automatic model
checking, runtime verification is a relatively young scientific discipline1 with consid-
erably fewer publications, but nonetheless various academically as well as practically
interesting approaches, some of which are outlined in the following.

Basically, the term runtime verification was coined by works of Havelund and Rosu
(cf. Havelund [2000], Havelund and Rosu [2001b;a; 2002; 2004]). In their work, tem-
poral logic descriptions in LTL are used to generate monitors for Java programs to
detect deadlocks and race conditions. Their efforts resulted in various (partly com-
mercialised) tools, such as the Java PathFinder (JPF, Havelund [1999]), PathEx-

plorer (JPaX, Havelund and Rosu [2001a]), and the Temporal Rover (Drusin-
sky [2000]) tools, for instance. JPaX and other early approaches were based on
Maude, an efficient specification and verification framework making implementations
of rewriting logic applicable (Clavel et al. [2003]). Consequently, these approaches
to runtime verification were initially not based directly upon the methods and algo-
rithms known from the area of model checking, such as generation of Büchi automata
from LTL specifications (see §3.1.1), but rather on an on-the-fly formula rewriting
for separating past from present and future obligations, which then have to hold in
the next measured instant of time (Havelund and Rosu [2001b]). This is typically
achieved by conversion into a normal form (see §3.1.2) and by making use of the fix-
point characterisation of the logic. Emerson and Clarke [1980] introduced a fix-point

1The first workshop on runtime verification was held in 2001 in Paris, France, as a satellite event
of the established CAV series. See Berry et al. [2001].

4.1 A brief history of runtime verification 69

characterisation of branching time temporal logic, but it transfers over to LTL in a
straightforward manner as can be seen in this example:

Gϕ ≡ ϕ ∧ XGϕ or Fϕ ≡ ϕ ∨ XFϕ.

The same can be formulated for the remaining temporal operators of LTL. However,
for brevity this topic is not developed further at this stage; a more detailed discussion
of fix-point characterisations of LTL but in the context of bounded model checking
is also available, e. g., from Sheridan [2002].

Other, more recent, logic rewriting approaches for runtime verification have been
spawned from this work, such as those presented by Kristoffersen et al. [2003] and
H̊akansson et al. [2003]. Both works distinguish themselves by reflecting real-time
properties using so-called freeze quantification (Alur and Henzinger [1989]), which
basically is the addition of a (discrete) notion of time and a quantifier to standard LTL
whose purpose is to “freeze” the current time instant upon evaluation of a quantified
formula. For this purpose, the latter uses the notion of a so-called disjunctive equation
normal form to guide its rewriting process. Notice, however, that the logic introduced
by Alur and Henzinger [1989] is generally undecidable when considering a time domain
other than discrete natural numbers.

As an alternative to rewriting, Giannakopoulou and Havelund [2001] soon tried to
achieve the same results by using Büchi automata for the monitor generation. In the
cited work, the authors addressed in particular the problem of dealing with LTL’s
infinite trace semantics in this context; that is, they paid respect to the fact that
certain properties which could be specified using LTL could not be monitored in the
traditional interpretation of LTL formulae when at most a finite history of system
events is at hand. Their solution to this problem was to redefine the temporal op-
erators of LTL, such that they can be evaluated over finite traces only, but on the
expense of violating LTL’s original semantics for some operators, as is the case with
the until-operator: Let u = a0a1 . . . an ∈ Σ∗ be a finite trace of system behaviours
then the until-operator is defined as

u, 0 |= ϕ1Uϕ2 ⇔ ∃i ≤ n : (i ≥ 0 ∧ u, i |= ϕ2 ∧ ∀l : (0 ≤ l < i⇒ u, l |= ϕ1)).

Notice the difference in semantics! The interpretation over finite words yields wrong
results if there exists a position n′ > n such that u, n′ |= ϕ2 ∧ ∀l : (0 ≤ l < n′ ⇒
u, l |= ϕ1)); that is, the finite interpretation would yield false as result here, thus
contradicting the standard semantics yielding true in this case.

Such a contradiction could lead to confusing results when systems actually adhere to
their specification by showing the right behaviour in some future instant, such that a
current prefix of recorded behaviours does not suffice to formally establish correctness
according to the above criterion.

Moreover, Giannakopoulou and Havelund [2001] also used a next-free variant of LTL,

70 Chapter 4: Failure detection through runtime verification

LTL-X . They argued that the next-operator attributes a set concept of time to the
(untimed) verification process, which can be counterintuitive for some systems and
specifications. Effectively, they avoid having to deal with a “next-obligation” at the
end of a trace. The semantics suggested by Havelund and Rosu [2001b] gets around
such compromises by simply assuming an infinite extension of the last system action
observed; that is, if a last action seen is p, it would satisfy an assertion Xp. In this
context, this is referred to as stationary semantics .

Further related approaches. Despite the fact that runtime verification as pre-
sented above is an emerging scientific discipline, the problem addressed by it has
already been picked up earlier in other contexts and with modifications in the em-
ployed setup. For instance, in software and systems testing often external observers
or monitors are employed for the online analysis of test runs (cf. Dustin et al. [1999],
Pretschner [2003], Broy et al. [2005]). In the area of synchronous systems develop-
ment (cf. Benveniste et al. [2003]), monitors are often developed in parallel with (or
generated from) the actual application under scrutiny. In a nutshell, a synchronous
system resembles a special class of a system which adheres to the hypothesis of perfect
synchrony ; that is, all internal computations occur instantaneously, i. e., take no time,
and the results are produced at the same time inputs are received. In consequence,
communication time over a network medium must also be abstracted from, in that it
has to happen infinitely fast in the synchronous model (see also §4.5). Synchronous
systems are usually developed in dedicated languages such as Esterel (Berry [1999]),
Lustre (Halbwachs et al. [1991]), or even visually-based ones as realised, e. g., by
AutoFocus (cf. Huber et al. [1996], Broy et al. [1999], Bauer et al. [2005]). Auto-

Focus in turn is formally based upon a discretely timed, synchronous subset of the
more general Focus framework as described by Broy and Stølen [2001].

However, since these approaches do not play a major role in the remainder of this
thesis, they are just referred to at this point for the sake of keeping this thesis self-
contained. For instance, Halbwachs et al. [1994] first discussed the automatic gener-
ation of synchronous observers that can be executed in parallel with a synchronous
application in order to detect behavioural aberrations. Their work was later picked
up and extended by various authors, e. g., Westhead and Nadjm-Tehrani [1996] and
Laurent et al. [2001] who applied a similar technique to the verification of a real-world
avionics control system.

4.2 LTL over finite words

Many runtime verification approaches known from the literature suffer from a lack of
unambiguous or intuitive semantics when interpreting specifications formulated in a
temporal logic like LTL over finite traces of behaviours. The previous sections of this
thesis have demonstrated that the reason lies, foremost, in the standard semantics

4.2 LTL over finite words 71

for LTL, which asserts the validity of a property based on infinite traces, rather than
prefixes.

In consequence (and besides the previously outlined approaches), various authors have
settled with the following, custom interpretations of LTL over finite traces using weak
and strong semantics : the weak interpretation of a formula ϕ ∈ LTL with respect
to a finite trace, denoted as u, is that if up to the point where u ends, “nothing has
yet gone wrong”, ϕ holds. In the strong view, ϕ holds only if it evaluates to true
within u. Besides, there exists a neutral view on LTL which, basically, resembles
the classical view, but uses a different interpretation for weak and strong operators
and is otherwise analogue. Eisner et al. [2003] give a good overview on the topic, and
discuss the benefits and drawbacks of either interpretation.

Good examples can be found for each of the interpretations and at the same time
also examples that such approaches can be misleading. For instance, consider the
property G¬p stating that no state satisfying p must ever occur. Formally, when p is
observed, a runtime monitor should raise an alarm. But as long as p does not hold, it
is misleading to say that the formula is true, since the next observation might already
violate the formula. On the other hand, consider the formula ¬pUinit stating that
nothing bad (i. e., p) should happen before an initialisation function, init, is called.
If, indeed, the init function has been called and no p has been observed before,
the formula is true, regardless as to what will happen in the future. For testing
and verification, it is important to know whether some property is, indeed, true or
whether the current observation is just inconclusive.

More problematic, however, is the fact that in the various finite trace interpretations
discussed above, subtle inconsistencies can arise.

Definition 4.2.1: A logic L is called consistent if there exists not a model M and
a formula ϕ ∈ L, such that M |= ϕ and M |= ¬ϕ.

To illustrate the problem, consider the LTL formulae ϕ ≡ Xp and ϕ′ ≡ X¬p. Let
u ∈ Σ∗ be a finite trace consisting of only a single element, such that u = a0 with
a0 = {p}. Theoretically, in a finite trace interpretation of LTL, we could have for
both u 6|= ϕ and u 6|= ϕ′, since there is no successor action, u1, available to satisfy
either case. Vice versa, if X is defined differently, i. e., using a weak interpretation,
one might get u |= ϕ and u |= ϕ′ for the same reason, since there is no indication
that within u the formula cannot hold.

Methodological implications. Besides a lack of unambiguous and intuitive se-
mantics, the custom interpretation of LTL formulae is questionable from a method-
ological point of view as well: standard LTL is defined with rigorous, infinite trace
semantics which is implemented in various verification tools, such as model checkers
(see §3). Although model checking LTL properties over finite-state systems has been

72 Chapter 4: Failure detection through runtime verification

greatly automated over the years, these tools are still often used by verification ex-
perts only, who also have a common understanding of the underlying semantics of
the tool and, in the present case, LTL.

The fact that almost each runtime verification tool currently provides its own restric-
tions regarding the expressiveness of LTL and the interpretation over finite traces
thus hinders even (or especially) verification experts from using such a tool. None
behaves like the other.

As the various examples given in this and the previous section have shown, it is
even possible to define properties in a runtime verification tool that evaluate to false,
although a model checker would yield true (see, e. g., the finite variant of the until-
operator). Hence, the semantics of such approaches is not only unusual, but often
even a contradiction to the standard semantics defined over infinite traces. In such
cases, however, not only the established semantics is violated but also the intuition of
the person specifying a certain temporal property. And, obviously, debugging systems
and their specifications can be tedious in such a setup.

4.3 A 3-valued semantics for LTL—LTL3

Mainly to overcome the difficulties in defining an adequate Boolean semantics for LTL
on finite traces, this section introduces a 3-valued semantics, which naturally extends
the standard infinite trace semantics. Let w ∈ Σω be an infinite trace of actions,
and ϕ ∈ LTL. Naturally, in the Boolean semantics, either w |= ϕ, or not. However,
on a truncated trace, u ∈ Σ∗, where w = uσ and σ ∈ Σω, this should intuitively
hold for u if and only if for all extensions, σ, w |= ϕ. On the other hand, if for all
extensions of u, denoted σ, it holds that w 6|= ϕ, it is easy to see that u 6|= ϕ should
hold. For example, consider a simple propositional formula, ϕ ≡ p, which is satisfied
by the finite trace consisting only of the element a0 = {p}—regardless of any possible
continuation. Hence, u = a0 is, indeed, sufficient to satisfy ϕ, and would be clearly
sufficient to falsify it, had ϕ been defined as ¬p.

The 3-valued semantics introduced in this section adds to this scheme by offering
a third value, ?, to denote inconclusive, capturing all the remaining cases, where
extensions of u, denoted σ, are not yet known. In other words, when a finite trace u
is insufficient to satisfy or falsify a formula, as is the case with future obligations like
Fp where p has not yet occurred, its truth value with respect to the trace is denoted
by the symbol ?.

Formally, the 3-valued semantics of LTL is defined and referred to in terms of LTL3

over the set of truth values B3 = {⊥, ?,⊤} as follows. Notice, for the purpose of this
thesis no particular ordering over the values in B3 needs to be defined.

Definition 4.3.1: Let u ∈ Σ∗ denote a finite trace of actions. The truth value of
an LTL3 formula ϕ with respect to u, denoted by [u |= ϕ], is an element of B3 and

4.4 A dynamic decision procedure for LTL3 73

defined as follows:

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.

Essentially, using a 3-valued semantics, it is possible to circumvent the previously
described inconsistency of Boolean semantics over finite traces in a formula such as
Xp when only one observation is at hand; that is, given u = a0 where a0 = {p}, one
has [u |= Xp] = ? and [u |= X¬p] = ?.

4.4 A dynamic decision procedure for LTL3

In this section, a dynamic automata-based decision procedure for LTL3 is developed.
More specifically, for a given formula ϕ ∈ LTL3, a finite Moore machine, Āϕ, is
constructed that reads finite traces u ∈ Σ∗, and outputs [u |= ϕ], thus, a value in
B3.

Definition 4.4.1: A (nondeterministic) Moore machine over Σ is a tuple Ā = (Σ, Q,
Q0, δ, λ), where

• Σ is an input alphabet,

• Q a finite set of states,

• Q0 ⊆ Q a distinguished set of initial states,

• δ : Q× Σ → 2Q a transition function,

• λ : Q→ ∆ the output function, and ∆ the output alphabet.

In the following, ∆ = B3.

A Moore machine is deterministic, if and only if for all q ∈ Q, a ∈ Σ, |δ(q, a)| ≤ 1,
and |Q0| = 1. The outputs of a Moore machine, defined by the function λ, are thus
determined by the current state q ∈ Q alone, rather than by the input symbols leading
to that state. In what follows, δ is extended to the domain of finite words in terms
of δ′ : 2Q × Σ∗ → 2Q by δ′(Q′, ǫ) = Q′, with Q′ ⊆ Q, and

δ′(Q′, ua) =
⋃

q′∈δ′(Q′,u)

δ(q′, a),

where a ∈ Σ. To simplify notation, from this point forward δ is used for both δ and
δ′, depending on the context. For a deterministic Moore machine, by λ the function
is denoted which, applied to a word u ∈ Σ∗, yields the output in the state reached by
u rather than the sequence of outputs to that state.

As in §3, by Aϕ the nondeterministic Büchi automaton which accepts all models for
ϕ ∈ LTL3 is denoted. Further for a nondeterministic Büchi automaton A, A(q) is

74 Chapter 4: Failure detection through runtime verification

the nondeterministic Büchi automaton that coincides with A except for Q0, which is
defined as Q0 = {q}.

Checking as to whether the language of a Büchi automaton A from a state q ∈ Q is
non-empty, is equivalent to the problem of finding a strongly connected component in
the transition graph of A which contains at least one state q′ ∈ F (see Definition 3.1.10
for Büchi-acceptance). The notion of a strongly connected component is defined via
the following reachability relation,!.

Definition 4.4.2: Let A be a Büchi automaton defined in the usual way, and q, q′ ∈
Q. q q′ expresses that for a run in A, q′ is reachable from q. Let ! ⊆ Q × Q

be the mutual reachability relation over Q. Then q! q′ holds, if and only if both
q q′ and q′ q hold. The set of strongly connected components in A is made up
of the partition over Q induced by the relation!.

For a state q ∈ Q, scc(q) is used to denote the strongly connected component hosting
state q. A component scc(q) is said to be accepting , if and only if there exists a state
q′ ∈ scc(q), such that q′ ∈ F ; this is trivially the case for a singleton component
scc(q ∈ F).

Using Tarjan’s algorithm, determining all strongly connected components for A can
be achieved in time O(|Q| × |E|), where E, in this case, is a reference to the number
of edges in the state graph underlying A defined via the transition function δ (cf.
Knuth [1998]). For the size of an automaton, (|Q| + |E|) is used.

From this observation the following corollary can be directly derived.

Corollary 4.4.1: Deciding emptiness for a Büchi automaton A, defined in the usual
way, is decidable in linear time with respect to the size of A.

Note that the above result is not optimal (cf. Bloem et al. [2000]), but for the purpose
of this thesis, it shall suffice to stress merely decidability of the problem. Further,
checking emptiness of automata is performed in the runtime reflection framework off-
line; that is, during the construction of the monitors. As such, a suboptimal approach
has no negative impact on performance of the verification process. However, for a
discussion of the complexity of the overall solution, see also §4.4.3.

Putting all the pieces together, a first important observation leading towards a dy-
namic decision procedure for LTL3 can be summarised.

Lemma 4.4.1: Let Aϕ = (Σ, Qϕ, Q
ϕ
0 , δ

ϕ, Fϕ) denote a nondeterministic Büchi au-
tomaton, such that L(Aϕ) = L(ϕ). For u ∈ Σ∗, let δ(Qϕ

0 , u) = {q1, . . . , ql}. Then

[u |= ϕ] 6= ⊥ if and only if ∃q ∈ {q1, . . . , ql} such that L(Aϕ(q)) 6= ∅.

Proof:
The proof is straightforward and follows from the semantics of LTL3, and the defini-
tion of acceptance for Büchi automata (Definition 3.1.10).

4.4 A dynamic decision procedure for LTL3 75

(⇐) If L(Aϕ(q)) 6= ∅, then there exists a run in Aϕ(q), ρ ∈ Qω with ρ(0) = q, over
a word w ∈ Σω such that Inf(ρ) ∩ F 6= ∅. Setting w = uσ, where u ∈ Σ∗ is an
arbitrary length prefix of w and σ ∈ Σω its continuation, one gets either [u |= ϕ] =?
or [u |= ϕ] = ⊤ by the semantics of LTL3. Conversely, if L(Aϕ(q)) = ∅, then, by
Definition 3.1.10, there exists no run in Aϕ(q), ρ ∈ Qω with ρ(0) = q, over a word
w ∈ Σω such that w |= ϕ. By the semantics of LTL3, if for all w ∈ Σω, it holds that
w 6|= ϕ, then [u |= ϕ] = ⊥, where u ∈ Σ∗, again, denotes an arbitrary length prefix of
w.

(⇒) Follows directly from Definition 4.3.1 and acceptance of Büchi automata (see
Definition 3.1.10). �

Since the emptiness check per state merely indicates as to whether there exists a
run in the automaton from a state q to an accepting component scc(q′ ∈ F), it
is necessary to additionally determine whether there exists also a run from q to a
component scc(q′′ 6∈ F) with q 6= q′′, where none of the states are accepting. If that
is the case, the conclusion follows that both an accepting run as well as a violating
run from q are possible. The foundation for this test is given in the following lemma,
which is the dual to the previous one.

Lemma 4.4.2: Let A¬ϕ = (Σ, Q¬ϕ, Q
¬ϕ
0 , δ¬ϕ, F¬ϕ) denote a nondeterministic Büchi

automaton, such that L(A¬ϕ) = L(¬ϕ). For u ∈ Σ∗, let δ(Q¬ϕ
0 , u) = {q1, . . . , ql}.

Then

[u |= ϕ] 6= ⊤ if and only if ∃q ∈ {q1, . . . , ql} such that L(A¬ϕ(q)) 6= ∅.

Proof:
Correctness follows directly from Lemma 4.4.1 by substitution of ¬ϕ for ϕ. �

For Aϕ and A¬ϕ, a function Fϕ : Qϕ → B, respectively for F¬ϕ, F¬ϕ : Q¬ϕ → B, can
be defined, assigning to each state q whether the language of the respective automaton
starting in state q is not empty.

Therefore, using Fϕ and F¬ϕ, two nondeterministic finite automata can be defined,
Âϕ = (Σ, Qϕ, Q

ϕ
0 , δ

ϕ, F̂ϕ) and Â¬ϕ = (Σ, Q¬ϕ, Q
¬ϕ
0 , δ¬ϕ, F̂¬ϕ) where

F̂ϕ = {q ∈ Qϕ | Fϕ(q) = ⊤} and F̂¬ϕ = {q ∈ Q¬ϕ | F¬ϕ(q) = ⊤}.

Obviously, Âϕ, respectively Â¬ϕ accept the finite traces u ∈ Σ∗ for which [u |= ϕ]
evaluates to 6= ⊥ and, respectively, 6= ⊤. This is summed up briefly in the following
lemma.

Lemma 4.4.3: Using the notation as before, for all u ∈ Σ∗ the following holds.

u ∈ L(Âϕ) if and only if [u |= ϕ] 6= ⊥ and u ∈ L(Â¬ϕ) if and only if [u |= ϕ] 6= ⊤.

76 Chapter 4: Failure detection through runtime verification

Therefore, [u |= ϕ] can be evaluated according to Lemma 4.4.3 as follows.

Lemma 4.4.4: Let u ∈ Σ∗ be a finite trace of actions and let ϕ ∈ LTL3 be a
property. If Âϕ = (Σ, Qϕ, Q

ϕ
0 , δ

ϕ, F̂ϕ) and Â¬ϕ = (Σ, Q¬ϕ, Q
¬ϕ
0 , δ¬ϕ, F̂¬ϕ) are the

nondeterministic finite automata as defined for Lemma 4.4.3, then the following holds.

[u |= ϕ] =

⊤ if u 6∈ L(Â¬ϕ)

⊥ if u 6∈ L(Âϕ)

? if u ∈ L(Âϕ) and u ∈ L(Â¬ϕ).

The lemma yields a simple procedure to evaluate the semantics of ϕ ∈ LTL3 for a
given finite trace u: both u ∈ L(Â¬ϕ) and u ∈ L(Âϕ) are evaluated, and Lemma 4.4.4
is used to determine [u |= ϕ].

4.4.1 Monitor construction

The actual monitor component used for runtime verification in the framework can be
constructed by defining a deterministic finite state machine Āϕ, which is a Moore-
type, that outputs for each finite string u its associated 3-valued semantical evaluation
with respect to some LTL3 formula ϕ. Using the steps outlined in the previous section,
this is possible due to the following well-known (cf. Hopcroft and Ullman [1979])
correspondence between deterministic and nondeterministic finite automata.

Theorem 4.4.1 (Folklore): If Â = (Σ, Q, q0, δ, F) is a nondeterministic finite au-
tomaton, then there exists a deterministic finite automaton A′ = (Σ, Q′, {q0}, δ

′, F ′),
such that L(Â) = L(A′).

Proof:
For brevity, merely the proof idea for this theorem is sketched as follows. Without loss
of generality, complete automata can be assumed. Further, the extended transition
function over words is used as introduced in §4.4.

The proof then proceeds by induction over a finite word u ∈ Σ and by showing that
δ′({q0}, u) = δ(q0, u). Notice in this context that each of the transition functions
return a set of states from Q, but δ′ interprets this set as one of the states of Q′,
whereas δ interprets this set as a subset of Q. Since Q′ is based on the power-set of
Q, conversion can be exponential. For a complete proof of this theorem, see, e. g., the
standard works of Hopcroft and Ullman [1979]. �

Without loss of generality, let Ãϕ and Ã¬ϕ be deterministic variants of Âϕ, respectively
Â¬ϕ. Recall further that the product of two finite automata A and A′, denoted A×A′,
is defined as a tuple (Σ, QA × QA′

, {(qA0 , q
A′

0)}, δ, FA × FA′

), where for two states
p ∈ QA, q ∈ QA′

, and a symbol a ∈ Σ, δ((p, q), a) = (δA(p, a), δA
′

(q, a)).

The Moore machine in question can then be defined as the product of Ãϕ and Ã¬ϕ

as follows.

4.4 A dynamic decision procedure for LTL3 77

Definition 4.4.3: Let Ãϕ = (Σ, Qϕ, {qϕ0 }, δ
ϕ, F̃ϕ) and Ã¬ϕ = (Σ, Q¬ϕ, {q¬ϕ0 }, δ¬ϕ,

F̃¬ϕ) be the deterministic finite automata which correspond to the two nondetermin-
istic finite automata Âϕ and Â¬ϕ as defined for Lemma 4.4.3. Then the monitor
Āϕ = Ãϕ × Ã¬ϕ is defined as a finite Moore state machine (Σ, Q̄, q̄0, δ̄, λ̄), where

• Σ is the finite input alphabet,

• Q̄ = Qϕ ×Q¬ϕ a finite set of states,

• q̄0 = (qϕ0 , q
¬ϕ
0) an initial state,

• δ̄((q, q′), a) = (δϕ(q, a), δ¬ϕ(q′, a)) a transition function, and

• λ̄ : Q̄→ B3 the output function defined as

λ̄((q, q′)) =

⊤ if q′ 6∈ F̃¬ϕ

⊥ if q 6∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

The above can now be formulated in terms of a theorem as follows.

Theorem 4.4.2: Let ϕ ∈ LTL3 and let Āϕ = (Σ, Q̄, q̄0, δ̄, λ̄) be the corresponding
monitor. Then, for all u ∈ Σ∗ it holds that [u |= ϕ] = λ̄(δ̄(q̄0, u)).

Proof:
Follows directly from Definition 4.4.3. �

4.4.2 Example: The C++ static initialisation order fiasco

Now a simple but comprehensive real-world example is examined in more detail, which
also highlights most of the features described above.

In a program written in C++, all static objects of an executable are initialised be-
fore the main method is entered, however, their order is undefined, and initialisation
thus nondeterministic (cf. Stroustrup [2000]). In consequence, if threads get spawned
before executing main, it is difficult to ensure that all resources necessary to syn-
chronise those threads are already initialised, such as globally available and statically
initialised mutex objects. This problem is generally known as the static initialisation
order fiasco (cf. Dewhurst [2002]). The “fiasco” is an especially complicated one when
large applications are built from a number of different frameworks which must remain
independent from each other.

Using the entire runtime reflection framework as outlined in §1.1 with a C++ logging
layer such as the Apache Software Foundation’s library, log4cxx2, for gaining
access to signals emitted by the application’s threads, it is possible to construct
a monitor over an alphabet Σ = 2AP , where {spawn, init} ⊆ AP , for a property
ϕ ≡ ¬spawnUinit. In other words, the monitor ensures that no thread gets spawned
before the application under scrutiny has properly finished initialisation.

2See http://www.apache.org/.

http://www.apache.org/

78 Chapter 4: Failure detection through runtime verification

This example further illustrates the need for having three truth values, instead of two
when monitoring a running system: Intuitively, a monitor for ϕ should raise an alarm
only, if a thread was spawned before init occurred; should eventually switch itself off,
if init occurred before spawn; and until either happens should return ?, indicating
the necessity for further observation.

Using the translation algorithm from formulae of LTL to Büchi automata as proposed
by Fritz [2003], one obtains for ϕ, respectively ¬ϕ, the Büchi automata depicted in
Fig. 4.1.

q0 q1

¬spawn true

init

(a) Büchi automaton Aϕ.

q0 q1

¬init true

spawn ∧ ¬init

(b) Büchi automaton A¬ϕ.

Fig. 4.1: The Büchi automaton Aϕ accepts all words not in L(A¬ϕ), and vice versa.

Using the tools described in greater detail in §6, then two nondeterministic finite au-
tomata Âϕ = (Σ, Qϕ, Q

ϕ
0 , δ

ϕ, F̂ϕ) and Â¬ϕ = (Σ, Q¬ϕ, Q
¬ϕ
0 , δ¬ϕ, F̂¬ϕ) are constructed,

where the accepting states F̂ϕ and F̂¬ϕ are defined in accordance with Lemma 4.4.3.
Without loss of generality, Âϕ gets extended (the same needs to be done for Â¬ϕ) with
an additional state q indicating a violation, thus, being a “sink”; that is, a strongly
connected component where scc(q) ∩ F̂ = ∅. Note that this step is not mandatory,
as the semantic expressiveness of a complete and a non-complete finite automaton is
equal (see Theorem 3.1.1). Which type of automaton is preferred depends solely on
the proper interpretation of the presence or absence of such redundant transitions,
when executing the automaton (cf. Hopcroft and Ullman [1979]). The result of this
step is depicted in Fig. 4.2. In it, the respective states q2 represent the rejecting
states, since there exists no path back to an accepting state.

q0 q1

q2

¬spawn
true

true
init

spawn

(a) Finite automaton Âϕ.

q0 q1

q2

¬init
true

true

spawn ∧ ¬init

init

(b) Finite automaton Â¬ϕ.

Fig. 4.2: The corresponding finite automata derived from Aϕ and A¬ϕ.

Note that in this particular case, the finite automata are already deterministic. Fur-
ther, the truth value of a propositional symbol, which is not part of the transition

4.4 A dynamic decision procedure for LTL3 79

label, is irrelevant with respect to whether the according transition is to be triggered.
Hence, it holds in this example that Âϕ = Ãϕ and Â¬ϕ = Ã¬ϕ.

After these preliminaries and according to Definition 4.4.3, the Moore machine which
will then serve as monitor for the static initialisation order fiasco can now be con-
structed. For this purpose, basically, the product of Ãϕ and Ã¬ϕ yielding the au-
tomaton depicted in Fig 4.3 is built. This automaton now corresponds with the
user’s intuition, and yields ? while neither event occurred, and either ⊤ or ⊥, other-
wise. Notice, the respective output symbols of the Moore machine are denoted below
the state labels.

q1
“⊥”

q0
“?”

q2
“⊤”

true

¬spawn ∧ ¬init

true

spawn ∧ ¬init init

Fig. 4.3: The corresponding deterministic finite Moore state machine.

Execution of the Moore machine happens by evaluating a bit-vector encoding the pres-
ence or absence of an event, supplied by the logger. Consider the following example
observation violating ϕ as in u = {¬spawn,¬init}, {spawn,¬init}, {spawn, init}, . . .
whose corresponding run, ρ, through the Moore machine would be as follows: ρ =
q0, q1, q1, Once q1 is reached for the first time, the monitor outputs ⊥, and the
user knows that the property is violated, regardless as to what the future will bring.
Theoretically, at this stage, the user could turn the monitor off and restart or modify
the program under scrutiny.

On the contrary, for an observation u = {¬spawn,¬init}, {¬spawn, init}, {spawn,
init}, . . ., the run ρ = q0, q2, q2, . . . is observed, which means that u satisfies ϕ,
regardless as to what the future will bring. Again, the monitor can be switched off
as soon as q2 is entered for the first time and ⊤ is returned.

Note that the transition from q0 to q1 would be omitted in the actual monitor, and
the automaton then interpreted accordingly.

4.4.3 Complexity

The entire procedure for constructing a monitor, i. e., a finite state machine (FSM),
from a Salt specification (see §3.3) is summarised in Fig. 4.4, where NBA is an
abbreviation for nondeterministic Büchi automaton, NFA for nondeterministic finite
automaton, and DFA for deterministic finite automaton.

80 Chapter 4: Failure detection through runtime verification

Salt

ϕ

¬ϕ

Aϕ

A¬ϕ

Fϕ

F¬ϕ

Âϕ

Â¬ϕ

Ãϕ

Ã¬ϕ

Ā

Input (1) Formula (2) NBA (3)
Emptiness
per state

(4) NFA (5) DFA (6) FSM

Fig. 4.4: The procedure for getting [u |= ϕ] for a given specification.

Now the size of the resulting FSM is studied in more detail. Since the translation of
a Salt specification to an LTL formula ϕ usually does not add redundancy to the
resulting formula (see §6), it is safe to assume this step as constant with respect to the
size of the formula, without loss of generality. Given ϕ, step 1 requires replication of
ϕ and negation, i. e., it is linear in the original size. In step 2, the construction of the
nondeterministic Büchi automata is worst-case exponential in the size of the formula,
denoted |ϕ| (Fritz [2003]). Steps 3 and 4, leading to Ãϕ and Ã¬ϕ, do not change
the size of the original automata. Then, computing the deterministic automata of
step 5 might again involve an exponential “blowup” with respect to the size of the
corresponding NFAs (see Theorem 4.4.1). Hence, in total, the Moore machine of step
6 may, in the worst case, experience a double exponential “blowup”.

At first sight this result may appear to be unemployable for the purpose of runtime
verification. However, it is possible to show that this leads, in fact, to an optimal
solution for the underlying finite state machine, when reconsidering the following
theoretical results.

The foundation for this lies in the fact that monitors are but deterministic finite
state machines accepting words of the language L = L(Âϕ× Â¬ϕ). For the languages
accepted, the following definition of equivalence applies:

Definition 4.4.4: Let L ∈ Σ∗ be a regular language, and ∼L⊆ Σ∗ ×Σ∗. Two words
u, u′ ∈ Σ∗ are called L-equivalent, denoted u ∼L u

′, if and only if uv ∈ L⇔ u′v ∈ L,
where v ∈ Σ∗. The equivalence class of u is defined as [u]∼L

= {u′ ∈ Σ∗ | u ∼L u
′}.

The Myhill-Nerode theorem (cf. Hopcroft and Ullman [1979]) provides a necessary
and sufficient condition for a language to be regular, and is based upon the equiv-
alence classes of regular languages and the correspondence to automata. From the
theorem, various minimisation algorithms for finite automata have been derived that
combine states according to their L-equivalence, and that naturally apply also for the
generated monitors. Minimisation then implies that any other method, in the worst
case, must have the same complexity as the previously constructed monitor in the
runtime reflection framework.

Hence, better complexity results in other approaches are either due to using a re-
stricted fragment of LTL or otherwise imply that the chosen temporal operators
might not limit the expressive power of LTL but sometimes impose long formulas for
encoding the desired behaviour.

4.4 A dynamic decision procedure for LTL3 81

4.4.4 Discussion: Informativeness vs. minimality

Various approaches to runtime verification and reasoning about systems based on
truncated paths have been based upon a seminal paper by Kupferman and Vardi
[2001]. The authors of that paper have introduced the concept of informativeness
and that of pathological safety formulae. Intuitively, a finite bad prefix for a formula
ϕ ∈ LTL is called informative, if and only if it is a bad prefix for all of ϕ’s sub-
formulae given by its closure. That is, all sub-formulae in the original formula have
a reason for not holding.

Definition 4.4.5: The closure of a formula ϕ ∈ LTL is given by the set cl(ϕ) and
defined as follows:

• ϕ ∈ cl(ϕ),

• ¬ϕ ∈ cl(ϕ),

• ϕ1 op ϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ),

• ϕ1Uϕ2 ∈ cl(ϕ) ⇒ ϕ1, ϕ2 ∈ cl(ϕ),

• Xϕ1 ∈ cl(ϕ) ⇒ ϕ1 ∈ cl(ϕ),

where op defines the usual Boolean operations.

A safety property is called pathologically safe if there is a prefix that violates ϕ
which has no informative bad prefix. For instance, the formula (G(q∨GFp)∧G(r∨
GF¬p)) ∨ Gq ∨ Gr is pathologically safe (Kupferman and Vardi [2001]). Formally,
this is captured in the following definition over the term syntax of ϕ.

Definition 4.4.6: Let ϕ ∈ LTL be in negative normal form, and u = a0a1 . . . an ∈
Σ∗. u is informative, if and only if there exists a mapping L : {0, . . . , n+1} → 2cl(¬ϕ),
such that the following conditions hold:

• ¬ϕ ∈ L(0),

• L(n+ 1) is empty, and

• for all 0 ≤ i ≤ n and ψ ∈ L(i), the following hold.

– If ψ is an atomic proposition, then ψ ∈ ai.

– If ψ = ψ1 op ψ2, then ψ1 ∈ L(i) op ψ2 ∈ L(i).

– If ψ = ψ1Uψ2, then (i) ψ2 ∈ L(i) or (ii) (ψ1 ∈ L(i) and ψ1Uψ2 ∈ L(i+1)).

– If ψ = Xψ1, then ψ1 ∈ L(i+ 1),

where, as in the previous definition, op denotes the set of standard Boolean
connectives.

In the same paper, a worst-case double exponential construction with respect to the
size of the underlying formula for a finite state machine is given which, given a (non-
) pathological safety property ϕ ∈ LTL in negative normal form, accepts all of its
bad prefixes. Latvala [2002] extended this work by introducing a single exponential

82 Chapter 4: Failure detection through runtime verification

construction for a finite state machine which accepts, given a non-pathological safety
property ϕ ∈ LTL in negative normal form, all its informative bad prefixes. Moreover,
Geilen [2001] also introduced an on-the-fly monitoring algorithm for this particular
set of LTL properties.

Notably, these procedures differ in two ways from the previously presented approach
to monitoring properties using a 3-valued semantics for LTL. Firstly, they are based on
the syntactic structure of the underlying property as is the concept of informativeness.
Secondly, they are defined only for safety properties, and sometimes work only for a
subclass of safety properties, such as monitoring non-pathological safety properties.

On the other hand, monitoring in the runtime reflection framework, although opti-
mally used for safety properties (see Definition 3.2.1), works equally with properties
other than safety, even liveness. However, depending on the liveness property (see
Definition 3.2.3), this could involve having infinitely many ? in the monitor’s output,
as a liveness property can only be refuted by an infinite counterexample. Moreover,
monitoring in the runtime reflection framework is not restricted to minimal infor-
mative bad prefixes, but it detects all minimal bad prefixes, if these exist and the
system under scrutiny shows the according behaviour. Essentially, this is achieved by
the different approach to monitoring, which relies on automata analysis, rather than
the term structure of the properties. Notice, predictiveness, as is achieved by detec-
tion of minimal bad prefixes, is also not given in full generality in the other works
cited above. However, for completeness it should be pointed out that d’Amorim and
Rosu [2005] have now addressed in particular the predictiveness problem in their ap-
proaches by adding to each state in the monitor an OBDD encoding possible future
runs of the monitor. Although feasible due to the efficiency of OBDD look-up proce-
dures, it involves handling additional data structures, analyses, and tasks to perform
at runtime.

4.5 Reflecting real-time

In order to be able to reason about real-time properties of distributed and reactive
systems, such as strict execution deadlines and the timeliness of communication pat-
terns or events, LTL as introduced in the previous section, is generally not expressive
enough. That is, LTL is well suited for expressing qualitative constraints about the
ordering of actions along a trace, but not for expressing quantitative constraints.
Although often not explicitly stated, with standard LTL there is an underlying as-
sumption associated that the systems under scrutiny behave somewhat synchronous ,
i. e., that there is a fixed (discrete) notion of a step where actions can be observed. In
the context of this thesis, this class of systems is referred to as quasi-synchronous to
not confuse them with the established class of time-synchronous systems adhering to
the more strict perfect synchrony hypothesis (cf. Halbwachs et al. [1991], Berry [2000],
Benveniste et al. [2003]).

4.5 Reflecting real-time 83

Reactive real-time systems as they are used increasingly, e. g., in the embedded do-
main, adhere more often to a strictly event-triggered nature (cf. Romberg and Bauer
[2004]). In other words, actions are not only performed in uniform cycles or steps, but
occur spontaneously and at arbitrary intervals, although depending naturally on the
resolution of timer hardware or bus arbitration, for instance. In other words, when
reasoning about real-time properties, not only the order of events is important, but
also the exact time when they occurred. Consequently, for LTL, real-time constraints
have been taken into account, but often at the expense of desirable LTL properties,
such as decidability, for instance; this, however, depends strongly on how real-time
is actually added to the formalism. A good discussion of this particular topic is
available, e. g., from Alur and Henzinger [1991] and Maler et al. [2005].

4.5.1 The real-time logic TLTL

For the formulation of real-time properties that go beyond the expressiveness of stan-
dard LTL, this section presents the logic TLTL (timed linear-time temporal logic,
sometimes also referred to as state-clock logic) as introduced originally by Raskin
and Schobbens [1997], but in the form used by D’Souza [2003]. The language ex-
pressible by a TLTL formula can be defined by event-clock automata, a decidable and
determinisable subclass of timed automata (see §4.5.2). More specifically, D’Souza
[2003] showed that TLTL corresponds exactly to the class of languages, definable in
the first-order fragment of monadic second order logic, interpreted over timed words.
Thus, it can be considered to be the natural counterpart of LTL in the timed setting
(see also §3.3.2).

Definition 4.5.1: A (possibly) infinite timed word w over an alphabet Σ is a (possi-
bly) infinite sequence of timed actions (a0, t0)(a1, t1) . . . consisting of symbols ai ∈ Σ,
and non-negative numbers ti ∈ R

≥0, such that

1. for each i ∈ N, ti < ti+1, and (strict monotonicity)

2. for all t ∈ R
≥0 there is an i ∈ N such that ti > t. (progress)

For reasons outlined above, timed actions are also referred to as events .

To simplify notation, (Σ×R
≥0) is also abbreviated by TΣ. Thus, a finite timed string

or word is an element of TΣ∗ and the domain of infinite timed words is denoted by
TΣω. Furthermore, for w as given above, its string of actions (i. e., the projection to
the first component) is called the untimed word of w, denoted by ut(w).

TLTL is a so-called dense real-time logic, in a sense that every symbol a ∈ Σ is
associated with an event-recording clock , xa, and an event-predicting clock , ya, from
R∪{⊥}. Before getting back to this in more detail in Definition 4.5.3, first the notion
of an event-clock is formally introduced.

Definition 4.5.2: Given an alphabet, Σ, the set of event clocks associated with the
elements in Σ is the set CΣ = HΣ ∪ PΣ, where HΣ = {xa | a ∈ Σ} is the set of

84 Chapter 4: Failure detection through runtime verification

event-recording clocks, i. e., an event-recording clock is associated with each element
a ∈ Σ, and where PΣ = {ya | a ∈ Σ} is the set of event-predicting clocks, i. e., an
event-predicting clock is associated with each a ∈ Σ.

In what follows, x ∈ HΣ denotes any event-recording clock of CΣ, and y ∈ PΣ any
event-predicting clock of CΣ.

Definition 4.5.3: A clock valuation function is a function over a (possibly) infinite
timed word w ∈ TΣω with wi = (ai, ti) for each i ∈ N, γi : CΣ → R

≥0 ∪ {⊥}, which
assigns a positive real, or undefined value, ⊥, to each clock variable corresponding to
position i as follows:

γi(xa) =

{
ti − tj if ∃j < i : aj = a and ∀k : j < k < i⇒ ak 6= a

⊥ otherwise.

γi(ya) =

{
tj − ti if ∃j > i : aj = a and ∀k : i < k < j ⇒ ak 6= a

⊥ otherwise.

Intuitively, the above definition asserts that, given an (infinite) timed word w, the
value of the event-recording clock variable xa at position i of w equals ti − tj, where
j represents the last position preceding i such that aj = a. If no such position exists,
then the value of xa remains undefined, denoted by ⊥. The event-predicting clock
variable ya equals tj−ti, where j represents the next position after i such that ai = a.
If no such position exists, again, the variable remains undefined, denoted by ⊥.

Example. For instance, consider a timed word w = (a, 1)(a, 3)(a, 5)(b, 8)(c, 9) . . .,
and two clock variables, xa and ya, denoting the last occurrence of a and the next
occurrence of a with respect to an index i ∈ N, respectively. Fig. 4.5 shows the values
of γi for xa and ya along the given prefix of w.

Syntax

The logic TLTL introduces dedicated real-time operators to LTL, ⊳a and ⊲a, which
span the time interval upon which an action a occurred last, or upon which an action
a will occur in the future. The set of intervals used for this purpose, I, contains all
intervals of the form (l, r), [l, r), (l, r], or [l, r], where l, r ∈ R

≥0 ∪ {∞}.

Without loss of generality, assume l < r, except for [l, r], and for intervals (l, r], or
[l, r] that r 6= ∞. To simplify notation, [(and)] is used for interval borders which
can either be (or [, respectively),]. For instance, the interval [1,∞) denotes a set
{t ∈ R

≥0 | 1 ≤ t}.

Definition 4.5.4: Let Σ denote a finite set of actions. The set of well-formed TLTL
formulae over alphabet Σ is denoted by TLTL(Σ), and given by the following abstract
syntax:

ϕ ::= true | a | ⊳a ∈ I | ⊲a ∈ I | ¬ϕ | ϕ op ϕ | ϕ Uϕ | Xϕ (a ∈ Σ),

4.5 Reflecting real-time 85

xa

ya

1

2

3

⊥

⊥ 1 2 3

γ0 γ1

γ2

Fig. 4.5: Evaluations of xa and ya for w = (a, 1)(a, 3)(a, 5)(b, 8)(c, 9)

with ϕ ∈ TLTL(Σ), and where op represents a binary Boolean operator defined by
the set op ∈ {∨,∧,⇒,⇔}, and where ⊳a is the operator which measures the time
elapsed since the last occurrence of a, and ⊲a the operator which predicts the next
occurrence of a within a timed interval I ∈ I.

As in the untimed case, if the parameterisation of the set of formulae is clear from the
context, one can abstain from naming the concrete alphabet in its name, and simply
write TLTL, rather than TLTL(Σ), when making reference to the set of well-formed
TLTL formulae.

Semantics

Definition 4.5.5: Let ϕ ∈ TLTL(Σ), and i ∈ N
≥0 denote a position. The semantics

of TLTL(Σ) is defined inductively over infinite timed words w ∈ TΣω, where w =
(a0, t0)(a1, t1) . . ., as follows:

w, i |= true
w, i |= ¬ϕ ⇔ w, i 6|= ϕ

w, i |= a ⇔ ai = a

w, i |= ⊳a ∈ I ⇔ γi(xa) ∈ I

w, i |= ⊲a ∈ I ⇔ γi(ya) ∈ I

w, i |= ϕ1 op ϕ2 ⇔ (w, i |= ϕ1 op w, i |= ϕ2)
w, i |= ϕ1Uϕ2 ⇔ ∃k ≥ i : (w, k |= ϕ2 ∧ ∀l : (0 ≤ l < k ⇒ w, l |= ϕ1))
w, i |= Xϕ ⇔ w, i+ 1 |= ϕ

Further, let w |= ϕ, if and only if w, 0 |= ϕ.

Like in the untimed case, w ∈ TΣω is said to satisfy (alternatively, is a model of) the
formula ϕ ∈ TLTL(Σ), if and only if w |= ϕ holds. The set given by L(ϕ) = {w ∈

86 Chapter 4: Failure detection through runtime verification

TΣω | w |= ϕ} of all models of ϕ is called the (timed) language of ϕ. The formula
ϕ is satisfiable if L(ϕ) 6= ∅ and unsatisfiable, otherwise. A formula ϕ is valid, if and
only if ¬ϕ is unsatisfiable.

Basically, TLTL enriches untimed or standard LTL by adding two operators for
recording and predicting the occurrence of actions. These operators are referred
to as the timed operators, to the remaining ones as untimed operators. The seman-
tics of the untimed TLTL-operators is, therefore, analogous to LTL. Consequently,
the typical syntactic derivations of operators (see Definition 3.1.15) transfers over to
TLTL in a natural way. In other words, every valid LTL formula is also a valid TLTL
formula using only the set of untimed operators.

Clock constraints

Formulae in TLTL which make use of timed operators, implicitly define constraints
over values of clock variables. Basically, a clock constraint compares the value of a
clock variable to a natural number.

Definition 4.5.6: Let Ψ(CΣ) be the set of clock constraints over CΣ. A clock con-
straint ψ ∈ Ψ(CΣ) is a conjunction of atomic formulae of the form z ⊲⊳ c, where
z ∈ CΣ, ⊲⊳∈ {<,≤,≥, >}, and c ∈ N.

Definition 4.5.7: Let z ∈ CΣ be a clock variable, and γi(z) the valuation function
for z over a (possibly) infinite timed word w. The timed word w satisfies a clock
constraint ψ = z ⊲⊳ c at position i with i, c ∈ N, according to the following rules:

• w, i |= z ⊲⊳ c if and only if γi(z) ⊲⊳ c,

• w, i |= ¬ψ if and only if w, i 6|= ψ,

• w, i |= ψ1 ∨ ψ2 if and only if w, i |= ψ1 ∨ w, i |= ψ2,

where ⊲⊳ is evaluated as usual in non-negative real numbers, and ⊥ ⊲⊳ c always
evaluates to false.

Given a clock constraint ψ and a clock valuation function γ, one can also write γ |= ψ

to denote that according to γ, constraint ψ is fulfilled, where ⊥ ⊲⊳ c for c ∈ N and
⊲⊳∈ {<,≤,≥, >} does not hold, and the remaining cases are defined in the expected
manner. For example, one could have γ(xa) = 3.2 |= xa ≤ 5.

Some example properties

The expressive power of TLTL stems from formulae like G(⊲a ∈ [0, 5]) requiring
the re-occurrence of an action a every five time units. For reasons outlined in §3.2,
the formula also constitutes a classical safety-property, i. e., the property specified
is always finitely refutable. The formal basis upon which to decide this is formally
introduced in the next section.

Further examples include:

4.5 Reflecting real-time 87

• G(¬valid ⇒ ⊲valid ∈ [0, 5]): always if a an event decoded by proposition valid
has not occurred, it has to occur at least within the next five time units.

• G((⊳q ∈ [0, 3]) ⇒ p): asserts that always if q occurred within the last three
time units, then proposition p has to hold now.

• G((p ⇒ ⊲p ∈ [0, 5]) ∨ (XF¬p)): always every event p is either followed by
another p event distant more than five time units, or never followed by another
p event again.

4.5.2 Verification of timed systems

While formulae of LTL are translatable to Büchi automata, formulae of TLTL (like
other real-time logics) require a certain type of a timed automaton (Alur and Dill
[1990]) for translation and verification, which not only accepts actions but entire
events, i. e., actions with time-stamps. The class used for verification of TLTL-
properties are the so-called event-clock automata (Alur et al. [1999]), a derivation
from the more general “Alur-Dill automata”, which are going to be introduced first.

Timed automata

The concept of timed automata was introduced by Alur and Dill [1990] for modelling
and reasoning about the behaviour of real-time systems. Their definition provides a
simple, and yet general, way to annotate the states of state-transition graphs with
timing constraints using finitely many real-valued clock variables. Thus, timed au-
tomata are finite-state automata augmented with clocks and constraints over their
possible values. It is assumed that the transitions of a timed automaton are instan-
taneous. However, time can elapse when the automaton is in a state or a location.
When a transition occurs, some of the clocks may be reset to zero. The value of a
clock then equals the time that has elapsed since it was last reset. In order to prevent
pathological behaviours and to adhere to the definition of timed words as given in
Definition 4.5.1, only automata are considered that are non-Zeno; that is, only a
finite number of transitions can be triggered in a non-empty interval of time.

Definition 4.5.8: A timed automaton (also referred to as Alur-Dill automaton) is
defined by a tuple A = (Σ, Q,Q0, E, I), where

• Σ is a finite input alphabet,

• Q a finite set of locations,

• Q0 ⊆ Q is a distinguished set of initial locations,

• E ⊆ Q× Σ × Ψ(CΣ) × 2CΣ ×Q a set of transitions, and

• I : Q→ Ψ(CΣ) is a mapping from locations to clock constraints, called location
invariants.

88 Chapter 4: Failure detection through runtime verification

An edge e = (q, a, ψ, λ, q′) ∈ E represents a transition from source location q ∈ Q

upon symbol a ∈ Σ to destination q′ ∈ Q, where the clock constraint ψ ∈ Ψ(CΣ)
specifies when this transition is enabled, and where λ ⊆ CΣ is a finite set of clocks
that are reset when the transition is actually taken.

For brevity, the notation q
a,ψ,λ
−→ q′ is used, when (q, a, ψ, λ, q′) ∈ E.

The semantics of a timed automaton A is defined by associating a labelled transition
system SA with it as follows.

Definition 4.5.9: Let SA denote a labelled transition system for a timed automaton
A = (Σ, Q,Q0, E, I) with a set of states QSA

from Q×R
≥0∪{⊥}. A state from SA is

represented by a tuple (q, γ), where q ∈ Q and γ : CΣ → R
≥0∪{⊥} is a clock valuation.

A state (q, γ) is an initial state if q is an initial location of A and γ : CΣ → {0}.
The set of clocks, λ, reset (and thus, evaluating) to zero is denoted as γ[λ := 0]. The
transition system SA then possesses two different types of transitions:

Delay transitions correspond to the elapsing of time while staying at some loca-

tion. This is denoted by (q, γ)
d

−→ (q, γ + d), where d ∈ R
≥0, provided that for

every 0 ≤ e ≤ d, the invariant I(q) holds for γ + e.

Action transitions correspond to the execution of a transition taken from (q, γ)
upon switch (q, a, ψ, λ, q′), such that γ satisfies ψ, (q, γ)

a
−→ (q′, γ′), where

a ∈ Σ and γ′ = γ[λ := 0].

Definition 4.5.10: An (infinite) run θ of a timed automaton A is defined over a
transition system, SA, with an initial state (q0, γ0), where γ0 : CΣ → {0} over a timed
word w = (a1, t1)(a2, t2)(a3, t3) . . . ∈ TΣω is a sequence of transitions

θ : (q0, γ0)
d1→

a1→ (q1, γ1)
d2→

a2→ (q2, γ2)
d3→

a3→ . . .

such that ti = ti−1 + di for all i ∈ N
≥1 with t0 = 0.

Definition 4.5.11: The timed language L expressed by L(A) is the set of all timed
words w ∈ TΣω for which there exists a run of A over w.

q0
q1

x ≤ 2

a[x := 0]

b[x ≥ 1]

Fig. 4.6: Graphical representation of a timed automaton.

4.5 Reflecting real-time 89

Example. Fig. 4.6 illustrates a timed automaton with two states, q0 and q1, a clock
x, and alphabet of actions Σ = 2AP , with {a, b} ⊆ AP . The initial state, q0, is not
associated with an invariant, which means the system can spend an arbitrary amount
of time in q0. Upon reading symbol a, the clock associated with x gets reset, and
state q1 is entered. Its invariant asserts that at most two time units must be spent
in that state, i. e., x ≤ 2. However, the transition back to q0 is only enabled when at
least one time unit is spent, i. e., x ≥ 1. Thus, the automaton asserts a delay between
a and b of at least one time unit and at most two.

In analogy with Büchi automata, an acceptance condition can be coupled with timed
automata and transition tables to define timed languages.

Definition 4.5.12: A timed Büchi automaton is a tuple A = (Σ, Q,Q0, E, I, F),
where (Σ, Q,Q0, E, I) resembles the constituents of an ordinary timed automaton,
and F ⊆ Q a set of accepting states. An infinite run θ of a timed Büchi automaton
over a timed word w ∈ TΣω is called accepting, if and only if Inf(θ) ∩ F 6= ∅.

Note, like in the untimed case (see Definition 3.1.12), Inf(θ) is the set of infinitely
often reoccurring states by executing θ.

Definition 4.5.13: A timed language L is also called a regular timed language if
and only if L = L(A), where A is a timed Büchi automaton.

However, as Alur and Dill [1990] have shown, the class of regular timed languages is
not closed under determinsation nor complementation. In consequence, timed (Bü-
chi) automata cannot generally be made deterministic as would be required for fully
general model checking (see §3.1).

Theorem 4.5.1 (Alur and Dill [1990]): The class of timed regular languages is
closed under union and intersection.

Proof:
For a detailed proof of this theorem, see the above cited source.

Timed transition systems constitute the foundation for the analysis of many interest-
ing properties of real-time systems, which are usually based on the notion of reach-
ability ; that is, given a set of initial states Q0, one wants to compute the set of all
states q ∈ Q reachable from Q0 by the transition relation E. Formally, for a timed
transition system with initial state (q0, γ0), (qi, γi) is said to be reachable if and only if
(q0, γ0) →

∗ (qi, γi), where →∗ denotes an arbitrary number of taken transitions from
E. However, the reachability problem is non-trivial, since the transition systems can
have an infinite number of states due to the presence of implicit delay transitions.
Hence, in order to reason about reachability, a finite representation of the state space
is necessary.

90 Chapter 4: Failure detection through runtime verification

Clock regions

The foundation for decidability of the above stated problem, i. e., reachability, lies in
a separate partitioning of the state space of timed automata in terms of clock regions.
Hence, this section formally introduces clock regions to meet this objective.

Basically, a clock region is made up of a set of clock valuations. In order to obtain
a finite state representation for the analysis of the per se infinite state space of a
timed automaton, clock regions and an according equivalence relation are defined.
The index of this equivalence relation is given by a so-called clock ceiling .

Definition 4.5.14: A clock ceiling is a function k : CΣ → N mapping each clock
z ∈ CΣ to a natural number k(z), i. e., the ceiling of z.

Formally, the notion of (clock) region equivalence for a timed automaton is then
defined as follows.

Definition 4.5.15: For a number d ∈ R, let {d} denote the fractional part of d,
and ⌊d⌋ its integer part. Two clock valuations γ, γ′ are region equivalent, denoted
γ

.
∼k γ

′, where k : CΣ → N is the ceiling function, if and only if

1. ∀z ∈ CΣ : ⌊γ(z)⌋ = ⌊γ′(z)⌋ ∨ (γ(z) > k(z) ∧ γ′(z) > k(z))

2. ∀z ∈ CΣ : γ(z) ≤ k(z) =⇒ ({γ′(z)} = 0 ⇔ {γ(z)} = 0)

3. ∀w, z ∈ CΣ : γ(z) ≤ k(z) ∧ γ′(w) ≤ k(w) =⇒ ({γ(z)} ≤ {γ(w)} ⇔ {γ′(z)} ≤
{γ′(z)})

If k maps clocks to the maximum clock constants used in the given timed automaton,
one can write γ

.
∼ γ′ instead of γ

.
∼k γ′. In other words, regions constitute the

equivalence classes induced by
.
∼. Further, let [γ] denote the set of clocks, region-

equivalent to γ, and R the set of all regions.

0 1 2 3
0

1

2

x

y

Fig. 4.7: Clock regions for a system with two clock variables, x and y.

Example. The regions, R, of an automaton can be visualised as in Fig. 4.7, which
depicts all regions for the following setup: CΣ = {x, y}, k(x) = 3, and k(y) = 2.
Notice, x and y not necessarily denote recording or predicting clocks according to

4.5 Reflecting real-time 91

Definition 4.5.2. In this example, however, a total of 60 regions is obtained: 12
corner points, 6 closed diagonal line segments, 17 closed horizontal and vertical line
segments, 12 closed regions, and 13 open regions.

Definition 4.5.16: Let A = (Σ, Q,Q0, E, I) be a timed automaton. A region graph
(or region automaton) RA is built on states of the form (q, [γ]) and transitions defined
as follows:

• (q, [γ])։ (q, [γ′]) if (q, γ)
d
→ (q, γ′) for some d ∈ R

≥0, and

• (q, [γ])։ (q, [γ′]) if (q, γ)
a
→ (q, γ′) for some a ∈ Σ,

where q ∈ Q and γ, γ′ : CΣ → R
≥0 ∪ {⊥} are clock valuation functions defined in the

usual way.

The transition relation։ is finite, and the foundation for many interesting verification
tasks, such as the previously mentioned reachability analysis, i. e., to check whether
a state q ∈ Q is reachable from another state q′ ∈ Q in a timed automaton. However,
one problem is that the number of regions, though finite, is exponential both in the
number of clocks as well as the maximal clock constants:

Proposition 4.5.1 (Alur and Dill [1990]): The number of clock regions is boun-
ded by |CΣ|! · 2

|CΣ| ·
∏

z∈CΣ
(2k(z) + 2), where k(z) is the clock ceiling for z.

Thus, this proposition implicitly gives an answer to the initial question of decidability,
in that the reachability problem has been shown PSPACE-complete in the cited
source.

From clock regions to clock zones

A sometimes more efficient state-space representation for timed automata is made
possible by using so-called clock zones . In a nutshell, a clock zone describes a number
of clock regions, in that it represents (the solutions of) a finite number of conjunctions
of clock constraints z ⊲⊳ c, where z ∈ CΣ, ⊲⊳∈ {<,≤,≥, >} and c ∈ N.

Definition 4.5.17: Let φ and φ′ be clock zones and λ ⊆ CΣ a set of clocks. The
operations over clock zones (used for reachability analysis) are inductively defined as
follows:

Intersection: φ∧ φ′ is called the intersection of two clock zones. (Since both φ and
φ′ are clock zones, they can be expressed as conjunctions of clock constraints.)

Elapsing of time: For a clock zone φ, φ↑ denotes the elapsing of time and is defined
as follows: φ↑ = {γ + d | γ ∈ φ, d ∈ R

≥0}.

Reset: For a finite subset of clocks λ, and a zone φ, r(φ) = φ[λ := 0] denotes the
set of clock valuations γ[λ := 0] for γ ∈ φ.

92 Chapter 4: Failure detection through runtime verification

Clock zones are closed under all three operations (Bengtsson and Yi [2004]), but
unlike regions, do not necessarily form a stable equivalence relation over a timed
automaton’s state space.

Definition 4.5.18: Let S = (Σ, Q,Q0, E) and S ′ = (Σ, Q′, Q′
0, E

′) be two (abstract)
transition systems with the same alphabet Σ. An (equivalence) relation ∼⊆ Q×Q′

is a stable (equivalence) relation (also called a bisimulation), if and only if q ∼ p and
q

a
→ q′ ∈ E implies that there exists a p′ such that p

a
→ p′ ∈ E ′ and q′ ∼ p′, with

a ∈ Σ.

For region equivalence, Alur and Dill [1996] observed:

Lemma 4.5.1: Let a timed automaton A = (Σ, Q,Q0, E, I), a state q ∈ Q, and two
clock valuations, γ1 and γ2 with γ1

.
∼ γ2 be given. If for some a ∈ Σ, (q, γ1)

a
−→

(q′, γ′1), then there exists a clock valuation γ′2 such that γ′1
.
∼ γ′2 and (q, γ2)

a
−→ (q′, γ′2).

Proof:
For a proof, see Alur and Dill [1996].

Since the purpose of the region equivalence relation,
.
∼, is to quotient an infinite

transition system into a finite one, this relation must be generally stable and finite.
Using the same notation as in Definition 4.4.4, the following provides for a finiteness
criterion.

Definition 4.5.19: Given a transition system S = (Σ, Q,Q0, E) with a stable equiv-
alence relation and class [q]∼, where q ∈ Q, then ∼ is called a stable equivalence
relation of finite index, if and only if {[q]∼ | q ∈ Q} is a finite set.

Together with Lemma 4.5.1 and Proposition 4.5.1, it is easy to see that
.
∼ does,

indeed, satisfy the criteria implied by Definition 4.5.19.

Example. To illustrate why these requirements are important, consider Fig. 4.8. It
shows a timed automaton with transition constraints and invariants (a), as well as the
according zone graph (b) which is infinite, and thus, not suitable for forward analysis:
it contains an infinite number of zones fulfilling the constraints once the state with
label loop has been reached.

However, it should be pointed out that, in practice, this problem does not seem
to occur very frequently, since it applies only to certain time constraints. For in-
stance, the timed verification tool, Uppaal (Behrmann et al. [2002]), is solely based
upon zone graph analysis, and uses a normalisation function over the constraints
to avoid such problems. Although normalisation can be used to achieve finiteness,
this does not guarantee that the zone graph is, under all circumstances, smaller than
the region graph. The up- and down-sides of either representation (when normalised
accordingly), however, are not topic of this chapter. For a brief discussion, see also
§7.

4.5 Reflecting real-time 93

start

loop

x ≤ 10

end

[x := 0 ∧ y := 0]

[x = 10 ∧ x := 0]

[y ≥ 20 ∧ x := 0 ∧ y := 0]

(a) Timed automaton.

start, x = y

loop, x ≤ 10 ∧ x = y

loop, x ≤ 10 ∧ y ≤ 20 ∧ y − x = 10

loop, x ≤ 10 ∧ y ≤ 30 ∧ y − x = 20

loop, x ≤ 10 ∧ y ≤ 40 ∧ y − x = 30

end, x = y

(b) Zone graph.

Fig. 4.8: A timed automaton and its (infinite) zone graph.

Like a region automaton (see Definition 4.5.16), clock zones of a timed automaton
can be captured and processed by a so-called (normalised) zone automaton which is
defined as follows.

Definition 4.5.20: Let A = (Σ, Q,Q0, E, I) be a timed automaton. A zone graph
(or zone automaton) ZA is built on symbolic states of the form (q, φ) and symbolic
transitions defined as follows:

• (q, φ) (q, φ↑ ∧ I(q))

• (q, φ) (q′, r(φ ∧ ψ) ∧ I(q′)) if l
a,ψ,λ
−→ q′

where q, q′ ∈ Q, a ∈ Σ, ψ ∈ Ψ(CΣ), λ ⊆ CΣ, and φ is a clock zone.

This symbolic semantics is then a sound and complete characterisation of the opera-
tional semantics of timed automata (Bengtsson and Yi [2004]). Notice a very efficient,
in terms of time and space complexity, realisation and representation of zones can be
achieved using so-called difference bound matrices (DBM, Dill [1989]). Many timed
verification systems, such as Uppaal use DBMs internally. Since DBMs will not
play a significant role in this thesis, they are not developed further at this point, and
instead a reference to the relevant literature is given.

Event-clock automata

Systems verification using model checking, as outlined in §3.1.1, involves the com-
plementation of the automaton which represents the specified property of a system,

94 Chapter 4: Failure detection through runtime verification

which in turn relies upon determinisation. However, timed automata as described
in the previous section are not generally determinisable, and important verification
problems (e. g., language inclusion as in checking whether L(A1) ⊆ L(A2)) are unde-
cidable using this framework (see also Theorem 4.5.1).

Event-clock automata as proposed by Alur et al. [1999] tackle this problem, in that
they represent a class of timed automata which are determinisable, i. e., their non-
deterministic variants are equally expressive as their deterministic counterparts. More-
over, Raskin [1999] gave a translation of TLTL to event-clock automata, and provided
solutions to the model checking problem of this logic. In a nutshell, this is based upon
a translation of event-clock automata to ordinary Alur-Dill automata and then per-
forming the main analysis on them by means of building region or (stable) zone
graphs.

Definition 4.5.21: Let CΣ be a finite set of clocks. An event-clock automaton is de-
fined as a finite-state automaton whose edges are annotated both with input symbols
and with clock constraints as Aec = (Σ, Q,Q0, E, F), where

• Σ is a finite input alphabet,

• Q a finite set of locations,

• Q0 ⊆ Q is a distinguished set of initial locations,

• E ⊆ Q× Σ × Ψ(CΣ) ×Q a set of transitions, and

• F ⊆ 2Q is a set of accepting components.

An edge e = (q, a, ψ, q′) ∈ E represents a transition from source location q ∈ Q upon
symbol a ∈ Σ to destination q′ ∈ Q, where the clock constraint ψ ∈ Ψ(CΣ) specifies
when this transition is enabled.

For an event-clock automaton Aec, let KAec
denote the biggest constant, i. e., clock

ceiling, appearing in some constraint of Aec; in this thesis, simply K is used whenever
Aec is clear from the context.

Without loss of generality, event-clock automata using only history clocks are referred
to as event-recording automata, whereas automata using only predicting clocks are
referred to as event-predicting automata. Alur et al. [1999] have shown that both
classes are strictly less expressive than fully general event-clock automata, and can
not be generally converted into one another.

Event-clock automata as used here also differ from Alur-Dill automata, in that they
possess accepting states, but lack clock constraints as state invariants. However,
as Alur et al. [1999] point out, the latter does not influence the expressiveness of
the computational model. Moreover, the event-clock automata used throughout this
thesis are defined over the domain TΣω as also used by D’Souza [2003], Raskin and
Schobbens [1999], instead of TΣ∗.

4.5 Reflecting real-time 95

Definition 4.5.22: An (infinite) timed run θ of an automaton Aec = (Σ, Q,Q0, E,F)
over a timed word w ∈ TΣω starting in (q0, γ0) is an (infinite) sequence of state-
valuation tuples and transitions as follows:

θ : (q0, γ0)
α1→ (q1, γ1)

α2→ . . .

with qi ∈ Q, and γi being the evaluation function assigning for every element from
Σ the value of the recording and predicting event clocks corresponding to αi, where
αi ∈ TΣ is a timed event of the form (ai ∈ Σ, ti ∈ R

≥0), and for all i ≥ 1 there is a
transition in E of the form (qi−1, ai, ψ, qi) such that γi |= ψ.

Definition 4.5.23: An infinite run θ of Aec = (Σ, Q,Q0, E,F) is accepting, if and
only if for all accepting components Fi ∈ F : Inf(θ) ∩ Fi 6= ∅ (generalised Büchi
acceptance).

γ0 is initial (with respect to w) if γ0(xa) = ⊥ and γ0(ya) = ti if αi = (a, ti) and for
j < i and αj = (aj, tj), aj 6= a, and γ0(ya) = ⊥ if a does not occur in w. Then,
the timed language accepted by Aec, denoted as L(Aec), is the set of timed words for
which an accepting run of Aec exists starting in (q0, γ0), for some q0 ∈ Q0 and the
initial γ0.

For brevity, the translation algorithms of the real-time logic TLTL to event-clock
automata are not fully restated; these are given, e. g., by Raskin [1999].

q0 q1

a[xa = ⊥ ∨ xa > 5]

b[xa ≤ 3]

Fig. 4.9: Example event-clock automaton.

Example. Fig. 4.9 depicts an example event-clock automaton. It is easy to recognise
it, more precisely, as an event-recording automaton using only xa as a history clock.
It accepts timed words w ∈ TΣω of the form L = J(a + b)ωK, where the Kleene-star
has been replaced with the ω-operator to express infinity (see also example on p. 37),
such that the time difference between each consecutive a and b is within three time
units (i. e., xa ≤ 3), and that two a’s are separated by at least five time units (i. e.,
xa = ⊥ ∨ xa > 5). The ⊥ symbol is necessary to deal with the initial case.

4.5.3 A 3-valued semantics for TLTL—TLTL3

In order to develop a monitoring procedure for real-time systems which works schemat-
ically similar to the one described in §4.3, it is necessary to introduce a 3-valued

96 Chapter 4: Failure detection through runtime verification

semantics for TLTL first. Hence, in this section TLTL3 is formally introduced, a
3-valued interpretation of TLTL.

Definition 4.5.24: Let u ∈ TΣ∗ denote a finite timed trace. The truth value of a
TLTL3 formula ϕ with respect to u, denoted [u |= ϕ], is an element of B3 and defined
as follows:

[u |= ϕ] =

⊤ if ∀σ such that uσ ∈ TΣω, uσ |= ϕ

⊥ if ∀σ such that uσ ∈ TΣω, uσ 6|= ϕ

? otherwise.

4.5.4 Dynamic decision procedure

This section develops the dynamic, automata-based decision procedure for the logic
introduced in the previous section, TLTL3. The automata used are basically event-
clock automata as introduced formally in §4.5.2, but evaluated symbolically over the
set B3 instead of B. The alternative symbolic evaluation of event-clock automata
becomes a necessity in the runtime reflection framework, because clock constraints
over predicting clocks cannot be evaluated in a straightforward manner when only
finite prefixes of behaviours are at hand.

Recall, a run through an event-clock automaton resembles a stream of state-valuation
tuples (q, γ) (see Definition 4.5.23), where γ assigns to the event-recording and pre-
dicting variables, each associated with a symbol a from the event alphabet, either
the time when it was seen last (i. e., γ(xa)), or when it has to be seen next (i. e.,
γ(ya)). While the past valuations can be determined or ⊥ assigned, future valuations
obviously pose a problem: the exact time when the next appropriate event occurs is
not yet known.

A symbolic evaluation of clock constraints over B3 circumvents this dilemma.

Symbolic execution of event-clock automata

Definition 4.5.25: Let Γ : CΣ → R
≥0 ∪ {⊥} ∪ I be a symbolic clock evaluation,

which assigns a real or undefined value, ⊥, to each recording clock variable xa ∈ CΣ,
and an interval from I or undefined value to each predicting clock variable ya ∈ CΣ.
The operations defined over Γ are:

Elapsing of time: Given elapsed time, t ∈ R
≥0, Γ′ = Γ+t, where Γ′(xa) = Γ(xa)+t

and for Γ(ya) = [(l, r)], let Γ′(ya) = [(l−̇t, r − t)], where −̇ yields at least 0; if
r − t < 0, then Γ′ is invalid.

Reset: Γ reset by action a, denoted as Γ ↓ a, sets xa = 0, and removes all constraints
on ya, setting Γ′(ya) = [0,∞) and Γ′(zb) = Γ(zb) for all b 6= a and z ∈ CΣ.

Conjunction: The conjunction of Γ with constraint ψ ∈ Ψ(CΣ) yields Γ′ = Γ ∧ ψ,
where each predicting clock ya is combined with the constraints of ψ which

4.5 Reflecting real-time 97

involve ya (i. e., Γ′(ya) = Γ(ya) ∧
∧
{ya ⊲⊳ c ⊆ ψ}). Γ′ is invalid, if for some ya,

Γ′(ya) is not satisfiable.

Intuitively, the symbolic evaluation of clock constraints occurring in an event-clock
automaton is meant to assign, instead of concrete values to a predicting clock variable
ya, the valid intervals, concrete values of ya can have, such that an accepting run
through the automaton is still possible.

A transition (q, a, ψ, q′) ∈ E of an event-clock automaton defined in the typical man-
ner, is referred to as applicable to a pair (q,Γ), if and only if the constraints xb ⊲⊳ c
in ψ are satisfied by Γ for all b ∈ Σ and 0 ∈ Γ(ya). For instance, Γ(ya) = [0, 5] would
allow an action a to occur, say, in 3 or 4 time units from the current instant of time,
whereas Γ(ya) = [0, 0] would make the occurrence mandatory at the current instant of
time. Additionally, if a transition (q, a, ψ, q′) is applicable, then the successor of the
corresponding (q,Γ) is (q′,Γ′), where Γ′ = (Γ ↓ a)∧ψ (i. e., reset and conjunction).

A symbolic timed run which is used for the purpose of monitoring, is then defined as
follows.

Definition 4.5.26: A symbolic timed run Θ of an event-clock automaton Aec =
(Σ, Q,Q0, E,F) over a timed word w ∈ TΣω starting in (q0,Γ0) is an infinite sequence
of state-symbolic-valuation tuples and transitions as follows:

Θ : (q0,Γ0)
α1→ (q1,Γ1)

α2→ . . .

with qi ∈ Q, and Γi being a symbolic valuation function, where for each (qi−1,Γi−1)
(ai,ti)
−→

(qi,Γi), there exists some transition (qi−1, ai, ψ, qi) applicable to (qi−1,Γi−1 + ti) and
(qi,Γi) is the result of this application. Γ0 is called initial if Γ0(xa) = ⊥ and
Γ0(ya) = [0,∞).

Note that the notion of acceptance for symbolic runs corresponds to that of runs,
i. e., for each Fi ∈ F there is some q ∈ Fi occurring infinitely often.

This connection defined between symbolic timed runs and actual timed runs of an
event-clock automaton is summed up again formally in the following theorem.

Theorem 4.5.2: If Aec = (Σ, Q,Q0, E,F) is an event-clock automaton and w ∈
TΣω, then there is an accepting run on w starting in (q0, γ0), if and only if there is a
symbolic accepting run on w starting in (q0,Γ0).

The important fact about this theorem is that γ0 is dependent on w since the clock
variable ya has to be initialised to match the first occurrence of a, while Γ0 is indepen-
dent of w. Thus, symbolic runs form are a suitable device for runtime verification.

98 Chapter 4: Failure detection through runtime verification

Region automata construction

In what follows, it is assumed (due to a construction given by Raskin [1999]) that
for a formula ϕ as well as its negation, an event-clock automaton is given, accepting
precisely the models, respectively counterexamples, of ϕ and ¬ϕ.

In accordance with the scheme developed for LTL3, it may be tempting to merely
check for every state q of an event-clock automaton, whether the accepted language
from that state is empty. However, this would yield wrong conclusions, as can be
seen in the following example.

q0 q1 q2
a b[xa ≥ 2]

a[xa ≤ 1]

Fig. 4.10: An event-clock automaton.

Example. While the language accepted in state q2 is non-empty and, despite, state
q2 is reachable, the automaton does not accept any word when starting in state q0.
The constraint when passing from q1 to q2 requires the clock xa to be at least q2.
This, however, restricts the loop in state q2 to be taken.

The proposed solution to this problem is to work on the region automaton of a given
event-clock automaton instead. The key property of region equivalence is stability ;
that is, given a state s and two equivalent valuations, γ1 and γ2, then (s′, γ′) is an
a-successor of (s, γ1) if and only if (s′, γ′′) is one of (s, γ2) for a suitable γ′′ equivalent
to γ′ (see also Definition 4.5.1). This can also be “lifted” to infinite runs according
to the following lemma.

Lemma 4.5.2: Let Aec be an event-clock automaton. Let q be some state of Aec

and γ1, γ2 two valuations with γ1
.
∼ γ2. Let w̄ ∈ Σω. Then, there exists an accepting

run on some infinite timed word w1 ∈ TΣω with ut(w1) = w̄ starting in (q, γ1), if
and only if there exists an accepting run on some infinite timed word w2 ∈ TΣω with
ut(w2) = w̄ starting in (q, γ2).

Proof:
Stability as defined above is a property over pairs of state-valuation tuples, respec-
tively. Thus, this lemma can be shown by induction over n ∈ N, where n denotes the
position in w̄. �

Again, notice, that zone graphs do not generally possess the stability criterion. Hence,
they have not been chosen as a vehicle for monitoring TLTL3 properties (see §4.5.2).
Region automata were chosen mainly to keep the presentation focused on the basic

4.5 Reflecting real-time 99

concepts. However, since the key property of the monitor construction is stability of
the region equivalence, the approach could, in fact, be improved by taking a coarser
but stable partition of the underlying timed transition system into account as well.
Examples of such stable partitions have been studied extensively by Tripakis and
Yovine [2001].

The following construction of a region automaton as defined in Definition 4.5.16
from an event-clock automaton as defined in Definition 4.5.21 is based upon the one
presented by Raskin and Schobbens [1999].

Definition 4.5.27: Let Aec = (Σ, Q,Q0, E,F) be an event-clock automaton defined
in the usual way, and R denote its regions. The region automaton of Aec is the
(generalised) Büchi automaton R(Aec) = (Σr, Qr, Qr

0, E
r,F r), where

• Qr = {(l, κ, ζ) | l ∈ Q, κ ∈ R, ζ ∈ {t, d}} is the set of states,

• Qr
0 = {(l, κ, ζ) ∈ Qr | l ∈ Q0,∀a ∈ Σ : κ(xa) = ⊥, ζ = d} is the set of initial

states,

• Σr = Σ ∪ {ǫ}

• Er = Er
d ∪ E

r
t is the union of untimed and timed transitions, where

– Er
d = {((l1, κ1, t), (l2, κ2, d), a) | (l1, a, ψ, l2) ∈ E and

∃κ3 such that κ1 = κ3[ya := 0], κ2 = κ3[xa := 0], and κ3 |= ψ}

– Er
t = {((l, κ1, d), (l, κ2, t), ǫ) | κ2 ∈ TS(κ1)}

• F r = {F r
i | Fi ∈ F} ∪ {Fxa

| ⊳a ∈ I ∈ cl(ϕ)} ∪ {Fya
| ⊲a ∈ I ∈ cl(ϕ)},

– where for Fi ∈ F , F r
i = {(l, κ, ζ) | l ∈ Fi}

– Fxa
= {(l, κ, ζ) | ∀γ ∈ κ : γ(xa) = 0 ∨ γ(xa) > c ∨ γ(xa) = ⊥}

– Fya
= {(l, κ, ζ) | ∀γ ∈ κ : γ(ya) = 0 ∨ γ(ya) = ⊥},

and TS(κ1) is a time successor of a clock region κ1, denoted κ2 ∈ TS(κ1), if and only
if for all γ ∈ κ1 there is some t ∈ R

≥0 such that γ + t ∈ κ2.

Since the region automaton as defined here is, basically, a Büchi automaton, the
accepted language by it is a sequence of (untimed) words over Σ. Thus, it is straight-
forward to compute for every state, whether the accepted (untimed) language is empty
or not in the way as done in §4.4, i. e., the procedure is analogous. For every state
(l, κ, ζ) with a non-empty language, stability now guarantees that for each γ ∈ κ,
there is some accepting run of the corresponding event-clock automaton starting in
(l, γ) for some timed word w. Dually, if the accepted language is empty, then the
corresponding event-clock automaton has no accepting run starting in (l, γ) for any
γ ∈ κ, and any w.

Monitoring algorithm

Using the symbolic execution scheme and the derivation of region automata as de-
scribed above, an actual monitoring procedure for TLTL3 can now be derived, i. e.,

100 Chapter 4: Failure detection through runtime verification

execution of a finite state machine that reads timed words and decides whether further
events might yield and accepting run, or not.

The monitoring procedure is based on both the event-clock automaton as well as the
region automaton for a formula in TLTL3. It follows the possible symbolic compu-
tations for the given input along the lines of the event-clock automaton. However,
to decide, whether future events might contribute to an accepting run, the region
automaton is consulted according to Algorithm A (see below).

Unlike otherwise noted, for the remainder, an event-clock automaton Aϕ
ec and its

region automaton R(Aϕ
ec) both defined in the usual way are assumed. Moreover, a

timed word w = (a0, t0)(a1, t1) · · · ∈ TΣω is assumed, where (a0, t0) denotes the first
action a0 occurring at time t0.

Algorithm A (Automata execution). Let Γ0 be the initial symbolic valuation of
Aϕ
ec and l0 one of the initial states of Aϕ

ec.

A1. [Compute successor set.] For the first event (a0, t0), the set of successors with
respect to Aϕ

ec is computed.

A2. [Set empty?] If this set is empty, the underlying formula is obviously violated,
and false issued. If not, go to step A3.

A3. [Check emptiness.] Each successor is a pair (l,Γ) and corresponds to a set of
states in the region automaton. If and only if for all of them the accepted
language is empty, the underlying property is violated, and false issued (see
Theorem 4.5.2 and Lemma 4.5.2).

A4. [Process next event.] Issue true, and continue procedure from A2 with each suc-
cessor state (l,Γ) for which a corresponding accepting state of R(Aϕ

ec) exists,
reading a new input event. ❚

Thus, the generated procedure keeps a set of possible state-symbolic valuation pairs
that represent the possible current states of Aϕ

ec (giving credit to the non-deterministic
nature of Aϕ

ec). Furthermore, the transition table of Aϕ
ec and the states of R(Aϕ

ec)
enriched with emptiness per state information can be stored as look-up tables.

However, according to the procedure used in the untimed case, this algorithm captures
only half of the steps actually required to determine [u |= ϕ], where w = uσ and
σ ∈ TΣω, and ϕ ∈ TLTL3. To determine validity of a property, the negated property
needs to be checked as well in the same manner as described by the algorithm.

The overall monitoring procedure for TLTL3 is thus, summarised in Fig. 4.11, where
ECA denotes an event-clock automaton. Notice, the main difference compared to
the untimed case lies in that no nondeterministic finite automaton is constructed
explicitly, nor is determinsation included explicitly. Instead, the actual monitor im-
plementing the above steps for Aϕ

ec, respectively A¬ϕ
ec , evaluates R(Aϕ

ec), respectively
R(A¬ϕ

ec), in an on-the-fly manner ; that is, both automata are evaluated by dynamic
power-set construction as described in more detail in §6 of this work (or, alternatively,

4.5 Reflecting real-time 101

Salt

ϕ

¬ϕ

Aϕ

ec

A¬ϕ

ec

Rϕ

R¬ϕ

Fϕ

F¬ϕ

Ā

Input (1) Formula (2) ECA (3)
Region

automaton
(4)

Emptiness
per state

(5) Monitor

Fig. 4.11: The procedure for getting [u |= ϕ] for a given ϕ ∈ TLTL3 derived from a
Salt specification.

see also Hopcroft and Ullman [1979] and Aho et al. [1988] for an explanation of the
general power-set construction).

Remark. To enhance the practical applicability, the procedure can be adjusted as
follows: the formal framework described above requires the monitor to raise an alarm
if and only if for some prefix (a0, t0) . . . (ai, ti) no accepting run exists. In particular,
it is assumed that “a digital watch is consulted only when some action occurs”. But
the time transitions yielding the subsequent regions in the region automaton actually
(often) constrain the possible occurrence of some future event a. For each current
valuation Γ corresponding to a set of regions, R(A) is consulted for the possible
accepting time successors and to compute a maximal time bound before some event
has to occur for reaching an accepting state. Thus, in practice, a timer interrupt can
be set, when such a bound exists, and a trace can be rejected, when a timeout occurs
before a suitable action has been read.

4.5.5 Complexity

Complexity evaluation largely follows §4.4.3; that is, considering Fig. 4.11 again, step
1 merely requires replication of ϕ and negation. Thus, it is linear in the original size of
the formula. According to Proposition 4.5.1, the region automaton of Aϕ

ec, respectively
A¬ϕ
ec , is worst-case exponential with respect to the length of the underlying formula

ϕ as well as the largest constant K appearing in ϕ.

Although, so far, the procedure is “only single exponential”, a penalty is introduced by
the on-the-fly power-set construction to determine successor states of the automata;
that is, following all the different paths in a nondeterministic automaton for a given
prefix involves further space requirements exponential in the size of the according
automaton. Further details and a discussion of possible improvements are available
in §6.

102 Chapter 4: Failure detection through runtime verification

4.6 Summary

This chapter introduces a construction for runtime monitors that work with timed
and untimed systems using LTL, and TLTL for the timed case. Due to D’Souza’s
results, TLTL can be considered a natural extension of LTL towards real-time. As
such, a typical obstacle in runtime verification is solved both for untimed and timed
formulae, in that standard models of linear temporal logic are infinite traces, whereas
in runtime verification only finite system behaviours are at hand. Therefore, a 3-
valued semantics (true, false, ?) for LTL and TLTL on finite traces is defined that
resembles the infinite trace semantics in a suitable and intuitive manner (i. e., not
conflicting with the traditional 2-valued semantics). Further, this chapter describes
how to construct, given a formula in LTL, respectively TLTL, an optimal deterministic
monitor with three output symbols that reads a finite trace and yields its according
3-valued semantics. Notably, the monitor rejects a trace as early as possible, in that
any minimal bad prefix results in false as a return value.

Chapter 5

Fault detection using model-based

diagnosis

How often have I said to you that when
you have eliminated the impossible,
whatever remains, however improbable,
must be the truth?

(Sherlock Holmes in The Sign of Four)

This chapter explores model-based diagnosis as a means of deducing from
observed behavioural deviations, explanations for them; that is, an efficient realisation
of diagnosis is presented that uses the results of the monitors to detect actual faults
in a system.

Although it is not explicitly stated by the communities focussed on the static ver-
ification of systems, such as model checking, their focus rests on the detection of
failures, rather than the question of what to do, once a symptom or a failure has been
found. This chapter proposes diagnosis as a subsequent task, in order to perform a
plausibility check, and to determine whether an observed symptom for failure hints
to the actual fault in a system, or whether the fault must be looked for elsewhere,
probably even outside the scope of the system, in its environment.

The procedure proposed in this chapter aims to remedy this downside which, in its
present form, also exists in most runtime verification approaches that do not distin-
guish between an observed symptom of a fault (e. g., violation of a safety property),
and the actual fault itself (e. g., communication failure between components or a
deadlock in a single component). Neither the employed models (i. e., LTL formulae),
nor the theory behind runtime verification currently cater for such a differentiation.

Like runtime verification, model-based diagnosis also relies upon complementary sys-
tem models which form a suitable foundation for this kind of analysis. However,
different types of diagnosable systems as well as means of specification have also led
to different approaches to model-based diagnosis; a term which was first used in this
context in a seminal paper by de Kleer and Williams [1987]. The underlying system

103

104 Chapter 5: Fault detection using model-based diagnosis

model used by de Kleer and Williams captures both the behaviour of a system, and,
more importantly for the approach developed in this chapter, the causality between
its constituents or individual components.

The task of model-based diagnosis is summarised in Fig. 5.1: From the system model
a specific behaviour is predicted, which is compared to a set of observations that are
obtained from the actual system during its execution. From the (possibly empty)
set of discrepancies, the diagnoses, i. e., explanations for the discrepancies, are then
derived; if empty, the system should work as expected.

System model Diagnosis System

Derived behaviour Discrepancy Observation

Fig. 5.1: The principle of model-based diagnosis.

The rest of this chapter is structured as follows. In §5.1 a formalisation of the model-
based diagnosis problem in first-order logic is given. It also outlines the two most
well-known approaches to diagnostic problem solving in first-order logic, namely the
Diagnose-algorithm proposed by Reiter [1987], and the General Diagnostic Engine,
proposed by de Kleer and Williams [1987]. In §5.2 an alternative and practically
more efficient solution to the diagnosis problem is presented, which follows the idea
depicted in Fig. 5.1, but uses propositional logic instead. As such, it provides means
for efficient realisation in terms of mapping the diagnosis problem to a Boolean sat-
isfiability problem. Hence, this section discusses the mapping from first-order to
propositional diagnosis as well as a straightforward implementation based on the
well-known DPLL-algorithm (see §5.2.2). Then, in §5.2.3 an optimisation for this
implementation is proposed which not only determines a diagnosis based on a satisfi-
ability check, but also caters for determination of all potentially possible diagnoses,
based on the cardinality of system faults found. For systems diagnosis this is essen-
tial, since more than one diagnosis for an observed failure may be required to explain
it. Related work is summarised in §5.3, whereas §5.4 provides a brief summary of the
chapter.

5.1 Preliminaries

The term model-based diagnosis as used throughout the remainder of this thesis re-
flects the theory introduced first by Reiter [1987], under the name “diagnosis from
first principles” or consistency-based diagnosis, and independently but almost at the

5.1 Preliminaries 105

same time by de Kleer and Williams [1987] as model-based diagnosis. In the fol-
lowing, the basic concepts of model-based diagnosis are introduced which have their
background in first-order reasoning, followed by a discussion and comparison of two
established algorithms for solving the formal problem of model-based diagnosis.

5.1.1 Languages of first-order logic

To keep this chapter self-contained and to substantiate the transition from first-order
to propositional diagnosis models, this section briefly recalls the formal semantics of
first-order logic languages, and introduces some essential notation.

The syntax of a first-order logic language is defined over a first-order alphabet con-
sisting of the following classes of symbols.1

Definition 5.1.1: A first-order logic language, LFO(R,F,C), may consist of the fol-
lowing classes of symbols:

• A countably infinite set of variables

V = {u, v, w, x, y, z, U, V,W,X, Y, Z, . . .}.

• A set of logical operators {¬,∨,∧,⇒,⇔}.

• A finite set R of relation symbols. For each P ∈ R, there exists an n ∈ N

denoting the arity of P .

• A finite set F of function symbols. For each f ∈ F , there exists an n ∈ N

denoting the arity of f .

• A finite set C of constants.

• A set {∃,∀} of quantifiers, where ∃ is called the existential and ∀ the universal
quantifier.

In the rest of this chapter some abbreviations will be used. LFO is used instead of
LFO(R,F,C), when R,F,C are clear from the context. The notation F(LFO) is used
to denote the set of function symbols appearing in LFO, R(LFO) for the relation
symbols, C(LFO) for the constants, and V(LFO) for all the occurring variables.

Given a set of functions F , then fn ∈ F denotes a function f with arity n. Re-
spectively, given a set of relation symbols R, then P n ∈ R denotes an n-ary relation
P .

The languages of first-order logic are expressible by first-order (logic) sentences and
terms as defined below.

Definition 5.1.2: A first-order term is inductively defined as follows:

• A variable v ∈ V is a term.

1Standard Edinburgh Prolog notation (Clocksin and Mellish [1987]).

106 Chapter 5: Fault detection using model-based diagnosis

• Let fn ∈ F be a function symbol, and t1, . . . , tn be terms, then f(t1, . . . , tn) is
also a term.

However, in the remainder, some mathematical functions are written using infix in-
stead of prefix notation, e. g., u+ v × x is used for +(u,×(v, x)).

Definition 5.1.3: A first-order sentence is inductively defined as follows:

• Let P n ∈ R be a relation symbol, and t1, . . . , tn be terms, then P (t1, . . . , tn) is
a sentence.

• Let t1 and t2 be terms, then t1 = t2 is a sentence.

• Let v ∈ V and F,G be sentences, then so are ¬F , F ∧ G, F ∨ G, F ⇒ G,
F ⇔ G, ∃v(F), and ∀v(F).

The semantics of a first-order logic language is given by a structure defined below,
and a function which assigns to each variable occurring in a sentence an element from
that structure.

Definition 5.1.4: A structure for the first-order language LFO is a pair M = (D, I),
where

• D is a nonempty set called the domain, and

• I an interpretation over D which provides

– for every c ∈ C(LFO), an I(c) ∈ D,

– for every f ∈ F(LFO), a mapping I(f) : Dn → D, where n ∈ N is the
arity of f ,

– for every P ∈ R(LFO), an I(P) ⊆ Dn, where n is the arity of the relation.

For brevity, the concept of interpretation is not expanded any further at this point.
Details are available, e. g., in Fitting [1996] and Harrison [TBA]. In these works, first-
order structures are also referred to as “models” of first-order languages. However,
to not confuse a first-order model of a language with the behavioural model of a
computer system, the term “structure” is used here. For brevity, also the notations
cI , f I , P I will be used instead of I(c), I(f), and I(P).

5.1.2 First-order diagnosis

The system models used in model-based diagnosis as introduced by Reiter [1987]
are first-order sentences encoding all relevant aspects of a system with respect to
its diagnosability. The system itself is defined in a domain-independent manner as
follows.

Definition 5.1.5: A system is a pair (SD,COMP), where

• SD is the system description, encoded by first-order sentences;

5.1 Preliminaries 107

• COMP is the set of system components, encoded by a finite set of constants.

In practice, the set of components can be of almost arbitrary granularity. Depending
on the properties of the system to be diagnosed, COMP may, for example, refer to
Java threads, user session objects within a Web application, or even physical entities
such as sensors, actuators, or entire nodes in a computer network. This definition
makes no assumption on the purpose of a system as it is domain-independent.

However, in all intended applications, the system description will contain an unary
predicate, AB(·), encoding that something is “abnormal”. The intuitive interpreta-
tion of AB-predicates in a system description follows that of McCarthy [1987] who
rests his formalisation of circumscription upon this predicate; he writes AB(c) to de-
note an abstract component c ∈ COMP with an abnormal behaviour or characteristic
(see also §5.3).

In the classical theory of diagnosis, the diagnostic task is, given a set of observations
and a system description with AB-predicates over a set of components, to determine
whether the system under scrutiny is malfunctioning, which components may be
faulty or abnormal, and what additional information needs to be gathered (if any)
to identify the faulty components with relative certainty (cf. de Kleer and Kurien
[2003]). To formalise this, the notion of an observation needs to be introduced.

Definition 5.1.6: An observation of a system is a finite set of first-order sentences.
With (SD,COMP,OBS) the system (SD,COMP) with observation OBS is de-
noted.

The next example brings these concepts, i. e., that of a system description and obser-
vations, together.

i4

i3

i2

i1
M1

M2

m1

A1

A2 o2

o13

4

5

26

26

m2 20

6
2

Fig. 5.2: A network with four arithmetic components.

Example. The distributed system depicted in Fig. 5.2 contains four arithmetic com-
ponents, i. e., two multiplicators, M1 and M2, and two adders, A1 and A2. The

108 Chapter 5: Fault detection using model-based diagnosis

following schematic system description applies:

SD =

mult(X) ∧ ¬AB(X) ⇒ (output1(X) = input1(X) × input2(X)),
add(X) ∧ ¬AB(X) ⇒ (output1(X) = input1(X) + input2(X)),
mult(M1),mult(M2), add(A1), add(A2),
output1(M1) = input1(A1),
output1(M1) = input1(A2),
output1(M2) = input1(A1),
output1(M2) = input1(A2)

,

where the input and output “channels” of the system have been given shortcuts in
the diagram to make the example, and coming references to it more applicable. The
first two sentences in SD are referred to as behavioural model , whereas the remaining
ones are referred to as structural model capturing only the causality of the overall
system.

The set of components is defined as

COMP = {M1,M2, A1, A2}.

In this example, the set of observations is defined as:

OBS =

input1(M1) = 2, input2(M1) = 3, output1(M1) = 6,
input1(M2) = 4, input2(M2) = 5, output1(M2) = 20,
output1(A1) = 26, output1(A2) = 26

.

Here, OBS can also be expressed by a mapping of signals, exchanged on channels,
denoted by SIG, as OBS : SIG → N, such that an assignment i1 7→ 2 is a shortcut
for (input1(M1) = 2). In the remainder of this chapter, both notations will be used
interchangeably where fit. ¬AB(M1) denotes that, given M1 is working as expected,
its output corresponds exactly to the product of its inputs, respectively for M2, A1,
and A2. Hence, statements like ¬AB(M1) appearing in a system description express
assumptions regarding the state of components. Furthermore, the current observation
OBS leads to the conclusion that all components work as expected.

As is the case in the above example, a diagnosis not necessarily needs to come to
the conclusion that a component is faulty. Formally, Reiter’s diagnosis is defined as
follows.

Definition 5.1.7: A diagnosis for (SD,COMP,OBS) is a minimal set ∆ ⊆ COMP

such that

SD ∪OBS ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMP\∆}

is consistent, i. e., has a satisfying structure.

5.1 Preliminaries 109

In other words, a diagnosis determines whether a logical diagnosis model given by
SD ∪ {¬AB(c1), . . . ,¬AB(cn)} ∪OBS is inconsistent and, more importantly, allows
one to interpret why. The latter is achieved by retracting some of the assumptions
made in SD regarding the abnormal-predicates, AB(·), such that consistency can
be restored. Minimality in the above definition asserts that only those satisfying
structures are diagnoses where the assumption that one or many components are
abnormal, together with the assumption of all the other components behaving nor-
mally is consistent with the system description and the corresponding observations.
Reiter refers to this as the Principle of Parsimony for diagnosis. This principle is an
important prerequisite from a practical point of view, because retracting all of the
abnormal-predicates in SD makes the logical model consistent in any case, and would
yield an otherwise meaningless diagnosis.

From the above definition it can easily be derived that:

Proposition 5.1.1: ∅ is a diagnosis (and the only diagnosis) for (SD,COMP,OBS),
if and only if

SD ∪OBS ∪ {¬AB(c) | c ∈ COMP}

is consistent.

Proposition 5.1.1 gives a formal explanation for why, in the above example, the only
obvious diagnosis is that no component is faulty; that is, if no failure was observed,
the system must function normally.

Example (continued). Setting o1 6= 26 in the above example, leads to a diagnosis
∆ = {A1}, i. e., AB(A1). This is also a minimal diagnosis, in that the assumption that
this component is abnormal, together with the assumption of all the other components
behaving correctly, is consistent with the system description and the observation.

Although in the previous example it is sufficient to assume a single component re-
sponsible for an observed symptom, there exist symptoms which are only explicable
by assuming multiple abnormal components. Moreover, model-based diagnosis with
multiple faults is in the worst case exponential in the number of components (cf.
Bylander et al. [1991]); that is, every element of the power-set of the set of compo-
nents may be a potential hypothesis for explaining observed inconsistencies. This was
first formally (and independent of Reiter) acknowledged by de Kleer and Williams
[1987].

Example (continued). Using the notation with signals, let, in the example from
Fig. 5.2, OBS = {i1 7→ 2, i2 7→ 3, i3 7→ 4, i4 7→ 5,m1 7→ 6,m2 7→ 20, o1 7→ 32, o2 7→
32}, i. e., o1, and o2 are not as expected. Then the possible diagnoses are {M1, A1, A2},
{M1, A1, A2}, and {A1, A2}. All these diagnoses can be used as hypotheses to make
the system description consistent with the observations given by the set OBS.

110 Chapter 5: Fault detection using model-based diagnosis

Determination of diagnoses

This section details on how to formally determine a diagnosis for a given first-order
system model (SD,COMP,OBS). For brevity, only the two most widespread ap-
proaches from the literature of model-based diagnosis are discussed, the computation
of minimal conflict sets according to Reiter [1987], and the algorithm of de Kleer and
Williams [1987] for the General Diagnostic Engine (GDE). Other related approaches,
but not necessarily bound to first-order reasoning, are briefly compared in §5.3.

The conflict set method. In what follows, a system and an according observation
(SD,COMP,OBS) are assumed. In order to determine useful diagnoses for the
system, the concept of a conflict set is employed, which is formally defined as:

Definition 5.1.8: A conflict set C is a set {c1, . . . , cn} with ci ∈ COMP , such that

SD ∪OBS ∪ {¬AB(ci) | ci ∈ C}

is inconsistent. C is minimal if and only if there is no strict subset which is also a
conflict set.

Definition 5.1.7 of a diagnosis can now be reformulated in terms of Proposition 5.1.2.

Proposition 5.1.2: ∆ ⊆ COMP is a diagnosis, if and only if ∆ is a minimal set
such that COMP\∆ is not a conflict set.

Reiter uses the notion of a hitting set to determine conflicts.

Definition 5.1.9: Let C be a set of sets, i. e., a collection. A hitting set for C is a
set H ⊆

⋃

S∈C S, such that H ∩ S 6= ∅ for each S ∈ C. A hitting set for C is minimal,
if and only if no strict subset of it is a hitting set for C.

The central theorem to compute diagnoses is defined over the collection of conflict
sets as follows.

Theorem 5.1.1: ∆ ⊆ COMP is a (minimal) diagnosis, if and only if ∆ is a (mini-
mal) hitting set for the collection of conflict sets.

Proof:
For brevity, only the connection between diagnoses and hitting sets is shown, but not
minimality. For a complete proof, see Reiter [1987].

(⇒) By Proposition 5.1.2, COMP\∆ is not a conflict set. It follows that every
conflict set must contain an element from ∆, such that ∆ is a hitting set for the
collection of conflict sets.

(⇐) Assume COMP\∆ is not a conflict; if it was, then ∆ would not hit it, and thus,
contradict the fact that ∆ is a hitting set. �

5.1 Preliminaries 111

From the validity of the above theorem, Reiter deduces an algorithm, in the follow-
ing, referred to as Diagnose, which performs a lattice exploration over the possible
diagnoses.

Definition 5.1.10: A lattice is a non-empty partially ordered set (S,⊆), such that
for all elements a, b ∈ S there exists an infimum, denoted inf(a, b), and a supremum,
denoted sup(a, b).

The diagnosis lattice which is associated with the example shown in Fig. 5.2, is
depicted in Fig. 5.3. It contains 16 (= 2|COMP |) elements.

{M1,M2, A1, A2}

{M1, A1, A2} {M1,M2, A1} {M1,M2, A2} {M2, A1, A2}

{A1,M1} {M1,M2} {A1, A2} {A2,M1} {A1,M2} {M2, A2}

{M1} {A1} {M2} {A2}

∅

Fig. 5.3: Diagnostic lattice for the system depicted in Fig. 5.2.

Basically, the algorithm determines all minimal hitting sets for the set of conflict
sets. Note that finding minimal hitting sets is also known as the transversal problem,
which is one of the key problems in the combinatorics of finite sets (cf. Berge [1989]
and Khachiyan et al. [2005]). Eiter and Gottlob [1995] give a good overview on the
complexity of this and related problems, and, more precisely, identify the hitting set
problem as described here to be NP-complete.

Algorithm D (Diagnose). Let C be the collection or set of conflict sets. The algo-
rithm Diagnose then performs a breadth-first search (cf. Knuth [1998]) on C starting
with node ∅.

D1. [Next node.] Let C be the current node of the breadth-first search.

D2. [Conflict set?] Call a first-order theorem prover to determine whether COMP\C
denotes a conflict set; if it is, continue with step D3, otherwise with step D4.

D3. [Eliminate non-diagnoses.] Eliminate all nodes C ′ from C for which it holds that
C ′ ∩ (COMP\C) = ∅. C ′ cannot be a minimal diagnosis.

112 Chapter 5: Fault detection using model-based diagnosis

D4. [Eliminate direct descendants.] C is a minimal diagnosis. Eliminate all its de-
scendants from C. ❚

A discussion of the employed theorem prover is omitted at this point as it is beyond
the scope of this thesis. First-order theorem provers, as required in this context, have
been automated over the years, and a good discussion of their concepts is available,
e. g., from Fitting [1996], Gabbay et al. [1994], or Harrison [TBA].

General Diagnostic Engine. de Kleer and Williams [1987] developed the General
Diagnostic Engine (GDE) specifically for diagnosing systems which contain more
than one fault simultaneously. Their method is similar to Reiter’s, i. e., based on
determination of minimal conflict and hitting sets, although the actual term “hitting
set” is not used in their work.

To compute diagnoses, GDE exploits the formal correlation between hitting and con-
flict sets as given in Theorem 5.1.1; that is, it first determines the set of all conflict
sets, of which the minimal hitting sets then constitute a system’s diagnoses. Un-
like Reiter, who explores the entire diagnosis lattice in a breadth-first manner, GDE
uses an inference engine, and a so-called assumption-based truth maintenance system
(ATMS) that outputs the minimal sets of faulty components. The inference engine
can be chosen arbitrarily, as long as it finds the components that an observation de-
pends on and can calculate values of variables in the system. The task of the ATMS
is to record dependencies between observable parameters, i. e., sets of assumptions
supporting the parameters. Again, for brevity the implementation details of both the
inference engine and the ATMS (see de Kleer [1986], Reiter and de Kleer [1987]) are
not discussed in detail. However, assumption sets as they appear in GDE correspond
directly to Reiter’s notion of minimal conflict sets (see Definition 5.1.8). If the value
predicted for a parameter contradicts the observed value, at least one of the assump-
tions must be wrong, which is then, in the process of a stepwise simulation, updated
in the ATMS.

The following algorithm, describes how GDE infers diagnoses, which in this struc-
tured form does not appear in the original work of de Kleer and Williams [1987].

Algorithm G (GDE). Let C be the collection of conflict or assumption sets for a
system (SD,COMP,OBS). The following then proceeds in a stepwise manner over
all variables or parameters appearing in SD for which value assignments need to be
determined.

G1. [Infer variable assignment.] Use the inference engine to determine a variable
assignment for the current parameter (e. g., an input/output value of a compo-
nent) based on the normal behaviour defined by SD.

G2. [Make assumption.] Tag the inferred value with assumptions from the system
description (comprising AB-predicates over COMP) and add assumptions to

5.2 Diagnosis as a Boolean satisfiability problem 113

the ATMS.

G3. [Compare values.] Compare the inferred value with the actually observed value
from OBS.

G4. [Discrepancy?] If there is a discrepancy between the predicted and the actual
value, use ATMS to retract previous assumptions in terms of negating AB-
predicates, add affected components to C, and update the ATMS.

G5. [Next value.] Repeat from step G1 until all values are determined.

G6. [Determine diagnoses.] Compute the minimal hitting sets for the collected sets
in C. ❚

There exist various optimisations and generalisations of GDE in the literature, e. g.,
as proposed by Struss and Heller [2001] in terms of the G+DE framework to add
therapeutic measures into the reasoning process, or also by de Kleer and Williams
[1992] who extended the algorithm by reflecting not only normal, but also faulty
behaviour, resulting in the so-called Sherlock framework.

5.2 Diagnosis as a Boolean satisfiability problem

This section gives an efficient implementation of model-based diagnosis as introduced
in §5.1. It is based on a translation of the diagnosis problem into a Boolean satisfiabil-
ity problem, which is due to the use of monitors in the runtime reflection framework,
determining whether monitored components are considered abnormal, or not. The
proposed method aims at complementing the monitoring of systems, in that it can
either confirm a monitor pointing to the root cause of a failure, or suggest a fault
located outside the scope of a monitor or, possibly outside the scope of the entire
system, then called an external fault (see §2).

5.2.1 From first-order to propositional diagnosis models

Although model-based diagnosis as described above is a useful tool for reasoning about
systems, and various practical applications and implementations exist (cf. de Kleer
and Williams [1987], Poole [1988], Baumgartner et al. [1996], Struss and Price [2003]),
there are some limiting factors:

• Model-based diagnosis is laid out for the static component-based analysis of
systems, where behavioural patterns over time are not considered.

• Despite the focus on static component-based analysis, the computational com-
plexity is still high. The number of diagnoses can be exponential in the number
of components, and diagnosis inference relies on first-order reasoning frame-
works, such as theorem provers, which operate either interactively, or if auto-
mated, possibly do not terminate (cf. Fitting [1996], Harrison [TBA]).

114 Chapter 5: Fault detection using model-based diagnosis

Due to such reasons, model-based diagnosis as presented above, has been applied
mostly to hardware systems, where components resemble physical parts (cf. Mikaelian
et al. [2005]), rather than abstract entities such as communicating threads of a reac-
tive system exhibiting complex behaviour over time. However, the runtime reflection
framework analyses such behavioural patterns by using dedicated monitor compo-
nents (see §4), such that failure and fault detection are handled by two separate
entities. The connection of both are the results of the monitors, which are reflected
by a special predicate as follows.

Definition 5.2.1: Let (SD,COMP) be a system description and SIG be a set of
input and output signals. An observation for (SD,COMP) is then defined by the
set

OBS = {ok(s) | s ∈ SIG} ∪̇ {¬ok(s) | s ∈ SIG},

where ∪̇ denotes the pairwise disjoint union of the subsets.

Intuitively, the ok-predicate evaluates to true if an observed signal conforms with
a specification, i. e., is “ok”. In the runtime reflection framework, given a signal
s ∈ SIG, a monitor determines whether ok(s) or ¬ok(s) holds, since the stream of
signals (or, actions) are evaluated by the monitoring layer. The ok-predicate can
thus be considered as the counterpart for the AB-predicate, but applied to signals
instead of components. It is assumed that, unlike components, signals cannot fail,
but usually are the result of a faulty component, or some environmental influence
outside the scope of the monitored system.

Rather than specifying the concrete behaviour of a component in terms of arith-
metics and equations, it is abstracted from in this form by making use of the ok-
predicates. The diagnosis problem imposed by this form of modelling is then referred
to as monitoring-based diagnosis problem.

Definition 5.2.2: A (monitoring-based) diagnosis problem is given by a tuple M =
(SD,COMP,OBS, SIG), where

• SD is a system description consisting of a finite set of first-order sentences (with
cardinality |COMP |), referred to as abstract normality axioms, which, for each
c ∈ COMP and Ic, Oc ⊂ SIG, are of the form

∀i ∈ Ic : ok(i) ∧ ¬AB(c) ⇔ ∀o ∈ Oc : ok(o)

• COMP = {c1, . . . , cn} is a finite set of components,

• OBS = {ok(s) | s ∈ SIG} ∪̇ {¬ok(s) | s ∈ SIG} is a finite set of observations,
and

• SIG = {s1, . . . , sm} a finite set of signals used for communication inside the
system.

5.2 Diagnosis as a Boolean satisfiability problem 115

Note that the sets of variables Ic and Oc, denoting the input and output signals
of a component c, are not always disjoint in order to preserve the system’s causal-
ity. Moreover, this definition also caters for a more formal definition of some of the
terms introduced informally in §2. For instance, a negatively evaluated ok-predicate
corresponds to the notion of a symptom. Formally:

Definition 5.2.3: For a monitoring-based diagnosis problem, given by the tuple
M = (SD,COMP,OBS, SIG), let {¬ok(s) | s ∈ SIG} ⊆ OBS denote the set
of symptoms. A system is symptom-free, if and only if the set of symptoms is empty,
i. e., it holds that ∀s ∈ SIG : ok(s).

This implies a natural link between a symptom and the presence of a fault, which is
exploited by model-based diagnosis and that follows as a consequence of the above
definitions. Moreover, as is argued in §2, it is important to differentiate between two
types of faults: internal and external. In the context of this chapter, let an externally
induced fault be formally defined as follows.

Definition 5.2.4: Let M = (SD,COMP,OBS, SIG) denote a monitoring-based
diagnosis problem, for which an external (or non-diagnosable) fault can be deduced,
if there exists a symptom but no responsible component, such that

∃s ∈ SIG ∀c ∈ COMP : ¬ok(s) ∧ ¬AB(c)

holds.

This definition intuitively asserts that, if a symptom is observed, and no component
is abnormal, then its cause must be induced by the system’s environment. External
faults cannot be explained in terms of a faulty component, since they are beyond the
scope of the diagnosis model. They are, therefore, also referred to as non-diagnosable
faults . The other case, where a symptom is observed, and both an internal as well as
a non-diagnosable fault are present, is not considered, since it trivially holds that for
a symptom either an abnormal component exists, or not.

Remark. In Reiter’s theory of diagnosis, the retraction of all AB-predicates consti-
tutes a formal solution to the diagnosis problem, although not a minimal one for a
given set of observations. With the substitution of “⇒” for “⇔” in the abstract nor-
mality axioms of Definition 5.2.2, this is no longer universally true. The motivation
for this change is, foremost, a methodological one rather than a theoretical one; that
is, instead of comparing isolated reference values with observed values as it is done in
the original theory of model-based diagnosis, the monitors of the runtime reflection
framework, essentially, interpret entire series of values over time to come to a verdict.
It is therefore safe to assume that if the output values of a system component have
not violated a specified property, then also the component’s input values must have
been according to that specification, and the component considered normal (⇐). In

116 Chapter 5: Fault detection using model-based diagnosis

other words, in many settings, it can be thought unlikely that a faulty component
would yield an entire series of correct output values, despite receiving a series of
incorrect input values. This may be coincidentally observed for an isolated pair of
input-output values, but most likely not if sufficiently long series of value pairs are
considered. However, from a purely theoretical point of view, this assumption is not
mandatory.

In the remainder, for abnormal system components, the symptom-fault-causality is
thus given as follows.

Proposition 5.2.1: Let M = (SD,COMP,OBS, SIG) be defined as usual, and ∆
be a diagnosis for M. If there exists not a non-diagnosable fault, then for a symptom
s ∈ SIG : ¬ok(s) the following holds

¬ok(s) ⇒ ∃c ∈ COMP : AB(c),

where AB(c) denotes a system fault, i. e., component c is assumed abnormal, and
{c} ⊆ ∆.

Proof:
Follows as a direct consequence of the above definitions. �

What remains, when using this concept of a symptom, is a strictly causal model of the
system under scrutiny which consists only of sentences with ok and AB-predicates.
Monitors observe the concrete behaviour and indicate whether or not symptoms are
currently present in the system under scrutiny.

Example. Reconsider the example system depicted in Fig. 5.2. The original system
description, SD, can be reformulated using abstract normality axioms as follows:

SD =

ok(i1) ∧ ok(i2) ∧ ¬AB(M1) ⇔ ok(m1),
ok(i3) ∧ ok(i4) ∧ ¬AB(M2) ⇔ ok(m2),
ok(m1) ∧ ok(m2) ∧ ¬AB(A1) ⇔ ok(o1),
ok(m1) ∧ ok(m2) ∧ ¬AB(A2) ⇔ ok(o2)

, (5.1)

with the sets of component input and output signals being IM1
= {i1, i2}, OM1

=
{m1}, IA1

= {m1,m2}, OA1
= {o1}, and so on. Notice that causal links between

different components are preserved using this notation, for the sets of input and
output variables are not always disjoint, e. g., OM1

∩ IA1
= {m1}.

A monitoring-based diagnosis problem defines a first-order language, LFO, with a
structure, M = (D, I) (see Definition 5.1.4), where R(LFO) = {ok,AB} with okI =
ABI = {(n) | n ∈ D}, and D = {i1, i2, i3, i4,m1,m2, o1, o2}. This strictly causal
system model in the above sense, using only the ok and AB-predicates, is expressible
in propositional logic by substitution of each predicate with a distinct, signed Boolean
variable.

5.2 Diagnosis as a Boolean satisfiability problem 117

Propositional logic: some essential notation and elements

Let V be a finite set of variables with n elements. V gives rise to 2n literals from
V ∪̇V , where V = {¬v | v ∈ V } is the set of negations of all the elements in V .
Elements from V are the positive literals , and elements from V are the negative
literals . Negation of literals is defined as follows:

l =

{
v if l = v ∈ V, and
v if l = v ∈ V .

Both notations l ∈ V as well as ¬l ∈ V will be used interchangeably throughout
the remainder of this text. Moreover, variables will be usually denoted by the letters
v, v′, v′′, whereas corresponding literals will be denoted by the letters l, l′, l′′, and so
on.

A clause C with respect to a set V is a subset of pairwise distinct literals from V ∪V .
For brevity, the set of variables occurring in a clause C, given by {v ∈ V | v ∈
C or v ∈ C}, is also denoted by vbl(C). The function vbl returning a set of distinct
variables extends to sets of clauses in a natural manner.

The valuation or assignment of a Boolean variable is defined by a function α : V → B,
mapping truth values to variables in the expected manner. α extends to V ∪ V by
α(v) = ¬α(v) for v ∈ V . An assignment satisfies a clause C, if and only if α(l) = true
for at least one literal l ∈ (V ∪ V) ∩ C.

Reduction of SD

For the remainder of this chapter, a set of variables V is fixed, and let the tuple
M = (SD,COMP,OBS, SIG) denote a monitoring-based diagnosis problem over
V , defining the first-order language LFO. Further, let I be an interpretation, and
T : I(R(LFO)) → (V ∪ V) be a partial translation function, which maps interpreted
predicate symbols to literals as follows. Let ABI , okI ∈ R(LFO), and PSD be the set
of predicates as they are used in SD, then

T (AB(c ∈ COMP)) =

{
c if AB(c) ∈ PSD
c if ¬AB(c) ∈ PSD,

and

T (ok(s ∈ SIG)) =

{
s if ok(s) ∈ PSD
s if ¬ok(s) ∈ PSD,

with COMP, SIG ⊆ V , and COMP ∩ SIG = ∅. As before (see, e. g., Eq. 5.1),
SIG denotes the set of observable signals (or, actions) for the system. For every
ok-predicate in SD, T yields a signed variable from SIG, and for every interpreted
AB-predicate in SD, a signed variable from COMP , thus, mapping the first-order
diagnosis model to a strictly propositional one.

118 Chapter 5: Fault detection using model-based diagnosis

Applying T to the system description given by Eq. 5.1, the following propositional
system description SDT is obtained, with SIG = {i1, i2, i3, i4,m1,m2, o1, o2} and
COMP = {A1, A2,M1,M2}, and all previous predicate symbols substituted accord-
ingly:

SDT =

i1 ∧ i2 ∧M1 ⇔ m1,

i3 ∧ i4 ∧M2 ⇔ m2,

m1 ∧m2 ∧ A1 ⇔ o1,

m1 ∧m2 ∧ A2 ⇔ o2

. (5.2)

Instead of specifying the concrete behaviour of the system as is done by Reiter, now
axioms of the form

i1 ∧ i2 ∧M1 ⇔ m1

constitute the system description; in this case, denoting an observation m1 which is
due, given component M1 is not faulty, and i1, i2 are ok (and vice versa). A positive
literal s ∈ SIG encodes conforming, and a negative literal, s ∈ SIG, non-conforming
system behaviour. This is symmetrical for literals denoting system components. A
set of system observations for SDT is thus given as OBST ⊆ SIG ∪̇ SIG.

The formal problem of diagnosis as given in Definition 5.1.7 transfers over to the
propositional setup in a straightforward manner:

Definition 5.2.5: Let (SDT , COMP,OBST) be a propositional system model with
observations. A diagnosis ∆ ⊆ COMP in the propositional domain is a minimal set,
such that SDT ∪OBST ∪ ∆ ∪ COMP\∆ is consistent.

The notion of a monitoring-based diagnosis problem (see Definition 5.2.2) transfers
over in a similar manner, but is, for brevity, not elaborated on in detail as it is
self-explanatory.

Example. Let us now reconsider the system depicted in Fig. 5.2 in the proposi-
tional domain, with SDT defined by Eq. 5.2, where COMP = {A1, A2,M1,M2},
and OBST = {i1, i2, i3, i4,m1,m2, o1, o2}, where m1, o1, and o2 denote observations
that are not ok. Finding a consistent assignment of variables for SDT ∪ OBST ∪
∆ ∪ COMP\∆ in terms of elements from COMP , leaves the possible diagnoses
{M1, A1, A2}, {M1, A1}, {M1, A2}, and {M1}.

How to formally, as well as efficiently, determine such a result for less obvious propo-
sitional diagnosis problems, is the subject of the next section.

5.2.2 Computing diagnoses using Boolean satisfiability

This section outlines a first algorithm for formally solving the diagnosis problem
in the propositional domain. The algorithm is based upon the well-known DPLL-
algorithm for checking the satisfiability of Boolean formulae in normal form. The
DPLL-algorithm needs to have its input in a normal form.

5.2 Diagnosis as a Boolean satisfiability problem 119

Clause normal form

The diagnosis algorithm processes clauses which are in the clause normal form, some-
times also referred to as conjunctive normal form (CNF), since it has to be the con-
junction of disjunctions of literals, i. e., of the form

m∧

i=1

(
k∨

j=i

li,j) = (l1,1 ∨ . . . ∨ l1,k) ∧ . . . ∧ (lm,1 ∨ . . . ∨ lm,k).

For every Boolean formula F there exists an equivalent formula in CNF, denoted
for brevity by CNF (F), which can be computed in polynomial time in the size of
F , when certain prerequisites are fulfilled, such as allowing the introduction of new
variables; standard algorithms apply (cf. Nonnengart and Weidenbach [2001]). Let
A = {α1, . . . , αn} be a set of assignments, then A is a satisfying assignment for a
formula F ′ = CNF (F), denoted as A |= F ′, if and only if it satisfies all clauses in F ′.
For example, the CNF-representation of the previous SDT in Eq. 5.2 is given as

CNF (SDT) = (i1 ∨ i2 ∨M1 ∨m1) ∧ (m1 ∨ i1) ∧ (m1 ∨ i2) ∧ (m1 ∨M1)∧
(i3 ∨ i4 ∨M2 ∨m2) ∧ (m2 ∨ i3) ∧ (m2 ∨ i4) ∧ (m2 ∨M2)∧
(m1 ∨m2 ∨ A1 ∨ o1) ∧ (o1 ∨m1) ∧ (o1 ∨m2) ∧ (o1 ∨ A1)∧
(m1 ∨m2 ∨ A2 ∨ o2) ∧ (o2 ∨m1) ∧ (o2 ∨m2) ∧ (o2 ∨ A2).

For brevity, the ∧-symbols will be omitted in future references to CNF-formulae, and
a comma or newline-separated list of clauses used instead, where each clause is, in
turn, a comma-separated set of literals. It formally holds that a set of assignments A
satisfies CNF (SDT), if and only if A |= SDT .

Boolean satisfiability

In the literature, checking satisfiability of Boolean formulae in CNF is known as SAT-
solving . Consequently, a SAT-solver is a program, which takes a (Boolean) formula
in CNF, F , and determines whether an assignment exists, such that F is satisfiable.
The main algorithm used for this purpose was first recursively described by Davis and
Putnam [1960], and revised by Davis et al. [1962] (in short, DPLL to acknowledge
the original authors) as follows.

Algorithm S (Satisfiability of a Boolean formula). Let C = {C1, . . . , Cn} be a set
of clauses over a set of Boolean variables V , and A an initially empty set of variable
assignments for the elements vbl(C).

S1. [A valid for C?] If the clauses in C evaluate to true using A, return true and
terminate.

S2. [A invalid for C?] If the clauses in C evaluate to false using A, return false and
terminate.

120 Chapter 5: Fault detection using model-based diagnosis

S3. [Positive unit clause in C?] If there exists a positive unit clause C ∈ C, such that
C = {l ∈ V }, set A := A ∪ {l 7→ 1}, and invoke Algorithm S recursively again.

S4. [Negative unit clause in C?] If there exists a negative unit clause C ∈ C, such
that C = {l ∈ V }, set A := A ∪ {l 7→ 0}, and invoke Algorithm S recursively
again.

S5. [Positive pure literal in C?] If there exists a positive literal l ∈ V which only
appears exactly once in all of C, set A := A∪ {l 7→ 1}, and invoke Algorithm S
recursively again.

S6. [Negative pure literal in C?] If there exists a negative literal l ∈ V which only
appears exactly once in all of C, set A := A∪ {l 7→ 0}, and invoke Algorithm S
recursively again.

S7. [Otherwise.] Let v ∈ V be an unassigned variable that appears in C, but not yet
in A. Then there are two cases:

1. If Algorithm S applied recursively to C and A ∪ {v 7→ 0} returns true,
return true and terminate.

2. Otherwise, invoke Algorithm S with C and A ∪ {v 7→ 1}, trying the other
assignment for v. ❚

When calling the algorithm recursively in one of the above steps, the individually
gathered assignments in A are stored in a special data structure, the runtime stack .
For brevity, the runtime stack is not part of or reflected in the algorithm. More-
over, since the DPLL-procedure tries out, in the worst case, all the possible variable
assignments appearing in a given set of clauses, it is also known as a backtracking al-
gorithm that “unrolls” the information stored on the stack, whenever an assignment
is encountered that does not lead to a satisfying overall solution.

The DPLL-algorithm provides a solution to the 3-SAT or k-SAT problem if feasible,
where clauses are considered that contain 3 or k > 3 literals with positive or negative
occurrence. The k-SAT problem can be mapped to a 3-SAT problem, and since Cook
[1971] it is well-known that k-SAT is NP-complete. For subclasses, such as 2-SAT
where only clauses with at most two literals are considered or Horn clauses, the SAT-
problem is in the complexity class P ; that is, there exist deterministic algorithms for
solving it in polynomial time with respect to the number of variables (cf. Gallo and
Scutella [1988]).

The correspondence between diagnosis and Boolean satisfiability

In the following, a first algorithm is presented for solving the diagnosis problem,
as given by Definition 5.2.5, based on satisfiability checking of Boolean formulae in
CNF. For this purpose, a variant of the DPLL-algorithm is used, which not only
determines satisfiability, but also the set and number of all satisfying assignments
for a set of clauses. This extension is essential, since observations for a system may

5.2 Diagnosis as a Boolean satisfiability problem 121

be explained by more than one diagnosis (see, e. g., the above examples). In other
words, considering the SAT-problem merely in terms of a Boolean decision problem
is insufficient for this purpose. For diagnosis, all solutions may be relevant.

The complexity class #P. Counting the solutions for decision problems is not
only interesting in face of model-based diagnosis. Various other applications can be
found in mathematics (cf. Vadhan [2001]) and, for instance, in automated reasoning
(cf. Roth [1996]). In a seminal paper, Valiant [1979] has introduced, especially for the
purpose of counting the number of solutions for decision problems, the complexity
class #P , #P-complete, and #P-hard. Formally, a problem is in #P , if there is
a nondeterministic, polynomial-time Turing machine that, for each instance of the
problem, has a number of accepting computations, equal to the number of solutions.
Naturally, a #P problem is at least as hard as the corresponding NP problem: once
the number of solutions has been determined, it can be compared to zero to solve
the NP decision problem. It follows that every #P problem, corresponding to an
NP-complete problem, is NP-hard. A problem is #P-complete, if and only if it
is in #P , and every other problem in #P can be reduced to it in polynomial time.
With respect to #P , the problem of determining all satisfying clauses to a Boolean
formula in CNF is referred to as #SAT. #SAT in turn is known to be #P-complete
(cf. Papadimitriou [1994]).

One possible, but naive way for solving the #SAT (as well as the propositional di-
agnosis) problem is captured by the following Algorithm #S, which relies upon a
SAT-solver (or, Algorithm S) for solving instances of the SAT-decision problem. In
the following, without loss of generality, it is assumed that a solver based on Algo-
rithm S not only returns true or false, but also after termination the set A of satisfying
assignments, if any. DPLL-based solvers such as Chaff (Moskewicz et al. [2001]) are
able to do this.

Algorithm #S (Iterative DPLL for #SAT). Let C be a set of clauses over a set of
Boolean variables V , and A an initially empty collection of variable assignments for
the elements vbl(C) ⊆ V .

S1. [Determine set of assignments.] Use Algorithm S to obtain a set of satisfying
assignments for C, A = {α(l1), . . . , α(ln) | li ∈ vbl(C)}.

S2. [Assignment set not empty?] If A 6= ∅, go to step S4.

S3. [Terminate.] If no further assignments could be determined, i. e., A = ∅, A must
be the output and two cases differentiated:

1. If A 6= ∅, return true.

2. Otherwise, return false.

S4. [Add assignment to collection and continue.] Set A := A∪{α(l1), . . . , α(ln)} and
C := C ∪ {l1, . . . , ln}, and go back to step S1. ❚

122 Chapter 5: Fault detection using model-based diagnosis

Algorithm #S constructs a collection A of satisfying assignments for C, and the total
number of assignments is then given by |A|. The algorithm obviously terminates
since in each step the negative set of assignments is added to the set of clauses C to
disregard it as a possible future solution. When no more assignments can be found,
step S3 applies and the algorithm returns, besides A, depending on whether |A| > 0,
either true or false.

The following example illustrates how Algorithm #S can be used in a straightforward
manner to compute diagnoses.

Example (continued). Let C be a set of clauses in CNF whose elements are given
as follows:

C =

{i1, i2,M1,m1}, {m1, i1}, {m1, i2}, {m1,M1},
{i3, i4,M2,m2}, {m2, i3}, {m2, i4}, {m2,M2},
{m1,m2, A1, o1}, {o1,m1}, {o1,m2}, {o1, A1},
{m1,m2, A1, o2}, {o2,m1}, {o2,m2}, {o2, A2},
{i1}, {i2}, {i3}, {i4}, {m1}, {m2}, {o1}, {o2}

. (5.3)

The clauses contained in C resemble the system description and accompanying ob-
servations as used in the previous example. The first clauses encode the system
description, whereas the singletons correspond to the accompanying observations.
Application of Algorithm #S yields a set A with the following satisfying assignments:

A =

{i1, i2, i3, i4,m1,m2, o1, o2,M1,M2, A1, A2},
{i1, i2, i3, i4,m1,m2, o1, o2,M1,M2, A1, A2},
{i1, i2, i3, i4,m1,m2, o1, o2,M1,M2, A1, A2},
{i1, i2, i3, i4,m1,m2, o1, o2,M1,M2, A1, A1}

.

That is, the solution to the #SAT problem given by C is determined by |A|, whereas
the elements in A determine, at the same time, the diagnoses for the previous example.
In particular, the diagnoses are given by the following subsets from A: {M1, A1, A2},
{M1, A1}, {M1, A2}, {M1}.

Efficiency considerations

Although feasible, this approach to propositional diagnosis is not very efficient. Writ-
ing a program that implements the above means having to traverse iteratively an
exponentially large search space. Even for small propositional diagnosis problems
involving no more than 30 variables, this brute-force method needs to try, in the
worst case, 230 cases each time (not regarding the observed symptoms, if used for
diagnosis). Usually, for modern solvers, such as Chaff, such instances pose no great
challenge. However, when implementing Algorithm #S by using efficient standard
solvers like Chaff, another purely practical problem arises: the implementation is

5.2 Diagnosis as a Boolean satisfiability problem 123

likely to be runtime inefficient, due to the time required for iteratively starting, end-
ing, and re-starting the external SAT-solver. Often mechanical parts are involved,
such as the moving of the hard-disk heads in I/O operations, necessary to exchange
data between the processes, or to swap memory for solving large instances of individ-
ual SAT-problems involving hundreds or thousands of variables.

How to efficiently realise the above method, and how to circumvent the sketched
efficiency problems, are thus the subjects of the coming sections.

5.2.3 Optimisation and determination of all minimal diagnoses

The algorithm described in this section caters for both the computationally efficient
determination of the total number of solutions for a given SAT-problem, i. e., an an-
swer to the #SAT-problem, as well as the determination of the set of all satisfying
assignments, which in the context of this chapter resemble system diagnoses. How-
ever, in diagnosis often not all the solutions are of interest, but only those sufficiently
meaningful to explain a failure (i. e., Principle of Parsimony). The following algo-
rithm caters for that, in that it determines diagnoses where the cardinality of those
literals corresponding to ¬AB(·) is at most n ∈ N

≥0, where n can be chosen by the
user of that system. This is also referred to as the n-fault assumption (cf. Baumgart-
ner et al. [1996]). As this section will show, the n-fault assumption constitutes an
effective pruning criterion for the overall problem search space and yields fast execu-
tion times for the algorithm even for very large satisfiability or diagnostic problems.
It will be reflected in the algorithm by counting in each set of satisfying variable
assignments, those positive variable assignments, where the variables correspond to
individual components in the diagnostic model.

The algorithm will be referred to as Lsat, short for light SAT-solver, and has been de-
scribed in the context of model-based diagnosis by Bauer [2005]. Like other algorithms
for testing satisfiability of Boolean or quantified Boolean formulae (cf. Samulowitz and
Bacchus [2005]), Lsat consists of two main procedures, branch and refute. The pur-
pose of branch is to open a new “branch” of possible assignments for the input clauses
by selecting a previously unassigned variable. refute determines which clauses are
satisfiable by either the positive interpretation or the negative interpretation of that
variable. The satisfying assignments are stored, and conflicting ones resolved using
backtracking.

In what follows, let V denote a set of Boolean variables, and without loss of generality,
C = CNF ((SD,COMP,OBS)) a propositional system model over V in CNF.2 Each
element in C is a tuple (C, pos, neg) containing a clause C = {l1, . . . , ln | li ∈ V ∪̇V },
and two entries pos, neg ∈ N

≥0, where pos is equal to the number of positive literals in
C, and neg equal to the number of negative literals in C, such that |C| = pos+neg.

2Any other set of clauses in CNF is possible, but then, naturally, the n-fault assumption has no
effect on the efficiency of the algorithm.

124 Chapter 5: Fault detection using model-based diagnosis

Given a set C defined as above, the procedure implementing branch is then defined
as follows.

Algorithm B (Branch). Let A = {A1, . . . , An} be an initially empty collection
of satisfying variable assignments for the clauses stored in C. Moreover, any variable
given by vbl(C) can appear marked or unmarked, indicating whether or not a truth
assignment for the variable was previously made.

B1. [Find next unmarked variable.] Look for any unmarked variable v ∈ vbl(C). If
an unmarked v could be found, go to step B2. Otherwise, go to step B3.

B2. [Branch.] Branch off by invoking Algorithm R (refute) twice: the first time,
using v, the second time, using v. Algorithm R and Algorithm B use a common
set A to collect satisfying variable assignments. A variable assignment is added
to A by Algorithm R, if it is not a conflicting assignment (see the description
of Algorithm R below).

B3. [Add assignment set to A.] If no unmarked v could be found, i. e., there are no
further variable assignments to be made, then set A := A ∪ A, and terminate.
A may also be the empty set. ❚

Algorithm R which is invoked by the relatively short Algorithm B is described next.
The algorithm controls when variables are marked or unmarked, and, basically, im-
plements the refute procedure as outlined above. It uses a projection function
Π : 2C × (V ∪ V) → 2C; if called with an argument v ∈ V , those clauses from C are
returned in which v occurs negatively, respectively positively if called with v ∈ V .

Algorithm R (Refute). Let V , C, and A be defined as in Algorithm B. Moreover,
both algorithms operate on common or shared sets of variables, clauses, and satis-
fying variable assignments. (In terms of an actual implementation, such as given by
Lsat, this is realised via global heap variables.) Algorithm R is then invoked with a
parameter l ∈ V ∪ V , defining a previously unassigned variable with either a positive
sign, if l ≡ v ∈ V , or negative sign, if l ≡ v ∈ V .

R1. [Initialise.] Let Ccurr := Π(C, l), and Ctrue := Π(C, l). The literal l constitutes a
satisfying assignment for all the elements in Ctrue, whereas the elements from
Ccurr need to be examined further.

R2. [Decrement counter.] If l ∈ V , then decrement for each element (C, pos, neg) ∈
Ccurr, pos by one. Otherwise, decrement neg by one.

R3. [Push assignment.] Set A := A ∪ {l}, i. e., add l to the set of satisfying assign-
ments.

R4. [Conflict?] Whether or not further variable assignments are required depends
on two conditions:

1. Ccurr does not contain an “empty” tuple, i. e., a tuple of the form (C, pos =
0, neg = 0), indicating that l is a conflicting assignment for C, and

5.2 Diagnosis as a Boolean satisfiability problem 125

2. |A′| ≤ n, where A′ = {l | l ∈ COMP} ⊆ A, and n ∈ N is the maximum
number of faults as defined by the n-fault assumption.

If both conditions hold, continue with R5. Otherwise, continue with step R8.

R5. [Mark and subsume clauses.] Mark l (as being evaluated), and set C := C\Ctrue.

R6. [Branch and expand.] Invoke Algorithm B again for a stepwise expansion of the
overall search space.

R7. [Unmark and resume clauses.] Unmark l, and set C := C ∪ Ctrue.

R8. [Increment counter.] If l ∈ V , then increment for each element (C, pos, neg) ∈
Ccurr, pos by one. Otherwise, increment neg by one.

R9. [Pop assignment.] Set A := A\{l}. ❚

Together, Algorithm B and Algorithm R form the foundation for Lsat’s implemen-
tation. If applied to a set of clauses defined as above, Lsat performs the following,
based on the n-fault assumption: If the user chooses to ignore n, i. e., n = ∞, Lsat

determines all possible satisfying assignments for C, thus also an answer to the #SAT
problem. However, if in a diagnosis problem, n ≤ |COMP |, only those satisfying
assignments are determined which contain at most n positive literals corresponding
to components. In other words, Lsat gives explanations for an observed failure which
are based on at most n faulty components. In consequence, if n < ∞, Lsat may
no longer be able to compute an answer to the #SAT problem, but it does filter
out practically useless diagnoses, such as those where all components are assumed
faulty.

Lsat’s computation is space efficient, but naturally, has the same worst-case time
complexity as any other #SAT algorithm known from the literature. Space efficiency
is due to the use of “shared” data structures representing clauses and variables, i. e.,
invocations of Algorithm B and Algorithm R simply mark or unmark on the same
data set, variables and clauses to denote whether or not these should be evaluated
further. This yields a linear space requirement with respect to the size of the input
formula in CNF. As with Algorithm #S, in the worst case, still an exponential number
of steps with respect to the number of variables is required before the algorithm has
determined all satisfying assignments. However, the n-fault assumption provides a
heuristic on how to keep the number of steps minimal, and the diagnoses meaningful
(see also §6 and example on p. 128).

Note that in order to keep the presentation of the algorithm for Lsat comprehensible
and the following analysis of it simple, optimisations such as determining unit clauses
or pure literals, suggested in the original DPLL-algorithm, have not been considered.
However, §6 shows how such optimisations can be added to achieve additional runtime
performance and with little extra implementation effort.

126 Chapter 5: Fault detection using model-based diagnosis

Analysis

Semantic trees , as originally introduced by Kowalski and Hayes [1969], form a suitable
foundation for an analysis of Lsat, since there exists a direct correspondence between
Lsat’s algorithmic steps and the stepwise creation of a semantic tree: Let T be a
semantic tree for a set of clauses C with vbl(C) ⊆ V . Let v ∈ vbl(C), then v ∈
T ⇔ v ∈ A, where A is the set of satisfying assignments for C used by Lsat. The
individual branches of T are formally defined as follows.

Definition 5.2.6: Let V be a set of Boolean variables. A branch (of a semantic
tree), M , is defined by a partial function σ : V → {⊤,⊥}, where

σ(v) =

{
⊤ if v ∈M,

⊥ if v ∈M.

For a variable v ∈ V , if neither v ∈ M nor v ∈ M , σ(v) is undefined. In the case
of Lsat, this corresponds to a variable which has not yet been added to the set A
throughout its computation.

Definition 5.2.7: Formally, a semantic tree T is a labelled, unordered binary tree
built of branches, whose nodes are sets of clauses from C. For T , the following holds:

• Let v ∈ M , then for two edges in M who share the same parent node, the
labels are σ(v) = ⊤ and σ(v) = ⊥, respectively, if and only if v does not appear
elsewhere on M .

• Each leaf node of a branch may be labelled with a clause ({l1, . . . , lm}, pos, neg) ∈
C, if for every li : li ∈M .

Definition 5.2.8: A branch M of a semantic tree is closed, if its literals contradict
a clause (C, pos, neg) ∈ C, such that ∀l ∈ C : l ∈M .

In other words, a closed branch is marked with the clause that is violated by the
literals stored in that branch (see Definition 5.2.7).

Proposition 5.2.2: A branch M which is not closed and cannot be expanded any
further, i. e., ∀v ∈ vbl(C) : σ(v) ∈ {⊤,⊥}, constitutes a satisfying assignment for C.

A closed branch M is given in Lsat, if its leaf contains an empty clause, such that
for a clause C : pos + neg = 0. The empty clause corresponds to a clause, whose
literals appear complementary on M (see step R4).

Definition 5.2.9: A semantic tree is closed, if and only if all its branches are closed.

Proposition 5.2.3 (Termination): Lsat always terminates (given enough run-
time).

5.2 Diagnosis as a Boolean satisfiability problem 127

Proof:
Upon each step in the algorithm that expands the search tree by an additional level,
Lsat performs two things:

1. It decrements the pos, respectively neg counters for each clause where a previ-
ously unassigned literal l appears either positively or negatively, not satisfying
the clause (steps R1 to R3).

2. It adds all clauses satisfied by l to the set Ctrue of satisfied clauses (and deacti-
vates those, such that they are not reconsidered in future steps (steps R1 and
R5)).

This expansion of the tree is bound to terminate, since there is only a finite number
of literals available for selection, i. e., |vbl(C)|, and all clauses contain finitely many
positive or negative occurrences of literals, i. e., for each (C, pos, neg) : pos + neg ≤
|vbl(C)|, and in each step either pos = pos− 1 or neg = neg − 1. Thus, expansion of
a branch in the semantic tree is interrupted upon any of the following three criteria
each of which are checked in step R4:

1. A branch is closed, i. e., for a clause C : pos+ neg = 0.

2. A branch is fully expanded and not closed, i. e., no more unassigned literals can
be found, and Ctrue = C.

3. A branch contains more than n ∈ N
≥0 positively assigned literals that corre-

spond to abnormal components in the diagnosis model (and violate the n-fault
assumption).

By Proposition 5.2.2, if the branch is fully expanded and not closed, then it contains a
satisfying assignment for the set of input clauses. If it is closed, or violates the n-fault
assumption, Lsat backtracks by incrementing the clause counters accordingly (steps
R7 to R9).

Lsat terminates expansion when all branches are either closed, violate the n-fault
assumption, or are fully expanded, which results in a semantic tree with worst-case
2|vbl(C)| nodes, if all assignments have to be made before a fully expanded branch
exists, or all branches are closed. �

Proposition 5.2.4 (Soundness): If there is a semantic tree for C, which is closed,
then C is unsatisfiable.

Proof:
By contradiction: Assume there exists a closed semantic tree for a satisfiable C. Then,
by definition of semantic trees, there exists for C a branch in its tree, which is fully
expanded and not closed. However, since the tree of C is closed, all of its branches
must also be closed. The existence of a fully expanded branch which is not closed is
thus a contradiction to the initial assumption. �

Proposition 5.2.5 (Completeness): Let C be unsatisfiable. Then there exists a
closed semantic tree for C.

128 Chapter 5: Fault detection using model-based diagnosis

Proof:
By contradiction: Let T be the fully expanded semantic tree for C. Assume there
exists a branch in T , M , that is not closed. By Proposition 5.2.2, if M is fully
expanded and not closed, it contains a satisfying assignment for C. However, since C
is not satisfiable, there cannot be a satisfying assignment for it, thus, contradicting
the assumption. �

The following example illustrates how Lsat works when using a 2-fault assumption.

violated
2-fault assumption

α(M1) = 0

α(A1) = 0

α(1) = 0α(i1) = 1

α(M2) = 1

α(M1) = 1

α(A1) = 1

Fig. 5.4: Evaluation of a clause set using a 2-fault assumption. The bold path marks
a series of non-conflicting assignments.

Example (LSAT using the 2-fault assumption). Let C be a set of clauses in
CNF defined as in Eq. 5.3, reflecting a system model and observations. Fig. 5.4
shows Lsat traversing the search space using a 2-fault assumption. Following the
left-most path in the tree, Lsat makes two variable assignments, α(M2) = 1 and
α(M1) = 1, each of which corresponds to an abnormal component in the system
model. (To make the illustration more readable, the Boolean values 1 and 0 have
been chosen, instead of true and false.) Thus, the possible assignment α(A1) = 1 on
that same branch violates the 2-fault assumption. In consequence, Lsat performs
backtracking and continues with the right-hand-side. As such, the general n-fault
assumption constitutes an effective pruning criterion, when traversing the semantic
tree of an input formula. In this example, the branch is closed (and the underlying
search space disregarded) before it is fully expanded.

An efficient implementation of the above algorithm, the custom data structures used
by Lsat, as well as performance benchmarks are outlined in greater detail in §6.

5.3 Related work 129

5.3 Related work

This section briefly outlines other approaches to diagnostic problem solving, i. e., re-
lated work. In particular, contributions to three popular diagnosis approaches are
discussed for comparison; that is, non-monotonic reasoning for diagnosis, diagnosis
of discrete-event systems, and the so-called Fault Detection and Isolation approach to
diagnosis, which has its roots in the more traditional engineering disciplines, such as
mechanical and electrical engineering, rather than in computational logic and com-
puting sciences.

Non-monotonic reasoning for diagnosis

Besides the first-order inference-based diagnosis methods, there exist various works
which consider the problem in the same logical domain, but employ a totally different
concept of reasoning. These approaches use so-called non-monotonic and abductive
reasoning to solve the diagnostic problem.

Unlike in consistency-based diagnosis as described above, non-monotonic reasoning
for diagnosis does not use the classical logic inference to obtain diagnoses. The
reason lies in that inferences in classical logic are monotonic with respect to their left
argument. In the vast majority of formal systems studied in classical logic, for a set
of premises T and formulae p, q it formally holds that

T ⊢ q ⇒ T ∪ {p} ⊢ q.

That is, adding information cannot invalidate a previous conclusion (⊢ denotes the
classical logic inference relation). However, various practical considerations such as
the formalisation of so-called common-sense reasoning (cf. Lifschitz [1995]) seem to
suggest a fundamentally different kind of reasoning, where certain assertions and
conclusions are assumed to hold until specific reasons are found to reject them. This
seems to fit well also with the diagnostic problem, where a set of system observations
are given and a model is sought, explaining them and the possible faults observed:

SD ∪ ∆ ⊢ OBS.

In monotonic logic, this approach is clearly infeasible, since the explanations for an
observation, captured by the set ∆ in the above formula, are infinitely many. An
infinite amount of redundant or even intuitively contradictory information may be
added to it without affecting the validity of the formula.

One of the early approaches to non-monotonic reasoning in the form of default logic is
due to Reiter [1980], who formally introduced the notion of a “default”, a special type
of axiom which has to be assumed valid under normal circumstances until evidence
is found to revoke this assumption. Similar approaches to reasoning with defaults
are due to McCarthy [1987] in the form of circumscription, and Poole [1988] who

130 Chapter 5: Fault detection using model-based diagnosis

provided an efficient implementation of abductive reasoning similar to the example
given above. Formally, given a set of sentences T (i. e., a theory), and a sentence
OBS (i. e., the observation), the abductive task is characterised as the problem of
finding a minimal set of sentences ∆ (i. e., the abductive explanation for OBS), such
that

1. T ∪ ∆ ⊢ OBS, and

2. T ∪ ∆ is consistent.

This coarse characterisation of abduction is independent of the language in which
T , OBS, and ∆ are formulated. Hence, it has been used specifically to tackle the
consistency-based diagnosis problem in first-order logic (cf. Poole [1988; 1989], Con-
sole et al. [1991], Poole [1994b]).

However, these types of default logic are, in general, not even semi-decidable (Poole
[1994a]). Despite that, efficient implementations for default reasoning do exist, which
are guided, e. g., by probabilistic information to consider only the likely explana-
tions rather than the entire search space. Moreover, many of these implementations,
like the one proposed for abduction by Poole or the one described by Flach [1994],
are realised using the Prolog logic programming language (Colmerauer and Roussel
[1993]). Prolog itself, whose programs are collections of Horn-clauses (i. e., quantified
disjunctions of propositions with at most one positive occurrence of a proposition),
is based upon a form of non-monotonic evaluation by using the so-called closed world
assumption (CWA). The CWA has been first introduced by Reiter [1977] and states
that with respect to a given collection of data about some subject, no relevant in-
formation is missing. Hence, if some information a is not part of a data set, ¬a is
assumed. Prolog’s clause evaluation strategy treats negation as failure: it derives ¬a
from a data set D just in case a query for a given D fails. Since a may be derivable
from a larger set of data, derivability under the CWA is said to be non-monotonic.
However, there exist practical limitations to this evaluation scheme, since a must be
of a suitably simple syntactic structure. Negation-as-failure for complex clauses is
handled by heuristics and specific optimisations in the different implementations of
the language (cf. Flach [1994]).

Diagnosis of discrete-event systems

The focus of previously described diagnosis approaches rests mainly on the analysis
of static systems. Another branch of diagnosis is more devoted to dynamic analysis
of so-called discrete-event systems . Basically, all dynamic systems that evolve via
abrupt occurrences of (physical) events at possibly unknown irregular time intervals,
qualify as discrete-event systems (Cassandras [1993]). Common examples of such
events include the arrival of a job or the completion of a task. Analysis of discrete-
event systems can be complex, since many such events strongly depend on each other,
and their occurrence is often modelled using stochastic means, such as Markov chains
and processes (cf. Chong [2000]).

5.3 Related work 131

Due to the dynamics of discrete-event systems, the approaches to their diagnosis
are, in general, based on more involved and substantially larger system models, such
as communicating and even timed automata (cf. Baroni et al. [1999], Bouyer et al.
[2005a]). Many such approaches suffer from poor on-line performance or a so-called
state-space “explosion”, meaning that the model capturing the overall system state-
space, e. g., in terms of a transition system, becomes too large for subsequent and
automatic analysis.

Two approaches are predominant in the literature of diagnosis of discrete-event sys-
tems: the so-called diagnoser-based systems, as introduced by Sampath et al. [1994],
and decentralised diagnostic systems as described, for instance, by Baroni et al.
[1999].

A diagnoser is conceptually close to a monitor in runtime verification (see §4). It
observes the events of a system under scrutiny and maps observations to possible
failures. Although possible in a distributed setup, diagnoser-based methods are in
particular applicable to isolated systems, because the employed system models cap-
ture both possible interactions as well as single events of components. Therefore,
depending on the setup, these approaches suffer from the state-space “explosion”.
Schumann et al. [2004] circumvent this limiting factor by using OBDDs for an effi-
cient state-space representation within the diagnoser.

For distributed systems, the decentralised approach is predominant. The system
model then represents the individual components of a distributed discrete-event sys-
tem as well as their interactions of events in terms of communicating automata, rather
than a single off-line compiled model. This avoids the state-space “explosion” when
diagnosing distributed systems, but potentially suffers from poor on-line performance
as also noted by Schumann et al. [2004].

The Fault-Detection-and-Isolation approach to diagnosis

For the diagnosis of complex physical control systems where only mathematical mod-
els offer suitable means for description, methods of Fault Detection and Isolation
(FDI), based on analytical redundancy (Chow and Willsky [1984]), are used. Typical
examples include diagnosis of the control system for the combustion process inside a
spark-ignited engine.

The way these systems work is depicted in Fig. 5.5. First, residuals are generated and
then evaluated. A residual is a signal generated from some parity equation based on
the actually measured values of the system under scrutiny. The parity equations are
part of the mathematical and physical process model, and if the actual values observed
conform with the values predicted by that model, the difference must be zero, or close
to that. Other values indicate that a failure occurred. The fault detection in these
methods then consists of creating various parity equations for diagnosable features of
the system or process, and by evaluating the corresponding residuals as the system
runs, often supported by statistical models, for instance.

132 Chapter 5: Fault detection using model-based diagnosis

system
Model of the

...

...

Decision
Making

Residual
generation

Statistical models
of noises and

modelling errors

i2

i1

System

in

ro

oM

Fault(s)

Fig. 5.5: The principle of Fault Detection and Isolation.

Naturally, diagnosis methods based on analytical redundancy target fundamentally
different diagnosis problems than the logic-based ones, where the aim is to identify
faulty parts of a (usually) distributed or component-based system. However, there
are various results from combining methods of model-based diagnosis and analytical
redundancy for the diagnosis of distributed control systems, such as found in present-
day cars (cf. Struss and Malik [1997], Cordier et al. [2000], Struss and Price [2003],
Nyberg and Krysander [2003]).

5.4 Summary

This chapter proposes a combination of methods of runtime verification and model-
based diagnosis, in that the results of the monitors are used as input to the diagnostic
process. The proposed combination aims at differentiating between specialised meth-
ods for the detection of symptoms (i. e., failures) and for the detection of their root
causes (i. e., faults). Due to the combination, the computational complexity of model-
based diagnosis can be substantially reduced, while the runtime verification approach
described in the previous chapter could be shown as being optimal. Although the
diagnosis problem remains inherently NP-complete, the introduced mapping of first-
order consistency-based diagnosis to a propositional satisfiability problem allows for
a computationally efficient implementation. This is realised in terms of Lsat which
is able to determine all satisfying assignments for a set of input clauses, thus solving
the #SAT problem. Moreover, Lsat determines diagnoses based on the minimal
cardinality of the faults contained in a diagnosis, and provides an effective pruning
criterion for the overall problem search space (n-fault assumption). Details of the
implementation are the subject of the next chapter.

Chapter 6

Implementation, tool-support, and

comparative results

An algorithm must be seen to be believed.

(Donald E. Knuth, The Art of Computer
Programming, Vol. 1)

This chapter could also be entitled “Putting it all together”. It demon-
strates the feasibility of the introduced algorithms and methods in terms of their
actual implementation. It further presents some comparative results in the form of
benchmarks, and shows how to integrate the proposed methods into a common frame-
work for runtime reflection, which has been first outlined in this form by Bauer et al.
[2006a].

Conceptually similar to a compiler for a programming language, the framework is
separated into a front end, accepting the user-supplied specifications to monitor, and
a back end, providing means for dynamic systems verification and deduction. In
this chapter, implementation aspects of both are discussed. As far as the back end
is concerned, only the domain-independent implementation of the monitoring and
diagnosis layers are sketched, for logging and reconfiguration constitute, in general,
domain-specific tasks. For logging, various standard logging mechanisms can be used,
whereas for reconfiguration the system’s application domain determines which mech-
anisms and techniques may be most suitable for a reconfiguration. Consider, for
instance, the technical differences between a distributed (reactive) business informa-
tion system used for banking applications, and a network of reactive and real-time
sensitive embedded controllers with strict processing-, memory-, and communication-
constraints.

Note that how to obtain and actually use the framework, which is developed under
an open source license, is not subject of this chapter. Instead this is addressed briefly
by Appendix B of this thesis.

133

134 Chapter 6: Implementation, tool-support, and comparative results

6.1 Front end: An optimising compiler for SALT

Runtime reflection is a method that enables systems to reason about their current sys-
tem state at runtime. As such, the approach is not strictly bound to a set of tools, but
rather defined by the methods that constitute the analysis, i. e., monitoring and diag-
nosis, where temporal logic properties form the foundation for monitoring. However,
for reasons already outlined in §3.3, plain temporal logic as used for the generation
of monitors is often considered “too low-level” for specifying system properties error-
free, concise, and human-readable. The specification language Salt, as proposed in
§3.3 is thus treated in this chapter from a technical point of view in terms of being
a front end for runtime reflection, and for making the framework accessible to its
users.

Salt specifications are translatable into different logics (see §3.3). For instance, if no
past and real-time operators are used in a specification, then it is translatable into a
standard LTL formula, ϕ. The runtime reflection tool-set is then able to automatically
generate an automaton Aϕ, such that L(ϕ) ≡ L(Aϕ). If no temporal operators are
involved at all, then the output of a Salt translation is in the propositional domain.
However, from the perspective of runtime reflection, this is not a very interesting
case, and not what Salt is aimed for.

This section outlines the implementation of a compiler that accepts a Salt spec-
ification and returns, depending on the temporal operators in the specification, a
temporal logic formula with or without past and with or without real-time operators.
The Salt compiler has been realised as a Master’s thesis project by Streit [2006],
and was supervised by the author of this text, whereas first results of this work were
published by Bauer et al. [2006c] (see also Bauer et al. [2006d]).

6.1.1 Internals of the SALT compiler

Like the runtime reflection framework itself, the Salt compiler consists of a front
end and a back end. The front end is implemented in Java, while its back end,
which optimises specifications for size, is realised in the functional programming lan-
guage Haskell (cf. Wadler [1992], Peyton Jones [2005]). Basically, the back end is an
executable realisation of the Salt semantics outlined in Appendix A.

As it is the case with other standard programming languages, compilation of Salt

is undertaken in several compilation stages. First, user-defined macros, counting
quantifiers and iteration operators are expanded to expressions using only a core
set of Salt operators. Then, the Salt operators are replaced by expressions in
the subset Salt--, which contains the full expressiveness of LTL/TLTL as well as
exception handling and stop operators. The translation from Salt-- into LTL/TLTL
is treated as a separate step since it requires “weaving” the abort conditions into all
subexpressions. The result is an LTL/TLTL formula in form of an abstract syntax
tree that is transformed in a straightforward manner into concrete syntax via a so-

6.1 Front end: An optimising compiler for SALT 135

called printing function. The tool currently defines printing functions for the SMV
and SPIN syntax, but users can provide additional printing functions to support a tool
of their own choice other than runtime reflection, or the mentioned model checkers.

The use of optimised, context-dependent translation patterns as well as a final opti-
misation step performing local changes also helps reducing the size of the generated
formulae.

6.1.2 Experimental results

Since the time that is required for temporal logic related analyses, such as LTL model
checking, often depends exponentially on the size of the formula, and consequently, on
the size of the corresponding Büchi automaton (cf. Schnoebelen [2002]), efficiency was
an important issue also in the development of the Salt language and its compiler.
One might suspect that formulae generated from abstract Salt specifications are
bigger and less efficient to check than handwritten ones, but undertaken experiments
show that this is not necessarily and usually the case.

In order to quantify the efficiency of the Salt compiler, existing LTL formulae were
compared to the formulae generated by the compiler from a corresponding Salt spec-
ification. This was done for two data sets: the specification pattern system (Dwyer
et al. [1999], 50 specifications) and a collection of real-world example specifications,
mostly from the survey data provided by Dwyer et al. [1999] (26 specifications). The
increase or decrease of the size was measured using the following parameters:

BA [Fri]: Number of states of the Büchi automaton (BA) generated by using the
algorithm proposed by Fritz [2003].

BA [Odd]: Number of states of the Büchi automaton generated by using the algo-
rithm proposed by Gastin and Oddoux [2001].

U: Number of U, R, G and F in the formula.

X: Number of X in the formula.

Boolean: Number of Boolean leafs, i. e., variable references and constants. This
forms a suitable parameter for estimating the length of the formula.

The data for this experiment was obtained by first encoding the relevant temporal
formulas manually in terms of Salt specifications, and then ensuring semantic equiv-
alence between the translated formulae and the original formulae via the SMV model
checker.

The results can be seen in Fig. 6.1. Formulae generated by the Salt compiler contain
a greater number of Boolean leafs, but use fewer temporal operators and, therefore,
also yield a smaller Büchi automaton. The error markers in the figure indicate the
standard deviation.

136 Chapter 6: Implementation, tool-support, and comparative results

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

n
cr

ea
se

BA [Fri] BA [Odd] U X Boolean

Specification Patterns

Example Specifications

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

n
cr

ea
se

BA [Fri] BA [Odd] U X Boolean

Example Specifications

Fig. 6.1: Size of generated formulae.

Discussion

Using Salt for writing specifications does not generally degrade the verification effi-
ciency, even for exhaustive procedures such as model checking. On the contrary, one
can observe that it often leads to more succinct formulae (and thus, smaller Büchi
automata).

The reason for this result is that Salt performs a number of optimisations. For
instance, when translating a formula of the form ϕUwψ, the compiler can choose
between the following two equivalent expressions

¬(¬ψU(¬ϕ ∧ ¬ψ)) and (ϕUψ) ∨ Gϕ.

While the first expression duplicates ψ in the resulting formula, the second expres-
sion duplicates ϕ, and introduces a new temporal operator. In most cases, the first
expression, which is less intuitive for human readers, yields better technical results.

Another equivalence utilised by the compiler is: G(ϕUwψ) ⇔ G(ϕ∨ψ). With ϕUwψ

being equivalent to (ϕUψ)∨Gϕ, the left hand side reads as G((ϕUψ)∨Gϕ). When
ϕ and ψ are propositions, this expression results in a Büchi automaton with four
states using the algorithm proposed by Fritz [2003]. G(ϕ∨ψ), however, is translated
into a Büchi automaton with only a single state (see Fig. 6.2).

However, the benefit obtained from using the Salt approach is not intrinsic. The
rewriting of LTL formulae could be done without having Salt as a high-level lan-
guage. What is more, given an LTL-to-Büchi translator that produces a minimal
Büchi automaton for the language defined by a given formula, no optimisations on
the formula level would be required, and such a translation function exists—at least
theoretically.1

1As the class of Büchi automata is enumerable and language equivalence of two automata decid-
able, it is possible to enumerate the class of automata ordered by size and take the first one that

6.2 Back end 137

q0

q1 q2
q3

p

q

p p ∧ q

p

q

p p

p

(a) G((pUq) ∨ Gp)

q0 q, p

(b) G(p ∨ q)

Fig. 6.2: Two equivalent Büchi automata generated by the algorithm as proposed
by Fritz [2003].

6.2 Back end

The back end of the runtime reflection framework consists of the layers depicted in
Fig. 1.1 in the introduction of this thesis. The following technical description of it
focuses on implementation aspects of those layers which are laid out in a domain-
independent manner, used for diagnosis and monitoring. Recall that, for instance,
the logging layer is often predetermined by an already-in-place logging facility in the
system under scrutiny (e. g., log4j in many real-world Java applications, cf. Gunter
et al. [2002], or for C++, the counterpart log4cxx, see also §4.4.2). Hence, it is
assumed that both layers, logging and reconfiguration, have to be instantiated by
some custom mechanisms suitable for the system to be analysed. Monitoring and
diagnosis, however, are laid out in a domain-independent manner, and can be used in
combination, or also separately, depending on the computational resources available
in a system (e. g., CPU and memory). In the remainder, implementation schemes
for both are developed, and further optional optimisations suggested. Moreover, it is
shown how to integrate the individual layers to a common framework as well as how
to use them separately as stand-alone tools.

6.2.1 Monitoring: implementation and case-study

This section proposes an efficient implementation scheme for the monitoring approach
developed in §4 in the untimed case, and which was first described in this form by
Arafat et al. [2005]. The scheme consists of a code generator, resulting in monitors
that require minimal space with respect to the language being monitored and which
proceed by using an on-the-fly power-set construction. Additionally, this section
demonstrates, using the case-study briefly discussed in §4.4.2, how monitoring can be
integrated into a real-world (C++) application.

is equivalent to the one to be minimised. However, such an approach is not feasible in practice.

138 Chapter 6: Implementation, tool-support, and comparative results

Code generation scheme

Recall, the approach for producing a monitor for a given LTL formula ϕ as described
involves the following steps. First, for a given LTL formula ϕ, a corresponding nonde-
terministic Büchi automaton Aϕ must be constructed. Second, the nondeterministic
Büchi automaton Aϕ must be transformed into a nondeterministic finite automaton
Âϕ, which will then be determinised to yield the deterministic finite automaton Ãϕ.

Since the automata are defined with respect to an alphabet Σ = 2AP , each symbol
a ∈ Σ corresponds to a finite set of atomic propositions. A set a ⊆ AP represents the
assignment which evaluates a proposition p ∈ AP to true if and only if p ∈ a holds.
Thus, the transitions of the automata can be denoted as a tuple (s,Φ, s′), where s is
the original state, Φ is a formula over the set of propositions AP , and s′ is the new
state. Such a transition (s,Φ, s′) is enabled for a given alphabet symbol a ⊆ AP , if
Φ is satisfied by a.

Following Lemma 4.4.3, the corresponding nondeterministic Büchi automaton Aϕ =
(Σ, Qϕ, Q

ϕ
0 , δ

ϕ, Fϕ) is then transformed into a nondeterministic finite automaton
Âϕ = (Σ, Qϕ, Q

ϕ
0 , δ

ϕ, F̂ϕ), by checking for every state q ∈ Qϕ whether the language
accepted by Aϕ(q) is empty or not (recall further, Aϕ(q) uses q as initial state but
is otherwise identical to Aϕ). Aϕ(q) accepts an ω-word, if and only if starting at
q, a final state q′ ∈ Fϕ can be reached which is a member of a non-trivial strongly
connected component, i. e., there must be a cycle in the state-transition graph which
leads from q′ back again to q′. This process is repeated for the negated formula ¬ϕ in
order to obtain the corresponding deterministic finite automaton, Ã¬ϕ, and finally to
obtain the finite state machine, Ā, with a cross-product construction (see Definition
4.4.3).

Typically, an explicit generation of the finite state machine Ā causes a double expo-
nential “blowup”, firstly for building the nondeterministic Büchi automaton Âϕ, and
secondly for computing the corresponding deterministic finite automaton Ãϕ. For this
reason, the explicit construction of two deterministic finite automata, Ãϕ and Ã¬ϕ is
not undertaken, in favour of an implicit representation of the finite state machine Ā
by means of two nondeterministic finite automata Âϕ and Â¬ϕ. In other words, for
each of the two nondeterministic finite automata (NFA), a C++-class is generated
which implements the NFA interface and thus, offers the following three functions:

• getSuccessors(s, a) takes a state s and a subset a ⊆ AP of atomic propositions
and returns the set of successors reachable from s by a. That is, for every
transition (s,Φ, s′) in the transition table, it is checked whether a satisfies Φ
and, if so, s′ added to the result set.

• isF inal(s) returns true (or, false) if s is a final state (not a final state, corre-
spondingly).

• initialStates() returns the set of initial states of the nondeterministic finite
automaton.

To make a nondeterministic finite automaton deterministic dynamically at runtime,

6.2 Back end 139

and without explicitly storing its comprehensive look-up table, a class DFA is defined,
similar to the interface above, which “wraps” an NFA object and provides the following
functions:

• getSuccessor(s, a) takes a state s and a subset a ⊆ AP of atomic propositions
and returns a single successor reachable from s by a.

• isF inal(s) returns true (or, false) if s is a final state (not a final state, corre-
spondingly).

• initialState() returns the single initial state of the deterministic finite automa-
ton.

1 StateSet DFA :: initialState ()

2 {

3 return (nfa.initialStates ());

4 }

5

6 StateSet DFA :: getSuccessor (StateSet S, PropositionSet a)

7 {

8 StateSet result;

9 for_all s in S

10 result.add (nfa.getSuccessors (s, a));

11 return result;

12 }

13

14 bool DFA :: isFinal (StateSet S)

15 {

16 for_all s in S

17 if (nfa.isFinal (s))

18 return true;

19 return false;

20 }

Fig. 6.3: Implementation of the DFA functions.

A single state of the deterministic finite automaton corresponds to a set of states of
the nondeterministic finite automaton. To implement the functions described above,
a DFA object uses a reference to the corresponding NFA object in order to compute
the state transitions of the DFA object in an on-the-fly manner, as shown in Fig. 6.3
which uses a C++-inspired pseudo code. This code is independent of the formula ϕ
and the underlying NFA object, and is, therefore, implemented once, manually rather
than automatically generated. Finally, the finite state machine is implemented in a
similar on-the-fly fashion: the constructor of the FSM class takes two references which
point to the DFA objects which implement Ãϕ and Ã¬ϕ and stores them in the fields
dfa pos and dfa neg. Furthermore, the finite state machine maintains the current
state of the two deterministic finite automata in the fields state pos and state neg,
respectively. The FSM class then provides a function, processInput, which takes a

140 Chapter 6: Implementation, tool-support, and comparative results

subset, a, of propositions from AP and returns the current evaluation of the system
trace with respect to ϕ as can be seen in Fig. 6.4.

1 BoolThree FSM :: processInput (PropositionSet a)

2 {

3 state_pos = dfa_pos.getSuccessor (state_pos , a);

4 state_neg = dfa_neg.getSuccessor (state_neg , a);

5 if (! dfa_pos.isFinal (state_pos)) return false;

6 if (! dfa_neg.isFinal (state_neg)) return true;

7 return ?;

8 }

Fig. 6.4: Implementation of the main processing function in the monitor.

Case study: C++ static initialisation order fiasco

This section details on a case study, which has already been described briefly in §4.4.2,
and which has been undertaken with the monitoring scheme developed above. Recall
that in C++ the initialisation order of static objects is nondeterministic. Hence, for
large C++ applications, consisting of many independently developed code modules
(and static objects), it is a major concern to ensure an appropriate startup behaviour
of the overall system. One way to check for a “legal” startup behaviour, i. e., where no
threads are spawned before program initialisation has completed, is to use monitors
(see also §4.4.2).

For the purpose of implementing threads in a portable manner, most (UNIX-based)
systems rely on the POSIX standard for threads (in short, pthreads; see IEEE [1995]).
The application under scrutiny then has to be instrumented to employ a logging
facility for emitting relevant system events, such as the creation or destruction of
a thread. In theory, there are no limitations on the employed logging framework.
However, in this case study a custom solution was used, which is described in greater
detail, e. g., by Arafat [2005], and which is also available under an open source license
as part of the runtime reflection framework (see Appendix B). Other logging facilities,
such as the Apache Software Foundation’s library, log4cxx are also possible,
but naturally rely on a different API for code instrumentation.

After instrumentation of the code, the logging facility allows users to attach so-called
loggers to the stream of system events. Each time a relevant system event described
by an annotation occurs, the logging function of all registered loggers is invoked to
write the exact contents of the event onto hard disk, or to send it to a remote server
for further analysis. Note that in this framework, a monitor is but a special kind
of logger which can be automatically generated from an LTL formula, and whose
“analysis server” is the diagnosis layer as described in the next section.

The actual instrumentation in this study occurred by providing so-called code wrap-
pers around relevant system calls, such as pthread create which in accordance to

6.2 Back end 141

the POSIX standard may have the following signature:

1 int pthread_create (pthread_t *threadp ,

2 pthread_attr_t const *attr ,

3 void* (* start_routine) (void*),

4 void* arg) __THROW

The macro provided by the logging layer, DIAGNOSTICS AUDIT INSTRUMENT C CALL,
“wraps” this system call such that any call to pthread create (provided by the sys-
tem library libpthread.so.0) emits an input event for the registered loggers; hence,
the name code wrappers. The code responsible for this is given in Fig. 6.5. Naturally,
if other logging facilities are used but the one provided by the runtime reflection
framework, the instrumentation will use a different set of calls and parameters.

1 #include <pthread.h>

2 #include <diagnostics/instrumentation.hpp >

3

4 extern "C" DIAGNOSTICS_AUDIT_INSTRUMENT_C_CALL

5 ("libpthread.so.0", // L i b r a r y p r o v i d i n g
6 // p t h r e a d c r e a t e .
7 int , // R e s u l t t y p e .
8 pthread_create , // Method name .
9 (pthread_t *threadp , // Argument t y p e s .

10 pthread_attr_t const *attr ,

11 void* (* start_routine) (void*),

12 void* arg),

13 __THROW ,

14 (threadp , attr , start_routine , arg), // Arguments to THROW.
15 ""); // A d d i t i o n a l comments f o r
16 // t h i s s y s t em e v e n t .

Fig. 6.5: Wrapper around pthread create.

The interface for the automatically generated monitor SIOF Monitor (short for “static
initialisation order fiasco monitor”) is given in Fig. 6.6. Its implementation is depicted
in Fig. 6.7. Basically, the monitor receives a record entry resembling a verbose variant
of a system event, including possible comments, and then evaluates its content in
terms of a bit vector encoding the truth values of propositions for an observed event.
The constructor first integrates the generated classes for the two nondeterministic
finite automata, namely Pos static fiasco and Neg static fiasco. Further, the
constructor sets the m bit vector to its initial state. The p translate function
interprets each logged Record t in terms of a Bit Vector t: If a relevant log message
occurs, it updates the bit vector accordingly and returns true. Otherwise, it only
returns false.

Finally, Fig. 6.8 shows the main function, i. e., the starting point of the application,
whose sole purpose it is to attach a monitor to the stream of system events. The call to
set initial loggers provides an initial set of Logger objects, even before entering

142 Chapter 6: Implementation, tool-support, and comparative results

1 #ifndef EXAMPLE_SIOF_MONITOR_HPP

2 #define EXAMPLE_SIOF_MONITOR_HPP

3

4 #include <ltl2fsm/monitor_code/Monitor_Wrapper.hpp >

5

6 class SIOF_Monitor : public :: ltl2fsm :: Monitor_Wrapper

7 {

8 public:

9 SIOF_Monitor ();

10 virtual ~SIOF_Monitor ();

11 protected:

12 virtual bool p_translate (Record_t const &record ,

13 Bit_Vector_t &bit_vector);

14 };

15

16 #endif

Fig. 6.6: The interface of the automatically generated monitor.

the main function. When the first system event occurs, the logging facility is activated
and calls set initial loggers during initialisation. The main function starts with
a DIAGNOSTICS PROD PROCEDURE GUARD annotation that generates a system event on
entry and exit of this function. Moreover, after entering main, a thread is created
which starts with start func and awaits its termination. At the end of main, the
state of Siof Monitor is returned. In this case, since the first thread is spawned after
main has been reached, the Siof Monitor is in the state true.

Integration and work-flow

The resulting work-flow of the above described procedure, including the compilation of
Salt specifications is summarised in Fig. 6.9: From a Salt specification a temporal
logic formula ϕ is generated (in this picture, ϕ ∈ LTL), and then a Büchi automaton
is generated for ϕ and ¬ϕ, respectively. The FSM-Generator then creates C++ code
for a finite state machine which performs the power-set construction on-the-fly, and
analyses the stream of events according to the 3-valued semantics of ϕ.

6.2.2 Diagnosis: implementation and benchmarks

Like the monitoring layer, diagnosis in the runtime reflection framework is imple-
mented using the C++ programming language to facilitate ease of integration with
the other constituents, and for gaining optimal runtime performance by using un-
interpreted code. However, this choice is not inherent in the theoretical approach
to diagnosis. For instance, the Salt compiler is realised in a combination of the
languages Java and Haskell.

6.2 Back end 143

1 #include "siof_monitor.hpp"

2

3 #include <generated/Neg_static_fiasco.hpp >

4 #include <generated/Pos_static_fiasco.hpp >

5

6 #include <ltl2fsm/monitor_code/Fsm.hpp >

7 #include <ltl2fsm/monitor_code/Dfa.hpp >

8 #include <diagnostics/frame/record.hpp >

9

10 using namespace ltl2fsm;

11

12 SIOF_Monitor :: SIOF_Monitor () : Monitor_Wrapper

13 (new Fsm (new Dfa (new Pos_static_fiasco),

14 new Dfa (new Neg_static_fiasco)), 2)

15 {

16 // Ac t i o n : p t h r e a d c r e a t e i s no t c a l l e d i n i t i a l l y .
17 m_bit_vector [0]= false;

18 // Ac t i o n : main s t a r t s no t immed i a t e l y .
19 m_bit_vector [1]= false;

20 }

21

22 SIOF_Monitor :: ~SIOF_Monitor ()

23 {

24 }

25

26 #define WHAT_MAIN "PROCEDURE =\" int main ()\""

27 #define WHAT_PC "PROCEDURE =\" int pthread_create ("

28

29 bool SIOF_Monitor :: p_translate(Record_t const &record ,

30 Bit_Vector_t &bit_vector)

31 {

32 using namespace diagnostics;

33 if (record.type () == TYPE_PROCEDURE_ENTER

34 && record.str_what ().find (WHAT_MAIN) == 0) {

35 bit_vector [1] = true;

36 return true;

37 }

38 if (record.type () == TYPE_PROCEDURE_ENTER

39 && record.str_what ().find (WHAT_PC) == 0) {

40 bit_vector [0] = true;

41 return true;

42 }

43 return false;

44 }

Fig. 6.7: The code of the automatically generated monitor.

144 Chapter 6: Implementation, tool-support, and comparative results

1 #include <diagnostics/annotations.hpp >

2 #include <diagnostics/configuration.hpp >

3

4 #include "siof_monitor.hpp"

5

6 #include <pthread.h>

7

8 static ltl2fsm :: Monitor_Wrapper* siof_monitor;

9

10 using namespace std;

11

12 DIAGNOSTICS_NAMESPACE_BEGIN ;

13 void set_initial_loggers (vector <Logger*> &loggers)

14 {

15 loggers.push_back (siof_monitor = new SIOF_Monitor);

16 }

17 DIAGNOSTICS_NAMESPACE_END;

18

19 void* start_func (void*)

20 {

21 DIAGNOSTICS_PROD_PROCEDURE_GUARD ("");

22 return NULL;

23 }

24

25 int main ()

26 {

27 DIAGNOSTICS_PROD_PROCEDURE_GUARD("");

28

29 pthread_t tid;

30 void ** return_value;

31 pthread_create (&tid , NULL , &start_func , NULL);

32 pthread_join (tid ,return_value);

33

34 cout << siof_monitor ->status () << endl;

35 return 0;

36 }

Fig. 6.8: Attaching the monitor to the stream of system events.

6.2 Back end 145

Salt

Compiler
Büchi

Generator

Büchi
Generator

Salt

Specification

FSM
Generator

Monitor Generator

FSM(ϕ ∈ LTL3)

A¬ϕ
ϕ

Aϕ

¬ϕ

ϕ

Fig. 6.9: Work-flow from specification to monitor generation.

The core of the diagnosis layer consists of a #SAT-solver outlined in §5 of this thesis,
and referred to as Lsat. The internals of Lsat were first described by Bauer [2005].

This section details on essential implementation details of Lsat, such as data struc-
tures used, optional optimisations, and comparative benchmarks. A brief discussion
of an integration scenario into a model-based design- and work-flow finalises this
section, which is also described in greater detail by Bauer et al. [2007].

Data structures

While Lsat’s solving algorithm has been previously laid out in §5, this section focusses
on its employed data structures and possible improvements that can increase the
efficiency of Lsat further. Basically, Lsat is realised by two main functions, branch
and refute (for details, see §5). Both functions share a set of global variables in order
to keep the space complexity for storing runtime information linear during execution.
The alternative to this would be to keep all variables local, but on the expense of
storing changes to them that need to be propagated and kept on the runtime stack
when executing.

Fig. 6.10 shows the main two data structures used by Lsat in a schematic manner.
Every variable vi ∈ V accessed by either function corresponds to an object, Variable,
and every clause Ci ∈ C to an object, Clause, where V denotes, again, the set of
variables and C the set of clauses over V used by Lsat’s input formula. Variable

has the following elements:

• index: An index to identify a variable unambiguously.

• value: A truth-value assignment, if made by the algorithm.

• abnormal: A flag, denoting whether or not this variable corresponds to a com-
ponent of a diagnosis problem (SD,COMP,OBS, SIG), such that v ≡ c ∈

146 Chapter 6: Implementation, tool-support, and comparative results

Atoms

Clauses

neg-clauses:List<Clause>

value:int

abnormal:bool

pos-clauses:List<Clause>

Clause

pos-literals:List<Variable>

neg-literals:List<Variable>

inact:Variable

literals:int

. . .

Cm

vnv1

C1

. . .

. . .

Variable

index:int

Fig. 6.10: Lsat’s internal representation visualised with vi:Variable and ci:Clause.

COMP .

• pos-clauses: A (possibly empty) list of clauses where v occurs positively.

• neg-clauses: A (possibly empty) list of clauses where v occurs negatively.

Clause consists of the following entries:

• pos-literals: A (possibly empty) list of literals which occur positively in a
clause C.

• neg-literals: A (possibly empty) list of literals which occur negatively in a
clause C.

• inact: A pointer to a variable, which is responsible for disregarding the clause
C from future variable assignments in the course of the algorithm.

• literals: A list of literals that appear in this clause, positively or negatively.

By keeping a set of lists in both data structures, a mutually linked list is created
which is also depicted schematically in the lower part of Fig. 6.10: variables have
a reference to the clauses they appear in, whereas clauses have a reference to the
variables occurring in them. In C++, this can be realised efficiently by using pointers,
such that access to either data structure occurs via dereference.2

2Naturally, care has to be taken when storing pointer locations in container objects of the C++
Standard Template Library (STL) that use semi-automatic memory management.

6.2 Back end 147

1 void branch (void)

2 {

3 Variable* atom;

4

5 if ((atom = find_unmarked ())) {

6 refute (atom , +1); refute (atom , -1);

7 }

8 else {

9 // P r i n t s e t o f s a t i s f y i n g a s s i g nme n t s .
10 cout << solution << endl;

11

12 // I f #SAT must be s o l v e d , do not i n t e r r u p t .
13 if (! required_all_solutions ())

14 exit (0);

15 }

16 }

Fig. 6.11: Function branch.

Unit propagation as optimisation

The actual implementation of Lsat as outlined in §5 is given in Fig. 6.11 and Fig. 6.12
in a C++-like notation.

Note that the actual program Lsat (see Appendix B) contains unit propagation as an
optimisation as originally suggested for DPLL (see §5.2.2). A unit clause exists, if and
only if there exists a clause with only a single (unassigned) literal. Detection of unit
clauses speeds up execution since the variable assignment is obvious from the clause.
If, before branch is called by refute, all unit clauses are iteratively deactivated, the
size of the remaining semantic tree to be expanded can be significantly reduced. For
brevity, this has not been outlined earlier as unit propagation integrates into the
algorithm transparently and does not affect important properties, such as asymptotic
memory requirements. To see how it works, the changed code fragment from refute

is given in Fig. 6.13.

Unit propagation works iteratively until no more unit clauses can be found using the
currently determined assignment. Upon backtracking, however, all these unit clauses
are reactivated, because upon using a new assignment, they may not account as unit
clauses any longer. Unit propagation works by identifying those previously unas-
signed variables that (now) occur as singletons, and by deactivating the corresponding
clauses until no more singletons can be found. Reactivation occurs symmetrically.

Example

Like the monitoring layer, Lsat can be used as a stand-alone tool to solve the general
SAT or #SAT problem. If used stand-alone, Lsat accepts an extended DIMACS

148 Chapter 6: Implementation, tool-support, and comparative results

1 void refute (Variable* lit , int sign)

2 {

3 switch (sign) {

4 case 1: {

5 tmp_clauses := neg_clauses (lit);

6 true_clauses := pos_clauses (lit);

7 neg_clause_counter (tmp_clauses , -1);

8 break; }

9 default: {

10 tmp_clauses := pos_clauses (lit);

11 true_clauses := neg_clauses (lit);

12 pos_clause_counter (tmp_clauses , -1);

13 break; }

14 }

15

16 solution.push_back (sign * lit ->idx ());

17

18 if (! empty_clause (tmp_clauses)

19 && fault_counter () <= max_faults ()) {

20 vector <Variable*> units;

21

22 // Mark and d e a c t i v a t e .
23 lit ->set_val (1);

24 activate (true_clauses , lit);

25

26 // Branch and s e l e c t new .
27 branch ();

28

29 // Unmark and r e a c t i v a t e .
30 lit ->set_val (0);

31 activate (true_clauses , NULL);

32 }

33

34 // B a c k t r a c k i n g .
35 (solution.back () > 0 ?

36 neg_clause_counter (tmp_clauses , +1) :

37 pos_clause_counter (tmp_clauses , +1));

38 solution.pop_back ();

39 }

Fig. 6.12: Function refute.

6.2 Back end 149

1 void refute (Variable* lit , int sign)

2 {

3 // . . .
4

5 Variable* tmp;

6

7 // I t e r a t i v e u n i t p r o p a g a t i o n .
8 do

9 {

10 if ((tmp = deactivate_unit_clauses (del_clauses ,

11 decr_clauses ,

12 the_sign)))

13 {

14 all_del_clauses.push_back (del_clauses);

15 all_decr_clauses .push_back (decr_clauses);

16 all_signs.push_back (the_sign);

17 }

18 del_clauses.clear ();

19 decr_clauses.clear ();

20 units.push_back (tmp);

21 } while (tmp);

22

23 // Branch and s e l e c t new .
24 branch ();

25

26 // I t e r a t i v e u n i t c l a u s e r e a c t i v a t i o n .
27 for (unsigned i = 0; i < units.size (); i++)

28 {

29 reactivate_unit_clauses (all_del_clauses[i],

30 all_decr_clauses [i],

31 all_signs[i],

32 units[i]);

33 del_clauses.clear ();

34 decr_clauses.clear ();

35 all_signs.clear ();

36 }

37

38 // . . .
39 }

Fig. 6.13: Iterative unit propagation in refute.

150 Chapter 6: Implementation, tool-support, and comparative results

input format which is used to describe a set of clauses in CNF.3

In DIMACS format, all variables are encoded by discrete numbers, such that a set of
clauses in CNF, given by C, must be mapped to unique integers. One such possible
mapping for the example depicted in Fig. 5.2 on p. 107 of system components and
observations to unique integers is given as follows: i1 7→ 1, i2 7→ 2, i3 7→ 3, i4 7→
4,m1 7→ 5,m2 7→ 6, o1 7→ 7, o2 7→ 8,M1 7→ 9,M2 7→ 10, A1 7→ 11, A2 7→ 12. Using
Lsat’s extended DIMACS format, the example, wherem1 andm2 cannot be observed,
and o1 and o2 are not as expected, could then be encoded and automatically solved
as follows.

1 p cnf 12 22 Standard DIMACS header.

2 9 -1 -2 5 SD: causal dependencies of S.

3 10 -3 -4 6 (10 ∨ −3 ∨ −4 ∨ 6)

4 11 -5 -6 7
∧

(11 ∨ −5 ∨ −6 ∨ 7)

5 12 -6 -5 8
∧

. . .

6 -5 1

7 -5 2

8 -5 -9

9 -6 3

10 -6 4

11 -6 -10

12 -7 5

13 -7 6

14 -7 -11

15 -8 5

16 -8 6

17 -8 -12

18 a 9 10 11 12 COMP: the directive a defines the components in S.

19 1 OBS: ok(1)

20 2 . . .

21 3

22 4

23 -7 ¬ ok(7).

24 -8 ¬ ok(8).

(Given sufficient runtime) Lsat finds a satisfying assignment for the above input
formula, if at least one such assignment exists, where the set of input clauses resembles
a model-based diagnosis problem M = (SD,COMP,OBS, SIG). Moreover, in this
example, a 2-fault-assumption has been used, sincem1 andm2 are not observable, and
increase the set of potential diagnoses. Unobservable model artifacts which need to be
reflected in the reasoning, are called unknowns, and are denoted by a set UNOBS.

3DIMACS is the Center for Discrete Mathematics and Theoretical Computer Science, Rutgers,
New Jersey, and provides a de-facto standard for SAT-solver input formats (cf. Cook and Mitchell
[1997]).

6.2 Back end 151

It follows that the presence of unknowns raises the number of possible results for
diagnosis in the worst case to 2(|COMP |+|UNOBS|). Hence, it is sensible in many cases to
restrict the number of possible diagnoses by using an appropriate n-fault assumption.
In this case, let n = 2. Assumptions concerning symptoms in the obtained result are
underlined, whereas assumptions regarding abnormal components are denoted using
frames:

1 12 -8 1 2 3 4 -7 11 -10 6 -9 5

2 12 -8 1 2 3 4 -7 -11 10 -6 -9 5

3 12 -8 1 2 3 4 -7 -11 -10 6 -5 9

4 -12 1 2 3 4 -7 -8 11 10 -6 -9 5

5 -12 1 2 3 4 -7 -8 11 -10 6 -5 9

6 -12 1 2 3 4 -7 -8 -11 10 -6 9 -5

7 -12 1 2 3 4 -7 -8 -11 10 -6 -9 5

8 -12 1 2 3 4 -7 -8 -11 -10 6 -5 9

Each of the eight results (out of a total of 13) encodes exactly one valid truth as-
signment for M, such that the observations, ¬ok(o1) and ¬ok(o2), can be explained
under the assumption that not more than two components in the system are re-
sponsible for the deviations. The top-most result, for instance, gives the explanation
AB(A2) ∧ AB(A1), with A2 7→ 12 and A1 7→ 11 under the assumption that both m1

and m2 are as expected.

Benchmarks

With the implementation of the n-fault assumption, Lsat targets foremost model-
based diagnosis in a propositional domain, where monitors provide the assignment of
literals that encode observations of system events. However, Lsat is not restricted
to this setup, and in order to demonstrate applicability of the proposed solution,
a number of standard tests have been performed that were taken from the domain
of hardware verification. The so-called ISCAS (short for IEEE International Sym-
posium on Circuits and Systems) set of benchmark circuits is widely used by the
hardware verification community for validating digital design and verification tools.
The respective combinatorial tests resemble the logic underlying integrated circuits,
and range from several hundred to ca. 20,000 “components” (i. e., logical gates), and
ca. 60,000 clauses (i. e., connections between gates).

For the purpose of validation, the respective designs were altered at random to induce
combinatorial faults, which could only be resolved by revoking assumptions regarding
the “health state” of one of many logical gates.

Table 6.1 summarises results of applying a selection of ISCAS test cases to Lsat on a
Pentium 4 architecture with 512 MB of RAM using either the 5-fault assumption, or
no restriction at all. If a test could not be finished within 60 seconds, it was considered
to be a timeout. The results obtained substantiate the appropriateness of the pre-
sented concept. Four tests could not be finished using the ∞-fault assumption, while

152 Chapter 6: Implementation, tool-support, and comparative results

Table 6.1: Modified ISCAS‘89 benchmarks under the n-fault assumption.

∞-fault 5-fault
Name: #COMP : #Var.: #Cl.: #Steps: CPU: #Steps: CPU:

s208.1 66 122 389 84 0.17 sec 60 0.25 sec
s298 75 136 482 27 0.11 sec 58 0.32 sec
s444 119 205 714 20 0.18 sec 105 0.91 sec
s526n 140 218 833 − timeout 295 0.23 sec
s820 256 312 1,335 − timeout 562 0.59 sec
s1238 428 540 2,057 38 0.97 262 0.21 sec
s13207 2,573 8,651 27,067 − timeout 17 0.57 sec
s15850 3,448 10,383 33,189 − timeout 41 0.17 sec
s35932 12,204 17,828 60,399 2,339 11.16 sec 29 0.21 sec

Lsat solved these tasks when constrained to five faults. The variance between CPU
time and the performed number of algorithmic steps can be explained by the heuristic
approach and variantly efficient object-accessor functions in the implementation of
the Lsat tool itself.

Integration and work-flow

Lsat as described above is both an efficient diagnosis engine, as well as an efficient
solver for the #SAT, respectively SAT, problem. If used for the purpose of model-
based diagnosis, its set of input clauses C consists of a monitoring-based diagnosis
problem (SD,COMP,OBS, SIG), where SD,COMP can be obtained, e. g., from a
CASE-tool used for system modelling, and where the monitors then provide the set
of observations OBS (see Fig. 6.14).

There are no constraints on the type of CASE-tool used for extraction of the sys-
tem model as long as the causal relations between the input and output signals of
subcomponents of a system is provided. Bauer et al. [2007] describe how to use MAT-
LAB/Simulink (Mathworks [2000]) for this purpose, a systems modelling tool which
is predominant, e. g., for the design and implementation of embedded control systems.
However, other CASE-tools, such as AutoFocus (see §4.1 and Appendix B) are also
possible to integrate. The paper further describes how Lsat (in combination with
other constraint solvers) can be used to verify extracted system models statically
with respect to a set of predetermined properties. The technical as well as theoretical
details of this step are beyond the scope of this thesis. However, the cited paper does
provide the necessary details, and a further case study, taken from the automotive
domain.

6.3 Summary 153

CASE
Tool

Structural
system model

Observations,
Symptoms

Lsat

Monitors

OBS

Diagnosis

∆ ⊆ COMP

SD,COMP

Fig. 6.14: Integration of system models, Lsat, and the monitors.

6.3 Summary

This chapter represents the most “hands-on” part of this thesis. It proposes con-
crete and efficient implementation schemes for the methods developed in the previous
chapters of this thesis. In particular, an optimising compiler for Salt is discussed, an
efficient monitoring and code generation scheme that relies upon on-the-fly determin-
sation of nondeterministic finite automata, and a memory-efficient realisation of the
diagnosis layer Lsat is given. Various implementation aspects are substantiated by
concrete C++ code examples, comparative benchmarks, and a real-world case-study,
showing the steps involved to integrate monitors into an actual C++ system.

154 Chapter 6: Implementation, tool-support, and comparative results

Chapter 7

Conclusions

If I have seen further it is by standing on
ye shoulders of Giants.

(Sir Isaac Newton, Letter to Robert
Hooke, 1676)

This chapter briefly summarises some important results of this thesis, and gives
an outlook on possible future research directions.

7.1 Summary

Runtime reflection as developed in this thesis can be broadly characterised as a method
that enables systems to reflect upon their overall system status at runtime. The formal
foundations as well as efficient means for their implementation are the heart of this
text. Various conclusions can be drawn from it.

The presented approach to runtime reflection shows that a methodological differentia-
tion between the detection and the diagnosis of failures is sensible. Failure detection
by means of runtime verification is an efficient way of detecting symptoms of a sys-
tem failure, but not good at differentiating the symptoms of failure from their actual
causes. Therefore, this thesis argues in favour of a methodological differentiation be-
tween these tasks, and puts forth an approach using a strong separation of concerns:
(1.) It develops a specific technique which is efficient in the detection of symptoms of
system failures, and (2.) a specific technique that aims primarily at identifying mean-
ingful explanations for them in terms of isolating those (faulty) system components
which may be responsible for the symptoms.

Runtime reflection as developed in this thesis is not specific to a certain domain, such
as mechanical engineering or control systems. Therefore, it can be argued that the
abstract requirement to detect symptoms of a system failure is a completely different
one to that of identifying causes, and should, as described in this text, be realised by
different techniques.

The approach to failure detection is technically based upon the construction of moni-
tor components from temporal logic specifications. The specifications encode desired

155

156 Chapter 7: Conclusions

system behaviour and are interpreted over infinite sequences of (observable system)
events. However, since monitors have to interpret such specifications over finite se-
quences, a 3-valued semantics is used to give the temporal logics LTL, respectively
TLTL, a determined and unambiguous meaning with respect to the finite view on the
system.

For both logics a monitor construction is developed which is optimal with respect to
the space-complexity of the generated monitors as well as able to detect all minimal
bad prefixes of non-conforming system behaviour. In the untimed case, where the
monitor is generated from an LTL formula, the construction is based upon Büchi
automata, whereas in the timed case, for TLTL, event-clock and their correspond-
ing region automata are used. The timed case, in a sense, constitutes a change of
paradigm, in that no longer quasi-synchronous sequences of events are observed and
processed, but events whose occurrence is associated with a time-stamp. Therefore,
quantitative assertions about events can be formulated and checked as compared to
merely qualitative ones in the untimed case. The downside, however, lies in that the
models of computation, i. e., that of an event-clock and region automaton, are much
more involved as compared to the untimed case.

The presented approach to systems diagnosis transfers the principles of first-order
model-based diagnosis to a propositional setup. In first-order diagnosis, explanations
for an observed failure are generated by checking and restoring the consistency of
first-order logic sentences which resemble a distributed or component-based system’s
components, their causality and behaviour as well as a set of corresponding observa-
tions. In the runtime reflection framework, the behaviour is monitored continuously,
and diagnosis performed only if one or many monitors signal an aberration. By using
optimal size monitors, which also detect minimal bad prefixes of behaviour, diagno-
sis can be mapped efficiently to a propositional satisfiability and counting problem,
i. e., the so-called #SAT problem, thus also avoiding the issue of undecidability of
first-order logic. Moreover, diagnosis must only be used in this setup when needed,
instead of continuously.

Since in diagnosis of component-based systems, not all theoretically possible diag-
noses are of practical interest (i. e., principle of parsimony, see §5), only those are
determined where the answer set contains less or equal than n ∈ N faulty compo-
nents, with n being referred to as the n-fault assumption. This is achieved in terms
of a deterministic algorithmic solution for the #SAT problem, and by using the n-
fault assumption as an optimisation heuristic. Accompanying experimental results of
a tool prototype realising this idea, show that this optimisation yields considerable
performance improvements over a non-optimised solution.

As an interface or a front end to the technical framework of runtime reflection, this
thesis proposes Salt, the structured assertion language for temporal logic. Besides
offering a number of high-level constructs for the expression of temporal properties,
Salt has its formal foundations in LTL, respectively TLTL, when timed systems are
to be specified. As such, Salt specifications can be translated either into monitors

7.2 Future research directions 157

which, in turn, are built from LTL or TLTL formulae, or be used in combination
with existing formal verification frameworks, such as model checking tools. First
experimental results from a Salt compiler which realises the presented translation
schemes show that the higher level of abstraction achieved by many of Salt’s syntac-
tic constructs, does not automatically result in bigger plain temporal logic formulae.
In fact, the Büchi automata resulting from translated Salt formulae were in some
cases smaller than their equivalent ones, if translated from a handwritten LTL for-
mula. Although this result is not inherent to the Salt approach, it allows for some
interesting conclusions: for example that there is still potential for improvement in
the translation of plain LTL formulae to Büchi automata.

Finally, this thesis presents the algorithms and concepts that make up a technical
infrastructure for runtime reflection. More so, in Appendix B, some pointers are
given, where to obtain tool prototypes that have been released under an open source
license and are based on these algorithms and concepts.

As such, this thesis presents both the theory and practice of runtime reflection.

7.2 Future research directions

Runtime reflection as presented in this thesis raises several fundamental questions
as well as practical questions that concern, in particular, the applicability of the
proposed framework. In the following, selected issues of both are highlighted, and
potential for further research discussed.

7.2.1 Fundamental research questions

During the course of this thesis, various “design decisions” were made regarding the
use of data structures, algorithms, and techniques to achieve the goals of runtime
reflection. Although most of these design decisions are sketched in the appropriate
text passages, others deserve a special mention at this point; firstly, because their
detailed examination raises too many questions which cannot be answered without
additional fundamental research, and secondly because this research is not directly
in the scope of this thesis.

For instance, the decidability results for TLTL as given by Raskin and Schobbens
[1999] (see also D’Souza [2003]) are an important reason for the choice of real-time
temporal logic in this thesis. TLTL uses a so-called point-wise semantics with con-
crete time-stamps, whereas other real-time logics, such as MTL (cf. Ouaknine and
Worrell [2005]) use continuous semantics based on continuous intervals of time. A
lot of research especially in the 1990s was devoted to comparing the expressiveness
of different real-time temporal logics, and some of these results have not shaped until
more than 15 years after the introduction of a new real-time logic (cf. Alur and Hen-
zinger [1991], Alur et al. [1996], Bouyer et al. [2005b]). Therefore, and not only in the

158 Chapter 7: Conclusions

context of this thesis, it would be interesting to determine how TLTL compares to
(subsets) of other real-time logics, and whether or not, the construction of monitoring
components would transfer over to these logics in a similar manner. In other words,
which are the properties that are practically relevant, and go either beyond the prop-
erties expressible in TLTL, or can be captured more appropriately using a different
real-time logic, such as a continuous one? Is it possible to construct a deterministic
runtime monitor for such properties, which also detects minimal bad prefixes, and if
so, for which classes of properties? Recall, the presented monitoring scheme is not
restricted to safety properties alone.

Moreover, the monitor construction for TLTL is based upon the region graph con-
struction of a timed automaton. However, the number of regions in a timed automa-
ton is exponential both in the number of occurring clocks as well as in the maximal
clock constants used in an automaton (see §4). In other words, the region graph
construction yields practically large state spaces, which is the reason why, in timed
model checking tools, a coarser representation of clock constraints is preferred. Such a
representation exists in the form of clock zones as used by, e. g., Uppaal (Behrmann
et al. [2002]). The number of zones, however, can still be equal to the number of
regions in the worst case, and for some “rarely occurring” clock constraints even un-
bounded without subsequent normalisation (see §4). Additionally, it is not always
possible to find a stable zone equivalence (cf. Bengtsson and Yi [2004]). Hence, it is
not clear whether or not the presented construction of TLTL monitors could actually
benefit from such a representation, and where the limitations are in terms of the clock
constraints which can be expressed more efficiently by using zones. Recall, a monitor
is but a finite state machine, hence, minimisation is possible and it remains to show
that a minimised monitor, based on regions, corresponds to a (minimised) monitor
based on a (normalised) zone graph construction, which exhibits stability.

7.2.2 Domain-specific aspects and applicability

Runtime reflection also raises a number of practical questions. For instance, it is
worth investigating the trade offs that have to be made, when considering the use of
this framework in resource or economically bound environments, such as embedded
control, avionics or automotive systems. All mechanisms of fault tolerance, which,
for the sake of argument, runtime reflection loosely classifies as, require redundancy,
either in the hardware or the software of a system. Runtime reflection as presented in
this thesis suggests the use of redundancy foremost in software in terms of the mon-
itoring components and a centralised diagnoser component. However, even software
redundancy comes at a price, e. g., in terms of additional CPU cycles or memory.
More so, a heterogeneous scenario could also be thought of, where software and hard-
ware monitors (such as “watchdogs”) are used to diagnose root causes of an observed
failure. Hence, for practical use, an interesting question lies in the diagnosability of
systems. In other words, where should monitors be placed to detect costly, critical,

7.2 Future research directions 159

or otherwise relevant patterns of failure, and how much does this redundancy cost?
This thesis does not aim to give an answer to such questions. However, an empiri-
cal investigation based on scenarios where fault tolerance mechanisms are crucial and
even mission critical, e. g., as in electronic avionics or automotive systems, could point
to further important methodological aspects in the use and deployment of runtime
reflection.

Salt, although only proposed as a front end, also deserves a deeper empirical anal-
ysis. One important point of interest lies in the correlation between the conciseness
of a temporal logic specification and its correctness with respect to the real-world
property it aims to capture. Salt offers various high-level constructs which help to
make complicated temporal logic specifications more concise and, as this thesis ar-
gues, readable. However, it is not claimed that Salt totally lifts the burden of having
to thoroughly understand the semantics of (linear time) temporal logic in order to
transform (possibly informal) temporal requirements into a formal specification, even
if the used formalism is closer to common, imperative programming languages. The
productivity increase, or absolute reduction of errors in temporal logic specifications
could be quantified precisely in order to identify potential for improvement, suggest
additional operators or different levels of abstraction from the underlying plain tempo-
ral logic. Moreover, depending on the application domains where such studies would
be carried out in, this could also allow for further insights regarding the suitability of
Salt and temporal logic in general to capture domain specific artifacts in different
stages of, say, a software and systems development life-cycle.

A step in this direction was made previously by Dwyer et al. [1999]. However, the
focus of their studies was on identifying recurring patterns in existing real-world
temporal logic specifications, such as scopes (see also §3.3.3), rather than identifying
practical limitations of the employed formalisms. Broader studies with an emphasis
on the correlation between the ability of a temporal logic to capture specific artifacts
and the application domain it is used in have yet to be carried out.

160 Chapter 7: Conclusions

Bibliography

ADAC (2005). ADAC-Pannenstatistik 2004. ADAC-Presseservice.

ADAC (2006). ADAC-Unfallstatistik 2005. ADAC-Presseservice.

Aho, A. V., Sethi, R. and Ullman, J. D. (1988). Compilers: Principles, Tech-
niques and Tools. Addison-Wesley.

Alpern, B. and Schneider, F. B. (1984). Defining liveness. Tech. rep., Ithaca,
NY, USA.

Alpern, B. and Schneider, F. B. (1987). Recognizing safety and liveness. Dis-
tributed Computing, 2 117–126.

Alur, R. and Dill, D. L. (1990). Automata for modeling real-time systems. In
ICALP (M. Paterson, ed.), vol. 443 of Lecture Notes in Computer Science. Springer-
Verlag.

Alur, R. and Dill, D. L. (1996). Automata-theoretic verification of real-time sys-
tems. In Formal Methods for RealTime Computing (C. Heitmeyer and D. Mandrioli,
eds.). Wiley, 55–82.

Alur, R., Feder, T. and Henzinger, T. A. (1996). The benefits of relaxing
punctuality. Journal of the ACM, 43 116–146.

Alur, R., Fix, L. and Henzinger, T. A. (1999). Event-clock automata: a deter-
minizable class of timed automata. Theoretical Computer Science, 211 253–273.

Alur, R. and Henzinger, T. (1991). Logics and Models of Real-Time: A Survey.
In Real Time: Theory in Practice, vol. 600. Springer-Verlag.

Alur, R. and Henzinger, T. A. (1989). A really temporal logic. In IEEE Sym-
posium on Foundations of Computer Science.

Amálio, N. and Polack, F. (2003). Comparison of formalisation approaches of
UML class constructs in Z and Object-Z. In ZB (D. Bert, J. P. Bowen, S. King

161

162 Bibliography

and M. A. Waldén, eds.), vol. 2651 of Lecture Notes in Computer Science. Springer-
Verlag.

Arafat, O. (2005). A Tool for automated monitor code generation from LTL for-
mulae. Master’s thesis, Institut für Informatik, Technische Universität München,
Germany.

Arafat, O., Bauer, A., Leucker, M. and Schallhart, C. (2005). Runtime
verification revisited. Tech. Rep. TUM-I0518, Institut für Informatik, Technische
Universität München.

Armoni, R., Bustan, D., Kupferman, O. and Vardi, M. Y. (2003). Resets vs.
aborts in linear temporal logic. vol. 2619 of Lecture Notes in Computer Science.
Springer-Verlag.

Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T.,
Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi,

M. Y. and Zbar, Y. (2002). The ForSpec temporal logic: A new temporal
property-specification language. In Tools and Algorithms for Construction and
Analysis of Systems (J.-P. Katoen and P. Stevens, eds.), vol. 2280 of Lecture Notes
in Computer Science. Springer-Verlag.

Avižienis, A. (1967). Design of fault-tolerant computers. In Proceedings of the
AFIPS Fall Joint Computer Conference (D. C. Thompson, ed.), vol. 31. Washing-
ton.

Avižienis, A., Laprie, J.-C. and Randell, B. (2001). Fundamental concepts
of dependability. Tech. Rep. 739, University of Newcastle upon Tyne, School of
Computing Science.

Ball, T. and Rajamani, S. K. (2002). The SLAM project: debugging system
software via static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM Press, New
York, NY, USA.

Baroni, P., Lamperti, G., Pogliano, P. and Zanella, M. (1999). Diagnosis
of large active systems. Artificial Intelligence, 110 135–183.

Barringer, H., Goldberg, A., Havelund, K. and Sen, K. (2004). Rule-based
runtime verification. In VMCAI (B. Steffen and G. Levi, eds.), vol. 2937 of Lecture
Notes in Computer Science. Springer.

Bauer, A. (2004). Creating a portable programming language using open source

Bibliography 163

software. In Proceedings of the USENIX Annual Technical Conference. FREENIX
technical sessions, USENIX Association, Boston, MA.

Bauer, A. (2005). Simplifying diagnosis using LSAT: a propositional approach to
reasoning from first principles. In Proceedings of the 2005 International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems (CP-AI-OR), vol. 3524 of Lecture Notes in Computer
Science. Springer-Verlag.

Bauer, A., Leucker, M. and Schallhart, C. (2006a). Model-based runtime
analysis of distributed reactive systems. In Proceedings of the 2006 Australian
Software Engineering Conference (ASWEC). IEEE Computer Society.

Bauer, A., Leucker, M. and Schallhart, C. (2006b). Monitoring of real-time
properties. In Proceedings of the 26th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS), vol. 4337 of Lecture Notes in
Computer Science. Springer-Verlag.

Bauer, A., Leucker, M. and Streit, J. (2006c). SALT—Structured Assertion
Language for Temporal logic. Tech. Rep. TUM-I0604, Institut für Informatik,
Technische Universität München.

Bauer, A., Leucker, M. and Streit, J. (2006d). SALT—Structured Assertion
Language for Temporal logic. In Proceedings of the Eighth International Conference
on Formal Engineering Methods (ICFEM), vol. 4260 of Lecture Notes in Computer
Science. Springer-Verlag.

Bauer, A., Pister, M. and Tautschnig, M. (2007). Tool-support for the analysis
of hybrid systems and models. In Proceedings of the 2007 Conference on Design,
Automation and Test in Europe (DATE). IEEE Computer Society. Forthcoming.

Bauer, A., Romberg, J. and Schätz, B. (2005). Integrierte Entwicklung von
Automotive-Software mit AutoFocus. Informatik – Forschung und Entwicklung,
19 194–205.

Baumgartner, P., Fröhlich, P., Furbach, U. and Nejdl, W. (1996).
Tableaux for Diagnosis Applications. Tech. Rep. 23–96, Universität Koblenz-
Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz.

Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

164 Bibliography

Beck, K. and Fowler, M. (2000). Planning Extreme Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A. and Rodeh,

Y. (2001). The temporal logic sugar. In Berry et al. [2001], 363–367.

Behrmann, G., Bengtsson, J., David, A., Larsen, K. G., Pettersson, P.

and Yi, W. (2002). Uppaal implementation secrets. In FTRTFT ’02: Proceedings
of the 7th International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems, vol. 2469 of Lecture Notes in Computer Science. Springer-Verlag.

Bengtsson, J. and Yi, W. (2004). Timed automata: Semantics, algorithms and
tools. In In Lecture Notes on Concurrency and Petri Nets (W. Reisig and G. Rozen-
berg, eds.), vol. 3098 of Lecture Notes in Computer Science. Springer-Verlag.

Benveniste, A. (2002). Non-massive, non-high performance, distributed comput-
ing: Selected issues. In Euro-Par ’02: Proceedings of the 8th International Euro-Par
Conference on Parallel Processing. Springer-Verlag, London, UK.

Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P.

and de Simone, R. (2003). The synchronous languages 12 years later. Proceedings
of the IEEE, 91.

Berge, C. (1989). Hypergraphs: Combinatorics of Finite Sets. North Holland,
Amsterdam.

Berry, G. (1999). The constructive semantics of pure Esterel. Draft book (version
3.0).

Berry, G. (2000). Proof, Language and Interaction: Essays in Honour of Robin
Milner, chap. The Foundations of Esterel. MIT Press.

Berry, G., Comon, H. and Finkel, A. (eds.) (2001). Computer Aided Verifica-
tion, 13th International Conference, CAV 2001, Paris, France, July 18-22, 2001,
Proceedings, vol. 2102 of Lecture Notes in Computer Science. Springer.

Beys, P. and Jansen, M. (1999). Automatic reuse of knowledge: A theory. In Pro-
ceedings of the Twelfth Workshop on Knowledge Acquisition, Modeling and Man-
agement. Alberta, Canada.

Biere, A., Cimatti, A., Clarke, E., Strichman, O. and Zhu, Y. (2003).
Advances in Computers, chap. Bounded model checking. Academic Press.

Bibliography 165

Bloem, R., Gabow, H. N. and Somenzi, F. (2000). An algorithm for strongly con-
nected component analysis in n log n symbolic steps. In Proceedings of the Third In-
ternational Conference on Formal Methods in Computer-Aided Design (FMCAD).
Springer-Verlag, London, UK.

Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall, Englewood
Cliffs, New Jersey.

Boehm, B. W. and Papaccio, P. N. (1988). Understanding and controlling soft-
ware costs. IEEE Transactions on Software Engineering, 14 1462–1477.

Booch, G., Rumbaugh, J. and Jacobson, I. (1998). The Unified Modeling Lan-
guage User Guide. Addison-Wesley.

Bouyer, P., Chevalier, F. and D’Souza, D. (2005a). Fault diagnosis using timed
automata. In FoSSaCS (V. Sassone, ed.), vol. 3441 of Lecture Notes in Computer
Science. Springer.

Bouyer, P., Chevalier, F. and Markey, N. (2005b). On the expressiveness of
TPTL and MTL. In Proceedings of the 25th Conference on Fundations of Software
Technology and Theoretical Computer Science (FSTTCS’05) (R. Ramanujam and
S. Sen, eds.), vol. 3821 of Lecture Notes in Computer Science. Springer, Hyderabad,
India.
URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCM-fsttcs05.pdf

Bradfield, J. and Stevens, P. (1998). Observational mu calculus. In Proceedings
of the Workshop on Fixed Points in Computer Science, FICS’98. An extended
version is available as BRICS-RS-99-5.

Bradfield, J. C., Küster Filipe, J. and Stevens, P. (2002). Enriching OCL
using observational mu-calculus. In FASE (R.-D. Kutsche and H. Weber, eds.),
vol. 2306 of Lecture Notes in Computer Science. Springer.

Breitling, M. (2001). Formale Fehlermodellierung für verteilte reaktive Systeme.
Ph.D. thesis, Institut für Informatik der Technischen Universität München.

Broy, M. (1997). Requirements engineering for embedded systems. In Proceedings
of the Workshop on Formaler Entwurf sicherheitskritischer eingebetteter Systeme
(FEmSys).

Broy, M. (1999). Software technology—formal methods and scientific foundations.
Information & Software Technology, 41 947–950.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCM-fsttcs05.pdf

166 Bibliography

Broy, M., Facchi, C., Grosu, R., Hettler, R., Hussmann, H., Nazareth,

D., Slotosch, O., Regensburger, F. and Stølen, K. (1993). The require-
ment and design specification language Spectrum, an informal introduction (V 1.0),
part 1 & 2. Tech. Rep. TUM-I9312, Technische Universität München.

Broy, M., Huber, F. and Schätz, B. (1999). AutoFocus – Ein Werkzeugprototyp
zur Entwicklung eingebetteter Systeme. Informatik – Forschung und Entwicklung
(IFE) 121–134.

Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M. and Pretschner, A.

(eds.) (2005). Model-based Testing of Reactive Systems, vol. 3472 of Lecture Notes
in Computer Science. Springer-Verlag.

Broy, M. and Rausch, A. (2005). Das neue V-Modell XT. Informatik Spektrum,
28 220–229.

Broy, M. and Stølen, K. (2001). Specification and development of interactive
systems: Focus on streams, interfaces, and refinement. Springer-Verlag, New York.

Büchi, J. R. (1962). On a decision method in restricted second order arithmetic.
In Proceedings of the International Congress on Logic, Method, and Philosophy of
Science. Stanford University Press, Stanford, CA, USA.

Büchi, M. and Weck, W. (1999). The greybox approach: When blackbox spec-
ifications hide too much. Tech. Rep. 297, Turku Center for Computer Science.
Http://www.abo.fi/˜mbuechi/publications/TR297.html.

Burns, A. and Wellings, A. J. (2001). Real-Time Systems and Programming
Languages: ADA 95, Real-Time Java, and Real-Time POSIX. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Bylander, T., Allemang, D., Tanner, M. C. and Josephson, J. R. (1991).
The computational complexity of abduction. Artificial Intelligence, 49 25–60.

Carter, W. C. (1979). Fault detection and recovery algorithms for fault-tolerant
systems. In Proceedings of the EURO IFIP’79 conference.

Cassandras, C. (1993). Discrete Event Systems, Modeling and Performance Anal-
ysis. Irwin, Homewood, IL.

Chong, E. K. P. (2000). Discrete-event systems and their optimization. In Per-
spectives in Control Engineering: Technologies, Applications, and New Directions
(T. Samad, ed.). IEEE Press.

Bibliography 167

Chow, E. Y. and Willsky, A. S. (1984). Analytical redundancy and the design
of robust failure detection systems. IEEE Transactions on Automatic Control, 7
603–614.

Cimatti, A., Roveri, M. and Sheridan, D. (2004). Bounded verification of past
LTL. In Formal Methods in Computer-Aided Design; 5th International Conference,
FMCAD 2004 (A. J. Hu and A. K. Martin, eds.). Lecture Notes in Computer
Science, Springer Verlag, Austin, TX, USA.

Clarke, E., Kroening, D., Ouaknine, J. and Strichman, O. (2004). The
completeness threshold for bounded model checking.

Clarke, E. M. and Emerson, E. A. (1982). Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Programs, Work-
shop. Springer-Verlag, London, UK.

Clarke, E. M., Grumberg, O. and Peled, D. A. (1999). Model Checking. The
MIT Press, Cambridge, Massachusetts.

Clarke, E. M. and Schlingloff, H. (2001). Model checking. In Handbook of Au-
tomated Reasoning (A. Robinson and A. Voronkov, eds.), vol. II, chap. 24. Elsevier
Science, 1635–1790.

Clarke, E. M., Wing, J. M., Alur, R., Cleaveland, R., Dill, D., Emer-

son, A., Garland, S., German, S., Guttag, J., Hall, A., Henzinger,

T., Holzmann, G., Jones, C., Kurshan, R., Leveson, N., McMillan, K.,
Moore, J., Peled, D., Pnueli, A., Rushby, J., Shankar, N., Sifakis, J.,
Sistla, P., Steffen, B., Wolper, P., Woodcock, J. and Zave, P. (1996).
Formal methods: state of the art and future directions. ACM Computing Surveys,
28 626–643.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,

J. and Talcott, C. (2003). The Maude 2.0 system. In Rewriting Techniques
and Applications (RTA 2003) (R. Nieuwenhuis, ed.). No. 2706 in Lecture Notes in
Computer Science, Springer-Verlag.

Clocksin, W. F. and Mellish, C. S. (1987). Programming in Prolog. 3rd ed.
Springer-Verlag.

Colmerauer, A. and Roussel, P. (1993). The birth of prolog. In HOPL Preprints.

Console, L., Portinale, L. and Dupré, D. T. (1991). Focussing abductive
diagnosis. AI Commun., 4 88–97.

168 Bibliography

Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC ’71:
Proceedings of the third annual ACM symposium on Theory of computing. ACM
Press, New York, NY, USA.

Cook, S. A. and Mitchell, D. G. (1997). Finding hard instances of the sat-
isfiability problem: A survey. In Satisfiability Problem: Theory and Applications
(Du, Gu and Pardalos, eds.), vol. 35 of Dimacs Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1–17.

Corbett, J., Dwyer, M., Hatcliff, J. and Robby (2001). Expressing checkable
properties of dynamic systems: The Bandera specification language. Tech. Rep. 04,
Kansas State University, Department of Computing and Informatio Sciences.

Cordier, M. O., Dague, P., Dumas, M., Levy, F., Montmain, J.,
Staroswiecki, M. and Trave-Massuyes, L. (2000). AI and automatic con-
trol approaches of model-based diagnosis: Links and underlying hypotheses. In
Proceedings of the IFAC Symposium SAFEPROCESS 2000. Budapest, Hungary.

Dahl, O.-J., Dijkstra, E. W. and Hoare, C. A. R. (1972). Structured Pro-
gramming. Academic Press, London, UK.

d’Amorim, M. and Rosu, G. (2005). Efficient monitoring of omega-languages.
In CAV (K. Etessami and S. K. Rajamani, eds.), vol. 3576 of Lecture Notes in
Computer Science. Springer.

Davis, M., Logemann, G. and Loveland, D. (1962). A machine program for
theorem-proving. Communications of the ACM, 5 394–397.

Davis, M. and Putnam, H. (1960). A computing procedure for quantification
theory. Journal of the ACM, 7 201–215.

de Kleer, J. (1986). Problem solving with the ATMS. Artificial Intelligence, 28
197–224.

de Kleer, J. and Kurien, J. (2003). Fundamentals of model-based diagno-
sis. In International Federation of Automatic Control (IFAC): Safeprocess 2003
(M. Staroswiecki, ed.). Washington.

de Kleer, J. and Williams, B. C. (1987). Diagnosing multiple faults. Artificial
Intelligence, 32 97–130.

de Kleer, J. and Williams, B. C. (1992). Diagnosis with behavioral modes
124–130.

Bibliography 169

Delgado Kloos, C. and Damm, W. (eds.) (1997). Practical Formal Methods for
Hardware Design. Esprit Project 6128: Format, Vol 1. Research Reports Esprit.

Deur, J., Pavković, D., Jansz, M. and Perić, N. (2003). Automatic tuning of
electronic throttle control strategy. In Proceedings of 2003 Mediterranean Confer-
ence on Control and Automation (MED 2003). IEEE Computer Society, Rhodes,
Greece.

Dewhurst, S. (2002). C++ Gotchas: Avoiding Common Problems in Coding and
Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Dill, D. L. (1989). Timing assumptions and verification of finite-state concurrent
systems. In Automatic Verification Methods for Finite State Systems (J. Sifakis,
ed.), vol. 407 of Lecture Notes in Computer Science. Springer-Verlag.

Dill, D. L. and Rushby, J. (1996). Acceptance of formal methods: Lessons from
hardware design. IEEE Computer, 29 23–24.

Dröschel, W. and Wiemers, M. (2000). Das V-Modell 97. Oldenbourg.

Drusinsky, D. (2000). The temporal rover and the ATG rover. In SPIN.
URL citeseer.ist.psu.edu/drusinsky00temporal.html

D’Souza, D. (2003). A logical characterisation of event clock automata. Interna-
tional Journal of Foundations of Computer Science (IJFCS), 14 625–639.

Dustin, E., Rashka, J. and Paul, J. (1999). Automated software testing. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Dwyer, M. B., Avrunin, G. S. and Corbett, J. C. (1999). Patterns in property
specifications for finite-state verification. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering. IEEE Computer Society Press,
Los Alamitos, CA, USA.

Ebeling, C. E. (1997). An Introduction to Reliability and Maintainability Engi-
neering. McGraw-Hill Companies, Inc.

Edwards, S., Lavagno, L., Lee, E. A. and Sangiovanni-Vincentelli, A.

(1997). Design of embedded systems: Formal models, validation, and synthesis.
Proceedings of the IEEE, 85 366–390.

Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A. and Camp-

enhout, D. V. (2003). Reasoning with temporal logic on truncated paths. In

citeseer.ist.psu.edu/drusinsky00temporal.html

170 Bibliography

CAV (W. A. H. Jr. and F. Somenzi, eds.), vol. 2725 of Lecture Notes in Computer
Science. Springer.

Eiter, T. and Gottlob, G. (1995). Identifying the minimal transversals of a
hypergraph and related problems. SIAM J. Comput., 24 1278–1304.

Emerson, E. A. and Clarke, E. M. (1980). Characterizing correctness proper-
ties of parallel programs using fixpoints. In Proceedings of the 7th Colloquium on
Automata, Languages and Programming. Springer-Verlag, London, UK.

Emerson, E. A. and Halpern, J. Y. (1982). Decision procedures and expres-
siveness in the temporal logic of branching time. In STOC ’82: Proceedings of
the fourteenth annual ACM symposium on Theory of computing. ACM Press, New
York, NY, USA.

Emerson, E. A. and Lei, C.-L. (1985). Modalities for model checking: Branching
time strikes back. In Conference Record of the Twelfth Annual ACM Symposium
on Principles of Programming Languages. ACM SIGACT-SIGPLAN, ACM Press,
New Orleans, Louisiana. Extended abstract.

Farwer, B. (2001). Omega-automata. In Automata, Logics, and Infinite Games
(E. Grädel, W. Thomas and T. Wilke, eds.), vol. 2500 of Lecture Notes in Computer
Science. Springer.

Finkel, O. (2003). Borel hierarchy and omega context free languages. Theor.
Comput. Sci., 290 1385–1405.

Finkel, O. and Simonnet, P. (2003). Topology and ambiguity in omega context
free languages. Bulletin of the Belgian Mathematical Society, 10 707–722.

Fisher, M. (1991). A resolution method for temporal logic. In Proceedings of
the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91).
Sydney, Australia.

Fitting, M. (1996). First-Order Logic and Automated Theorem Proving. 2nd ed.
Springer-Verlag.

Flach, P. (1994). Simply Logical: intelligent reasoning by example. John Wiley &
Sons Ltd., Sussex, UK.

Foster, H., Marschner, E. and Wolfsthal, Y. (2005). IEEE 1850 PSL: The
next generation. In DVCon.

Bibliography 171

France, R., Evans, A., Lano, K. and Rumpe, B. (1998). The UML as a formal
modeling notation. Comput. Stand. Interfaces, 19 325–334.

Free Software Foundation (1991). GNU General Public License.
http://www.fsf.org/licenses/gpl.html, Free Software Foundation, Inc., Cam-
bridge, Massachusetts.

Fritz, C. (2003). Constructing Büchi automata from linear temporal logic using
simulation relations for alternating büchi automata. In CIAA (O. H. Ibarra and
Z. Dang, eds.), vol. 2759 of Lecture Notes in Computer Science. Springer.

Gabbay, D. M. (1989). The declarative past and imperative future: Executable
temporal logic for interactive systems. In Temporal Logic in Specification. Springer-
Verlag.

Gabbay, D. M., Hogger, C. J., Robinson, J. A. and Siekmann, J. H. (eds.)
(1994). Handbook of Logic in Artificial Intelligence and Logic Programming, Vol-
ume2, Deduction Methodologies. Oxford University Press.

Gallo, G. and Scutella, M. G. (1988). Polynomially solvable satisfiability prob-
lems. Inf. Process. Lett., 29 221–227.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

Gärtner, F. C. (2001). Formale Grundlagen der Fehlertoleranz in verteilten Sys-
temen. Ph.D. thesis.

Gastin, P. and Oddoux, D. (2001). Fast ltl to büchi automata translation. In
CAV ’01: Proceedings of the 13th International Conference on Computer Aided
Verification. Springer-Verlag, London, UK.

Geilen, M. (2001). On the construction of monitors for temporal logic properties.
Electr. Notes Theor. Comput. Sci., 55.

Gerdsmeier, T., Ladkin, P. B. and Loer, K. (1997). Formalising failure analysis.
Tech. Rep. RVS-Occ-97-06, Bielefeld University, Faculty of Technology.

Giannakopoulou, D. and Havelund, K. (2001). Runtime analysis of linear tem-
poral logic specifications. Tech. Rep. 01.21, RIACS/USRA.

Gilb, T. (1988). The pre-natal death of the cis project: A software disaster story.
Journal of Systems and Software, 8 161–163.

http://www.fsf.org/licenses/gpl.html

172 Bibliography

Greenwell, W. and Knight, J. C. (2003). What should aviation safety incidents
teach us? Tech. Rep. CS-2003-12, University of Virginia, Department of Computer
Science.

Gries, D. (1982). A note on the standard strategy for developing loop invariants
and loops. Tech. rep., Ithaca, NY, USA.

Gunter, D., Tierney, B., Jackson, K. R., Lee, J. and Stoufer, M. (2002).
Dynamic monitoring of high-performance distributed applications. In HPDC. IEEE
Computer Society.

Håkansson, J., Jonsson, B. and Lundqvist, O. (2003). Generating online test
oracles from temporal logic specifications. Journal on Software Tools for Technology
Transfer, 4 456–471.

Halbwachs, N., Caspi, P., Raymond, P. and Pilaud, D. (1991). The syn-
chronous data-flow programming language LUSTRE. Proceedings of the IEEE, 79
1305–1320.

Halbwachs, N., Lagnier, F. and Raymond, P. (1994). Synchronous observers
and the verification of reactive systems. In AMAST ’93: Proceedings of the
Third International Conference on Methodology and Software Technology. Springer-
Verlag, London, UK.

Harel, D. and Pnueli, A. (1985). On the development of reactive systems. In
Logics and models of concurrent systems. Springer, New York, NY, USA, 477–498.

Harrison, J. (TBA). Introduction to logic and automated theorem proving. Cam-
bridge University Press, Cambridge, UK.

Havelund, K. (1999). Java pathfinder, a translator from java to promela. In
Proceedings of the 5th and 6th International SPIN Workshops on Theoretical and
Practical Aspects of SPIN Model Checking. Springer-Verlag, London, UK.

Havelund, K. (2000). Using runtime analysis to guide model checking of java
programs. In Proceedings of the 7th International SPIN Workshop on SPIN Model
Checking and Software Verification. Springer-Verlag, London, UK.

Havelund, K. and Goldberg, A. (2005). Verify your runs. In Proceedings of
the Grand Verification Challenge Workshop ’Verified Software: Theories, Tools,
Experiments’. Zürich, Switzerland.

Bibliography 173

Havelund, K. and Rosu, G. (2001a). Monitoring Java Programs with Java PathEx-
plorer. Electronic Notes in Theoretical Computer Science, 55.

Havelund, K. and Rosu, G. (2001b). Monitoring programs using rewriting. In
ASE ’01: Proceedings of the 16th IEEE international conference on Automated
software engineering. IEEE Computer Society, Washington, DC, USA.

Havelund, K. and Rosu, G. (2002). Synthesizing Monitors for Safety Properties.
In Tools and Algorithms for Construction and Analysis of Systems.

Havelund, K. and Rosu, G. (2004). Efficient monitoring of safety properties.
Journal on Software Tools for Technology Transfer.

Heinecke, H. (2005). Automotive system design - challenges and potential. In
DATE. IEEE Computer Society.

Heinecke, H., Schnelle, K.-P., Bortolazzi, J., Lundh, L., Leflour, J.,
Mate, J.-L., Nishikawa, K. and Scharnhorst, T. (2004). AUTomotive Open
System ARchitecture—An industry-wide initiative to manage the complexity of
emerging automotive E/E-architectures. In Proceedings of the SAE 2004 World
Congress. Society of Automotive Engineers, Detroit, MI.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commu-
nications of the ACM, 12 576–580.

Holzmann, G. J. (1991). Design and validation of computer protocols. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages and Computation. 1st ed. Addison-Wesley.

Huber, F., Schätz, B., Schmidt, A. and Spies, K. (1996). AutoFocus: A
Tool for Distributed Systems Specification. In Proceedings FTRTFT’96—Formal
Techniques in Real-Time and Fault-Tolerant Systems.

IEEE (1995). IEEE 1003.1c-1995: Information Technology — Portable Operating
System Interface (POSIX) - System Application Program Interface (API) Amend-
ment 2: Threads Extension (C Language).
URL http://www.ansi.org/

International Federation For Information Processing (1994). Depend-
ability: Basic concepts and terminology. Tech. rep.

http://www.ansi.org/

174 Bibliography

Janssen, G. L. J. M. (1989). Hardware verification using temporal logic: A practi-
cal view. In Proceedings of the International Workshop on Applied Formal Methods
for correct VLSI Design. Leuwen.

Jones, C. (1998). Estimating Software Costs. McGraw-Hill, New York.

Kamp, J. A. W. (1968). Tense Logic and the Theory of Linear Order. Ph.D. thesis,
University of California, Los Angeles.

Khachiyan, L., Boros, E., Elbassioni, K. M. and Gurvich, V. (2005). A new
algorithm for the hypergraph transversal problem. In Proceedings of the Eleventh
International Computing and Combinatorics Conference (L. Wang, ed.), vol. 3595
of Lecture Notes in Computer Science. Springer.

Kleene, S. C. (1956). Representation of events in nerve nets and finite automata.
In Automata Studies (C. E. Shannon and J. McCarthy, eds.). Princeton University
Press, Princeton, New Jersey, 3–41.

Knight, J. C. (2002). Software challenges in aviation systems. In Proceedings
of the 21st International Conference on Computer Safety, Reliability and Security
(SAFECOMP), vol. 2434 of Lecture Notes in Computer Science. Springer-Verlag,
London, UK.

Knuth, D. E. (1998). The Art of Computer Programming: Sorting and Searching,
vol. 3. 2nd ed. Addison-Wesley.

Köhl, S., Stroop, J., Riedesser, P. and Peller, M. (2005). Testing FlexRay
ECUs with a hardware-in-the-loop simulator. VDI – Mess- und Versuchstechnik
in der Fahrzeugentwicklung.

Kowalski, R. and Hayes, P. J. (1969). Semantic trees in automatic theorem
proving. In Machine Intelligence, vol. 4. Edinburgh University Press, 87–101.

Kozen, D. (1990). On kleene algebras and closed semirings. In MFCS ’90: Proceed-
ings of the Mathematical Foundations of Computer Science 1990. Springer-Verlag,
London, UK.

Kristoffersen, K. J., Pedersen, C. and Andersen, H. R. (2003). Runtime
verification of timed LTL using disjunctive normalized equation systems. Electronic
Notes in Theoretical Computer Science, 89.

Kupferman, O. and Vardi, M. Y. (2001). Model checking of safety properties.
Form. Methods Syst. Des., 19 291–314.

Bibliography 175

Ladkin, P. (1997). The success and failure of complex artifacts. Tech. Rep. RVS-
Bk-01, Bielefeld University, Faculty of Technology.

Lamport, L. (1977). Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3 125–143.

Lamport, L. (1983). What good is temporal logic? In Proceedings of the IFIP 9th
World Computer Congress (R. E. A. Mason, ed.). North-Holland/IFIP.

Laprie, J.-C. (ed.) (1992). Dependability: Basic concepts and Terminology, vol. 5
of Dependable Computing and Fault-Tolerant Systems. Springer-Verlag.

Latvala, T. (2002). On model checking safety properties. Research Report A76,
Helsinki University of Technology, Laboratory for Theoretical Computer Science,
Espoo, Finland.

Laurent, O., Michel, P. and Wiels, V. (2001). Using formal verification tech-
niques to reduce simulation and test effort. In FME ’01: Proceedings of the Inter-
national Symposium of Formal Methods Europe on Formal Methods for Increasing
Software Productivity. Springer-Verlag, London, UK.

Lebow, C. C., Sarsfield, L. P., Stanley, W., Ettedgui, E. and Hen-

ning, G. (2000). Safety in the skies: Personnel and Parties in NTSB
Aviation Accident Investigations. No. MR-1122-ICJ in Monographs/Reports,
RAND Institute for Civil Justice, Santa Monica, CA. Accessed through:
http://www.rand.org/pubs/monograph reports/MR1122/.

Lee, P. A. and Anderson, T. (1990). Fault Tolerance: Principles and Practice.
2nd ed. Dependable computing and fault-tolerant systems, Springer-Verlag, Berlin.

Lehman, M. M. (2005). The role and impact of assumptions in software devel-
opment, maintenance and evolution. In Proceedings of the IEEE International
Workshop on Software Evolvability. IEEE Computer Society.

Lehman, M. M. and Parr, F. N. (1976). Program evolution and its impact on
software engineering. In Proceedings of the International Conference on Software
Engineering (ICSE). ACM.

Leveson, N. G. (2004). The role of software in spacecraft accidents. AIAA Journal
of Spacecraft and Rockets, 41 564–575.

Lichtenstein, O. and Pnueli, A. (1985). Checking that finite state concurrent

http://www.rand.org/pubs/monograph_reports/MR1122/

176 Bibliography

programs satisfy their linear specification. In Proceedings of the Twelfth Annual
ACM Symposium on Principles of Programming Languages. ACM, New York.

Lifschitz, V. (1995). The logic of common sense. ACM Comput. Surv., 27 343–345.

Maciaszek, L. A. (2001). Requirements analysis and system design: developing
information systems with UML. Addison-Wesley Longman Ltd., Essex, UK.

Maler, O., Nickovic, D. and Pnueli, A. (2005). Real time temporal logic: Past,
present, future. In FORMATS (P. Pettersson and W. Yi, eds.), vol. 3829 of Lecture
Notes in Computer Science. Springer-Verlag.

Mann, C. C. (2002). Why software is so bad. MIT Technology Review.

Markey, N. (2003). Temporal logic with past is exponentially more succinct, con-
currency column. Bulletin of the EATCS, 79 122–128.

Mathworks (2000). Using Simulink. The MathWorks Inc.

McCarthy, J. (1987). Applications of circumscription to formalizing common-sense
knowledge 153–166.

McCurdy, H. E. (2001). Faster, better, cheaper. The Johns Hopkins University
Press.

McMillan, K. L. (1992). Symbolic model checking: an approach to the state explo-
sion problem. Ph.D. thesis, Pittsburgh, PA, USA.

McNaughton, R. (1966). Testing and generating infinite sequences by a finite
automaton. Information and Control, 9 521–530.

Michel, M. (1988). Complementation is more difficult with automata on infinite
words. CNET, Paris.

Mikaelian, T., Williams, B. C. and Sachenbacher, M. (2005). Diagnosing
complex systems with software-extended behavior using constraint optimization. In
Proceedings of the 16th International Workshop on Principles of Diagnosis (DX-
05). Monterey, CA.

Möller, M. O. (2002). Structure and hierarchy in real-time systems. Tech. Rep.
DS-02-1, BRICS, Department of Computer Science.

Bibliography 177

Moore, G. E. (1965). Cramming more components onto integrated circuits. Elec-
tronics, 38 114–117.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S.

(2001). Chaff: engineering an efficient sat solver. In DAC ’01: Proceedings of the
38th conference on Design automation. ACM Press, New York, NY, USA.

Musa, J. D., Iannino, A. and Okumoto, K. (1987). Software Reliability: Mea-
surement, Prediction, Application. McGraw-Hill Book Company, Whippany, NJ.

NASA (1996). Ariane 5—flight 501 failure report by the inquiry board. Tech.
rep., National Aeronautics and Space Administration. Accessed through:
ftp://ftp.hq.nasa.gov/.

NASA (1999). Mars climate orbiter mishap investigation board phase I report.
Tech. rep., National Aeronautics and Space Administration. Accessed through:
ftp://ftp.hq.nasa.gov/.

Neumann, P. G. (1995). Computer-Related Risks. Addison Wesley.

Nonnengart, A. and Weidenbach, C. (2001). Computing small clause normal
forms. In Handbook of Automated Reasoning (A. Robinson and A. Voronkov, eds.),
vol. I, chap. 6. Elsevier Science B.V., 335–367.

Nyberg, M. and Krysander, M. (2003). Combining AI, FDI, and statistical
hypothesis-testing in a framework for diagnosis. In Proceedings of IFAC Safepro-
cess’03. Washington, USA.

Ouaknine, J. and Worrell, J. (2005). On the decidability of metric temporal
logic. In Proceedings of the 20th Annual IEEE Symposium on Logic in Computer
Science (LICS’05). IEEE Computer Society, Washington, DC, USA.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley, New
York.

Peyton Jones, S. (2005). Haskell 98 language and libraries. The revised report.
http://www.haskell.org/.

Pham, H. (ed.) (2003). Handbook of Reliability Engineering. Springer-Verlag, Lon-
don, UK.

Pike, L., Miner, P. and Torres, W. (2004). Model checking failed conjectures in
theorem proving: a case study. Tech. Rep. NASA/TM–2004–213278, NASA Lan-

ftp://ftp.hq.nasa.gov/
ftp://ftp.hq.nasa.gov/
http://www.haskell.org/

178 Bibliography

gley Research Center. Available at http://www.cs.indiana.edu/∼lepike/pub

pages/unproven.html.

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS-77). IEEE Computer
Society Press, Providence, Rhode Island.

Pnueli, A. (1986). Applications of temporal logic to the specification and verification
of reactive systems: a survey of current trends. In Current trends in concurrency.
Overviews and tutorials. Springer-Verlag, New York, NY, USA.

Poole, D. (1988). A logical framework for default reasoning. 36 27–47.

Poole, D. (1994a). Default logic. In Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 2: Nonmonotonic Reasoning (D. Gabbay, C. Hogger
and J. Robinson, eds.). Oxford University Press, Oxford.

Poole, D. (1994b). Representing diagnosis knowledge. Ann. Math. Artif. Intell.,
11 33–50.

Poole, D. L. (1989). Normality and Faults in Logic-Based Diagnosis. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence. Detroit.

Powell, D. (1995). Failure mode assumptions and assumption coverage. Tech. Rep.
91462, LAAS/CNRS, Toulouse, France.

Pretschner, A. (2003). Zum modellbasierten funktionalen Test reaktiver Systeme.
Ph.D. thesis, Institut für Informatik der Technischen Universtität München.

Procter, P. (ed.) (1995). Longman Dictionary of Contemporary English. Longman
Group Ltd, Harlow.

Queille, J. and Sifakis, J. (1982). Specification and verification of concurrent
systems in CESAR. In Proceedings of the Fifth International Symposium in Pro-
gramming, vol. 137 of Lecture Notes in Computer Science. Springer-Verlag, New
York.

Raskin, J.-F. (1999). Logics, automata and classical theories for deciding real time.

Raskin, J.-F. and Schobbens, P.-Y. (1997). State clock logic: A decidable real-
time logic. In HART (O. Maler, ed.), vol. 1201 of Lecture Notes in Computer
Science. Springer.

http://www.cs.indiana.edu/~lepike/pub_pages/unproven.html

Bibliography 179

Raskin, J.-F. and Schobbens, P.-Y. (1999). The logic of event clocks—
decidability, complexity and expressiveness. Journal of Automata, Languages, and
Combinatorics, 4 247–286.

Reiter, R. (1977). On closed world data bases. In Logic and Data Bases.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13 81–132.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence,
32 57–95.

Reiter, R. and de Kleer, J. (1987). Foundations of assumption-based truth
maintenance systems. In Proceedings of the 6th National Conference on Artificial
Intelligence (AAAI-87), vol. 1. MIT Press.

Romberg, J. and Bauer, A. (2004). Loose synchronization of event-triggered net-
works for distribution of synchronous programs. In Proceedings of the 4th ACM
International Conference on Embedded Software (EMSOFT). Association for Com-
puting Machinery, New York, NY.

Roth, D. (1996). On the hardness of approximate reasoning. Artif. Intell., 82
273–302.

Rushby, J. (1993). Formal methods and the certification of critical systems. Tech.
Rep. SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park,
CA. Also issued under the title ”Formal Methods and Digital Systems Validation
for Airborne Systems” as NASA Contractor Report 4551, December 1993.

Safra, S. (1988). On the complexity of omega-automata. In Proceedings of the
29th Annual Symposium on Foundations of Computer Science, FoCS’88. IEEE
Computer Society Press, Los Alamitos, California.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K. and
Teneketzis, D. (1994). Failure diagnosis using discrete event models. In Pro-
ceedings of 33rd IEEE Conference on Decision and Control. IEEE, New York, NY.

Samulowitz, H. and Bacchus, F. (2005). Using SAT in QBF. In CP (P. van
Beek, ed.), vol. 3709 of Lecture Notes in Computer Science. Springer.

Sarsfield, L. P., Stanley, W., Lebow, C. C., Ettedgui, E. and Henning,

G. (2000). Safety in the skies: Personnel and Parties in NTSB Aviation Ac-
cident Investigations—Master Volume. No. MR-1122/1-ICJ in Monographs/Re-

180 Bibliography

ports, RAND Institute for Civil Justice, Santa Monica, CA. Accessed through:
http://www.rand.org/pubs/monograph reports/MR1122.1/.

Schätz, B., Fleischmann, A., Geisberger, E. and Pister, M. (2005). Model-
based requirements engineering with AutoRAID. In GI Jahrestagung (2) (A. B.
Cremers, R. Manthey, P. Martini and V. Steinhage, eds.), vol. 68 of LNI. GI.

Schneider, F. B. (1987). Decomposing properties into safety and liveness using
predicate logic. Tech. Rep. 87-874, Cornell University Computer Science Depart-
ment.

Schnoebelen, P. (2002). The complexity of temporal logic model checking. In Ad-
vances in Modal Logic (P. Balbiani, N.-Y. Suzuki, F. Wolter and M. Zakharyaschev,
eds.). King’s College Publications.

Schumann, A., Pencolé, Y. and Thiébaux, S. (2004). Diagnosis of discrete-event
systems using binary decision diagrams. In Proceedings of the Fifteenth Interna-
tional Workshop on Principles of Diagnosis (DX’04).

Sheridan, D. (2002). Using fixpoint characterisations of LTL for bounded model
checking. Tech. Rep. APES-41-2002, APES Research Group.

Sistla, A. P. (1994). Safety, liveness and fairness in temporal logic. Formal Asp.
Comput., 6 495–512.

Sterman, J. D. (2002). All models are wrong: Reflections on becoming a systems
scientist. System Dynamics Review, 18 500–531.

Streit, J. (2006). Development of a programming-language-like temporal logic spec-
ification language. Master’s thesis, Institut für Informatik, Technische Universität
München, Germany.

Stroustrup, B. (2000). The C++ Programming Language. Special ed. Addison-
Wesley, Boston, MA, USA.

Struss, P. and Heller, U. (2001). G+DE—the generalized diagnosis engine.
In Proceedings of the 12th international workshop on the principles of diagnosis
(DX01).

Struss, P. and Malik, A. (1997). Automated diagnosis of car-subsystems based
on qualitative models. In XPS.

http://www.rand.org/pubs/monograph_reports/MR1122.1/

Bibliography 181

Struss, P. and Price, C. (2003). Model-based systems in the automotive industry.
AI Magazine, 24 17–34.

Thomas, W. (1990). Automata on infinite objects. In Handbook of Theoretical
Computer Science (J. van Leeuwen, ed.), vol. B, chap. 4. Elsevier Science Publishers
B. V., 133–191.

Thompson, K. (1968). Regular expression search algorithm. Communications of
the ACM, 11 419–422.

Tripakis, S. and Yovine, S. (2001). Analysis of timed systems using time-
abstracting bisimulations. Formal Methods in System Design, 18 25–68.

Tuerk, T. and Schneider, K. (2005). From PSL to LTL: A formal validation in
HOL. In TPHOLs (J. Hurd and T. F. Melham, eds.), vol. 3603 of Lecture Notes
in Computer Science. Springer.

Turing, A. M. (1936). On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2,
42 230–265.

Vadhan, S. P. (2001). The complexity of counting in sparse, regular, and planar
graphs. SIAM J. Compu., 31 398–427.

Valiant, L. G. (1979). The complexity of computing the permanent. Theor. Com-
put. Sci., 8 189–201.

Varchmin, J.-U. (ed.) (2005). Diagnose von E/E-Systemen im Automobil. EuroFo-
rum, Düsseldorf, Germany.

Vardi, M. Y. and Wolper, P. (1986). An automata-theoretic approach to
automatic program verification. In Symposium on Logic in Computer Science
(LICS’86). IEEE Computer Society Press, Washington, D.C., USA.

Wadler, P. (1992). The essence of functional programming. In POPL ’92: Proceed-
ings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. ACM Press, New York, NY, USA.

Warmer, J. and Kleppe, A. (1998). The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley.

Westhead, M. and Nadjm-Tehrani, S. (1996). Verification of embedded systems
using synchronous observers. In FTRTFT ’96: Proceedings of the 4th Interna-

182 Bibliography

tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems.
Springer-Verlag, London, UK.

Zeller, A. (2005). Why programs fail—A guide to systematic debugging. Morgan
Kaufmann.

Zhang, H. (1997). Sato: An efficient propositional prover. In CADE-14: Proceedings
of the 14th International Conference on Automated Deduction. Springer-Verlag,
London, UK.

Appendix A

SALT translation schema

This appendix, which resembles in parts the one presented by Streit [2006], describes
how the Salt language (§3.3) is translated into LTL and TLTL and thereby defines
the formal semantics of Salt.

The translation of past operators is left out for brevity, unless stated otherwise. It
follows the same schema as the translation of the future operators. The translation
of timed operators is described in section A.6. The other sections of this appendix
refer to untimed Salt.

The translation is done in several phases:

• Expansion of user-defined macros.

• Replacement of non-core Salt operators. Several Salt operators are replaced
by expressions made out of a small set of core operators.

• Translation of core Salt into Rltl. The Salt operators are replaced by Rltl

expressions. Rltl includes all LTL operators as well as the acc and rej op-
erators (corresponding to the Salt exception operators accepton and rejecton)
and the exclusive and inclusive stop operators for future and past (introduced
during the translation of upto and between).

• Translation of Rltl into LTL/TLTL. The translation of the Rltl operators
requires weaving their end conditions into the whole sub-expression.

• Optimisation. The LTL/TLTL expression is optimised using a number of opti-
misation patterns.

• LTL/TLTL output. The LTL/TLTL expression is printed in the desired output
syntax. This might require expressing certain operators through others (like Uw

through U). Also, extended TLTL operators may be replaced by pure TLTL.

Each translation step is described in form of a translation function T (ϕ) that is
applied by choosing the first translation that matches the current expression. Trivial
translations that just descend recursively into the arguments of an operator, such as
T (ϕ ∧ ψ) = T (ϕ) ∧ T (ψ), are left out in the following.

183

184 Appendix A: SALT translation schema

The LTL operators used during translation are:

true true
false false
logical negation ¬
logical and ∧
logical or ∨
logical implication ⇒
logical equivalence ⇔

until U
weak until Uw

globally G
eventually F
next X
weak next Xw

since S
back to Sw
historically H
once O
previous Y
weak previous Yw

And for timed expressions additionally:

timed until U∼c

timed weak until Uw∼c

timed globally G∼c

timed eventually F∼c

event predicting ⊲∼c

timed since S∼c

timed weak since Sw∼c

timed historically H∼c

timed once O∼c

event recording ⊳∼c

The Rltl operators used are:

accept acc
reject rej
exclusive stop stopexcl

inclusive stop stopincl

A.1 Replacement of non-core Salt operators

A.1.1 never

T (never ϕ) = ¬FT (ϕ)

A.1.2 releases

T (ϕ releases ψ) = T (ψ until incl weak ϕ)

A.1.3 nextn

T (nextn[=n]ϕ) =
if n = 0: T (ϕ)
else: XT (nextn[=n− 1]ϕ)

A.1 Replacement of non-core Salt operators 185

T (nextn[n..m]ϕ) = T (nextn[=n](nextn[<=m− n]ϕ))

T (nextn[<=n]ϕ) =
if n = 0: T (ϕ)
else: ϕ ∨ XT (nextn[<=n− 1]ϕ)

T (nextn[<n]ϕ) = T (nextn[<=n− 1]ϕ)

T (nextn[>=n]ϕ) = T (nextn[=n]Fϕ)

T (nextn[>n]ϕ) = T (nextn[>=n+ 1]ϕ)

A.1.4 occurring

T (occurring[=n]ϕ) =
if n = 0: ¬FT (ϕ)
if n = 1: ¬T (ϕ) U (T (ϕ) ∧ ((T (ϕ) Uw ¬FT (ϕ)))1

else: ¬T (ϕ) U (T (ϕ) ∧ (T (ϕ) U (¬T (ϕ)∧
T (occurring[=n− 1]ϕ))))

T (occurring[n..m]ϕ) =
if n = 0: T (occurring[<=m]ϕ)
if n = 1: ¬T (ϕ) U (T (ϕ) ∧ (T (ϕ) Uw (¬T (ϕ)∧

T (occurring[<=m− 1]ϕ))))1

else: ¬T (ϕ) U (T (ϕ) ∧ (T (ϕ) U (¬T (ϕ)∧
T (occurring[n− 1..m− 1]ϕ))))

T (occurring[<=n]ϕ) = ¬T (occurring[>=n+ 1]ϕ)

T (occurring[<n]ϕ) = ¬T (occurring[>=n]ϕ)

T (occurring[>=n]ϕ) =
if n = 0: true
if n = 1: FT (ϕ)
else: F(T (ϕ) ∧ (F(¬T (ϕ)∧

T (occurring[>=n− 1]ϕ))))

T (occurring[>n]ϕ) = T (occurring[>=n+ 1]ϕ)

A.1.5 holding

1Notice that the last occurrence of ϕ may last forever.

186 Appendix A: SALT translation schema

T (holding[=n]ϕ) =
if n = 0: ¬FT (ϕ)
if n = 1: ¬T (ϕ) U (T (ϕ) ∧ Xw¬FT (ϕ)))2

else: ¬T (ϕ) U (T (ϕ) ∧ XT (holding[=n− 1]ϕ))

T (holding[n..m]ϕ) =
if n = 0: T (holding[<=m]ϕ)
if n = 1: ¬T (ϕ) U (T (ϕ)∧

XwT (holding[<=m− 1]ϕ))2

else: ¬T (ϕ) U (T (ϕ)∧
XT (holding[n− 1..m− 1]ϕ))

T (holding[<=n]ϕ) = ¬T (holding[>=n+ 1]ϕ)

T (holding[<n]ϕ) = ¬T (holding[>=n]ϕ)

T (holding[>=n]ϕ) =
if n = 0: true
if n = 1: FT (ϕ)2

else: F(T (ϕ) ∧ XT (holding[>=n− 1]ϕ))

T (holding[>n]ϕ) = T (holding[>=n+ 1]ϕ)

A.1.6 Regular expressions, part I

The ? and + repetition operators can be expressed by the more general * operator as
follows:

T (ϕ?) = T (ϕ*[<=1])

T (p+) = T (p*[>=1])

The different variants of the * repetition operator are translated as follows into core
Salt, where only sequences and the *[>=n] repetition operator exist. The empty
sequence is denoted by ε.

T (ϕ*[=n]) =
if n = 0: ε

if n = 1: T (ϕ)
else: T (ϕ;ϕ*[=n− 1])

T (ϕ[n..m]) =
if n = 0: T (ϕ*[<=m])

2A special case for n = 1 is required for situations where there is no next state, because either a
surrounding upto ended or because we reached time zero in the past. In these situations, even
Xtrue would be false, although the conditions for the holding operator have been fulfilled.

A.2 Translation of core Salt into Rltl 187

else: T (ϕ*[=n− 1];ϕ*[<=m− n];ϕ)3

T (ϕ*[<=n]) =
if n = 0: ε

else: ε ∨ T (

n
︷ ︸︸ ︷

ϕ ∨ ϕ;(ϕ ∨ ϕ;(. . .)))4

T (ϕ*[<n]) = T (ϕ*[<=n− 1])

T (p*[>n]) = T (p*[>=n+ 1])

A.1.7 Iteration operators

The iteration operators are translated as follows:

T (allof list) =
∧

ϕ∈list

T (ϕ)

T (noneof list) = ¬
∨

ϕ∈list

T (ϕ)

T (someof list) =
∨

ϕ∈list

T (ϕ)

T (exactlyoneof list) =
∨

ϕ∈list

(T (ϕ) ∧ ¬
∨

ψ∈list,ψ 6=ϕ

T (ψ))

A.2 Translation of core Salt into Rltl

A.2.1 until

T (ϕ until excl req ψ) = T (ϕ) U T (ψ)

T (ϕ until excl opt ψ) = (FT (ψ)) ⇒ (T (ϕ) U T (ψ))

T (ϕ until excl weak ψ) = T (ϕ) Uw T (ψ)

T (ϕ until incl req ψ) = T (ϕ) U (T (ϕ) ∧ T (ψ))

T (ϕ until incl opt ψ) = (FT (ψ)) ⇒ (T (ϕ) U (T (ϕ) ∧ T (ψ)))

T (ϕ until incl weak ψ) = T (ϕ) Uw (T (ϕ) ∧ T (ψ))

A.2.2 upto

3The trailing ϕ is necessary for correct translation when followed by a : sequence operator.
4The schema used here repeats ϕ less times than the straightforward translation
ϕ*[=. . .]∨ϕ*[=. . .]∨

188 Appendix A: SALT translation schema

T (ϕ upto excl req b) =
if T (ϕ) = Gψ: (ψ stopexcl b) U b

if T (ϕ) = ¬Fψ: (¬ψ stopexcl b) U b

else: (Fb) ∧ (T (ϕ) stopexcl b)
5

T (ϕ upto excl opt b) =
if T (ϕ) = Fψ: ¬((¬ψ stopexcl b) U b)
else: (Fb) ⇒ (T (ϕ) stopexcl b)

5

T (ϕ upto excl weak b) = (T (ϕ) stopexcl b)

T (req ϕ upto excl req b) =
if T (ϕ) = Gψ: ¬b ∧ ((ψ stopexcl b) U b)
if T (ϕ) = ¬Fψ: ¬b ∧ ((¬ψ stopexcl b) U b)
else: (Fb) ∧ ¬b ∧ (T (ϕ) stopexcl b)

5

T (req ϕ upto excl opt b) =
if T (ϕ) = Fψ: ¬((¬ψ stopexcl b) U b)
else: (Fb) ⇒ (¬b ∧ (T (ϕ) stopexcl b))

5

T (req ϕ upto excl weak b) = ¬b ∧ (T (ϕ) stopexcl b)

T (weak ϕ upto excl req b) =
if T (ϕ) = Gψ: (ψ stopexcl b) U b

if T (ϕ) = ¬Fψ: (¬ψ stopexcl b) U b

else: (Fb) ∧ (b ∨ (T (ϕ) stopexcl b))
5

T (weak ϕ upto excl opt b) =
if T (ϕ) = Fψ: b ∨ ¬((¬ψ stopexcl b) U b)
else: (Fb) ⇒ (b ∨ (T (ϕ) stopexcl b))

5

T (weak ϕ upto excl weak b) = b ∨ (T (ϕ) stopexcl b)

T (ϕ upto incl req b) = (Fb) ∧ (T (ϕ) stopincl b)

T (ϕ upto incl opt b) = (Fb) ⇒ (T (ϕ) stopincl b)

T (ϕ upto incl weak b) =
if T (ϕ) = Gψ: ¬(¬b U ¬(ψ stopincl b))
if T (ϕ) = ¬Fψ: ¬(¬b U (ψ stopincl b))
else: (T (ϕ) stopincl b)

5

A.2.3 from

T (ϕ from incl req a) = (¬a) U (a ∧ T (ϕ))

5The specialised translations exist only for optimisation reasons.

A.2 Translation of core Salt into Rltl 189

T (ϕ from incl opt a) =
if T (ϕ) = Gψ: G(a⇒ Gψ)
if T (ϕ) = ¬Fψ: G(a⇒ ¬Fψ)
else: (¬a) Uw (a ∧ T (ϕ))6

T (ϕ from excl req a) = (¬a) U (a ∧ XT (ϕ))

T (ϕ from excl opt a) = (¬a) Uw (a ∧ XT (ϕ))

A.2.4 between

T (ϕ between a, b) = T ((ϕ upto b)from a)

A.2.5 Exception operators

T (ϕ accepton b) = T (ϕ) acc b

T (ϕ rejecton b) = T (ϕ) rej b

A.2.6 Regular expressions, part II

The *[>=n] repetition operator is translated as follows. Its translation depends on
the next element ψ in the sequence and the sequence operator.

T (p*[>=0];ψ) = p U T (ψ)

T (p*[>=n];ψ) = p U T (
n

︷ ︸︸ ︷
p;p; . . . ;p; ψ)

T (p*[>=0]:ψ) = T (ψ) ∨ T (p*[>=1]:ψ)

T (p*[>=n]:ψ) = p U T (
n

︷ ︸︸ ︷
p;p; . . . ;p: ψ)

For the translation of the sequence operators, we have to define the length of a regular

6The specialised translations exist only for optimisation reasons.

190 Appendix A: SALT translation schema

expression:

|ϕ| :=

|ε| = 0

|p| = 1

|p*[>=n]| = ⊥

|ϕ1;ϕ2| = |ϕ1| + |ϕ2|

|ϕ1:ϕ2| = |ϕ1| + |ϕ2| − 1

The sequence operators are then translated as follows:

T ((ϕ1 ∨ ϕ2);ψ) =

{

if |ϕ1| 6= |ϕ2| : T (ϕ1;ψ) ∨ T (ϕ2;ψ)

else: T ((ϕ1 ∨ ϕ2);ψ)

T (ϕ;ψ) = T (ϕ) ∧ X|ϕ|T (ψ)

T ((ϕ1 ∨ ϕ2):ψ) =

{

if |ϕ1| 6= |ϕ2| : T (ϕ1:ψ) ∨ T (ϕ2:ψ)

else: T ((ϕ1 ∨ ϕ2):ψ)

T (ϕ:ψ) =

{

if ϕ = ε : T (ψ)

else: T (ϕ) ∧ X|ϕ|−1T (ψ)

A.3 Translation of Rltl into LTL

During this step, the rej and acc operators (Rltl equivalents of the Salt exception
operators) as well as the stop operators (introduced during the translation of upto

and between) are replaced by pure LTL expressions. This requires weaving the end
conditions into all sub-expressions of the argument. The innermost operators are
replaced first, so that the translation process does not have to deal explicitly with
nested operators.

A.3.1 acc

T (b acc a) = b ∨ a

T ((¬ϕ) acc a) = ¬T (ϕ rej a)

T ((ϕ ∧ ψ) acc a) = T (ϕ acc a) ∧ T (ψ acc a)

T ((ϕ ∨ ψ) acc a) = T (ϕ acc a) ∨ T (ψ acc a)

T ((ϕ U ψ) acc a) = T (ϕ acc a) U T (ψ acc a)

T ((Xϕ) acc a) = (XT (ϕ acc a)) ∨ a

T ((Gϕ) acc a) = ¬(¬a U ¬T (ϕ acc a))

T ((Fϕ) acc a) = FT (ϕ acc a)

A.3 Translation of Rltl into LTL 191

The translation of ⇒, ⇔, Uw and Xw is done using the corresponding LTL equivalents
in A.5.

A.3.2 rej

T (b rej r) = b ∧ ¬r

T ((¬ϕ) rej r) = ¬T (ϕ acc r)

T ((ϕ ∧ ψ) rej r) = T (ϕ rej r) ∧ T (ψ rej r)

T ((ϕ ∨ ψ) rej r) = T (ϕ rej r) ∨ T (ψ rej r)

T ((ϕ U ψ) rej r) = T (ϕ rej r) U T (ψ rej r)

T ((Xϕ) rej r) = (XT (ϕ rej r)) ∧ ¬r

T ((Gϕ) rej r) = GT (ϕ rej r)

T ((Fϕ) rej a) = ¬r U T (ϕ rej r)

The translation of ⇒, ⇔, Uw and Xw is done using the corresponding LTL equivalents
in A.5.

A.3.3 stopincl

T (b stopincl s) = b

T ((¬ϕ) stopincl s) = ¬T (ϕ stopincl s)

T ((ϕ ∧ ψ) stopincl s) = T (ϕ stopincl s) ∧ T (ψ stopincl s)

T ((ϕ ∨ ψ) stopincl s) = T (ϕ stopincl s) ∨ T (ψ stopincl s)

T ((ϕ U ψ) stopincl s) = (¬s ∧ T (ϕ stopincl s)) U T (ψ stopincl s)

T ((Xϕ) stopincl s) = ¬s ∧ XT (ϕ stopincl s)

T ((Xwϕ) stopincl s) = s ∨ XT (ϕ stopincl s)

T ((Gϕ) stopincl s) = ¬(¬s U ¬T (ϕ stopincl s))

T ((Fϕ) stopincl s) = (¬s) U T (ϕ stopincl s)

T ((ϕ S ψ) stopincl s) = T (ϕ stopincl s) S T (ψ stopincl s)
7

T ((Yϕ) stopincl s) = YT (ϕ stopincl s)
7

192 Appendix A: SALT translation schema

The past stop operators are translated in a similar way as the future stop operators,
but affecting only past operators. The translation of Uw , ⇒ and ⇔ is done using the
corresponding LTL equivalents in A.5.

A.3.4 stopexcl

T (b stopexcl s) = b

T ((¬ϕ) stopexcl s) = ¬T (ϕ stopexcl s)

T ((ϕ ∧ ψ) stopexcl s) = T (ϕ stopexcl s) ∧ T (ψ stopexcl s)

T ((ϕ ∨ ψ) stopexcl s) = T (ϕ stopexcl s) ∨ T (ψ stopexcl s)

T ((ϕ U ψ) stopexcl s) = (¬s ∧ T (ϕ stopexcl s)) U (¬s ∧ T (ψ stopexcl s))

T ((ϕ Uw ψ) stopexcl s) = T (ϕ stopexcl s) Uw (s ∨ T (ψ stopexcl s))

T ((Xϕ) stopexcl s) = X(¬s ∧ T (ϕ stopexcl s))

T ((Xwϕ) stopexcl s) = X(s ∨ T (ϕ stopexcl s))

T ((Gϕ) stopexcl s) = T (ϕ stopexcl s) Uw s

T ((Fϕ) stopexcl s) = (¬s) U (¬s ∧ T (ϕ stopexcl s))

T ((ϕ S ψ) stopexcl s) = T (ϕ stopexcl s) S T (ψ stopexcl s)
7

T ((Yϕ) stopexcl s) = YT (ϕ stopexcl s)
7

The past stop operators are translated in a similar way as the future stop operators,
but affecting only past operators. The translation of ⇒ and ⇔ is done using the
corresponding LTL equivalents in A.5.

A.4 Optimisation

The following equivalences are used for optimisation:

7Notice how the future stop operator affects only future operators and leaves the past operators
unchanged. The past operators not listed here are translated similarly.

A.5 Operator replacement 193

true U ϕ ⇔ Fϕ

¬F¬ϕ ⇔ Gϕ

GGϕ ⇔ Gϕ

FFϕ ⇔ Fϕ

¬ϕ U ϕ ⇔ Fϕ

G(ϕ Uw ψ) ⇔ G(ϕ ∨ ψ)

ϕ Uw (ϕ ∧ ψ) ⇔ ¬(¬ψ U ¬ϕ)

(ϕ ∨ ψ) U ψ ⇔ ϕ U ψ

Furthermore, Boolean operators with constant arguments (e. g., true ∧ a) are elimi-
nated.

A.5 Operator replacement

The following equivalences are used to express certain operators through others if
necessary for the current output syntax.

Gϕ ⇔ ¬(true U ¬ϕ)

Fϕ ⇔ true U ϕ

Xwψ ⇔ ¬X(¬ϕ)

ϕ Uw ψ ⇔

{

if |ψ| ≤ |ϕ|8: ¬(¬ψ U (¬ϕ ∧ ¬ψ))

else: (ϕ U ψ) ∨ Gϕ

¬(¬ϕ U ¬ψ) ⇔ ϕ R ψ

A.6 Translation of timed operators

A.6.1 Timed Salt into timed Rltl

T (next timed[∼ c]ϕ) = ⊲∼cT (ϕ)

T (ϕ until timed[∼ c] ψ) = T (ϕ) U∼c T (ψ)

T (ϕ until timed[∼ c] weak ψ) = T (ϕ) Uw∼c T (ψ)

T (ϕ until timed[∼ c] excl req ψ) = T (ϕ) U∼c T (ψ)

8As a heuristic estimation for the size of a formula, the number of temporal operators in the
formula is used.

194 Appendix A: SALT translation schema

T (ϕ until timed[∼ c] excl opt ψ) = (F∼cT (ψ)) ⇒
(T (ϕ) U∼c T (ψ))

T (ϕ until timed[∼ c] excl weak ψ) = T (ϕ) Uw∼c T (ψ)

T (ϕ until timed[∼ c] incl req ψ) = T (ϕ) U∼c (T (ϕ) ∧ T (ψ))

T (ϕ until timed[∼ c] incl opt ψ) = (F∼cT (ψ)) ⇒ (T (ϕ) U∼c

(T (ϕ) ∧ T (ψ)))

T (ϕ until timed[∼ c] incl weak ψ) = T (ϕ) Uw∼c (T (ϕ) ∧ T (ψ))

T (timed[∼ c] ϕ releases ψ) = T (ψ) Uw∼c (T (ψ) ∧ T (ϕ))

T (always timed[∼ c] ϕ) = G∼cT (ϕ)

T (eventually timed[∼ c] ϕ) = F∼cT (ϕ)

A.6.2 Timed Rltl into extended TLTL

acc (accepton):

T ((⊲∼cϕ) acc a) = a ∨⊲∼cT (ϕ acc a)

T ((ϕ U∼c ψ) acc a) = T (ϕ acc a) U∼c T (ψ acc a)

T ((ϕ Uw∼c ψ) acc a) =

if |ψ| ≤ |ϕ|9: ¬(¬T (ψ acc a) U∼c

(¬T (ϕ acc a) ∧ ¬T (ψ acc a)))

else: (T (ϕ acc a) U∼c T (ψ acc a))∨

¬(¬a U∼c ¬T (ϕ acc a))

T ((G∼cϕ) acc a) = ¬(¬a U∼c ¬T (ϕ acc a))

T ((F∼cϕ) acc a) = F∼cT (ϕ acc a)

rej (rejecton):

T ((⊲∼cϕ) rej r) = ¬r ∧ X(¬r U T (ϕ rej r)) ∧⊲∼cT (ϕ rej r)10

T ((ϕ U∼c ψ) rej r) = T (ϕ rej r) U∼c T (ψ rej r)

9As a heuristic estimation for the size of a formula, the number of temporal operators in the
formula is used.

A.6 Translation of timed operators 195

T ((ϕ Uw∼c ψ) rej r) =

if |ψ| ≤ |ϕ|11: ¬(¬T (ψ rej r) U∼c

(¬T (ϕ rej r) ∧ ¬T (ψ rej r)))

else: (T (ϕ rej r) U∼c T (ψ rej r))∨

G∼cT (ϕ rej r)

T ((G∼cϕ) rej r) = G∼cT (ϕ rej r)

T ((F∼cϕ) rej r) = ¬r U∼c T (ϕ rej r)

stop operators: The stop operators do not influence timed operators, i. e., any
timed operator and its arguments are left unchanged.

A.6.3 Extended TLTL into pure TLTL

T (ϕ U∼c ψ) = (T (ϕ) U T (ψ)) ∧ (T (ψ) ∨⊲∼cT (ψ))

T (ϕ Uw∼c ψ) = (T (ϕ) U T (ψ)) ∨ (T (ϕ) ∧ ¬⊲ ∼c¬T (ϕ))

T (G∼cϕ) = T (ϕ) ∧ ¬(⊲∼c¬T (ϕ))

T (F∼cϕ) = T (ϕ) ∨⊲∼cT (ϕ)

10The X is required because ⊲
∼cϕ is not supposed to match occurrences of ϕ at the current state,

but U would.
11As a heuristic estimation for the size of a formula, the number of temporal operators in the

formula is used.

196 Appendix A: SALT translation schema

Appendix B

Runtime reflection on the web:

Obtaining the files

This appendix gives additional information on how to actually obtain avail-
able implementations of the methods described in this thesis, and points to accom-
panying example use-cases. In particular, this appendix points to the source code
and implementations of an optimising Salt compiler, an interactive web front-end
to Salt, an example implementation, and example use-cases of the different domain-
independent analysis layers that constitute the runtime reflection framework; that is,
monitoring and diagnosis.

B.1 Tools and source code

An optimising compiler for Salt is available free of charge, under an open source li-
cense, namely the GNU General Public License (see Free Software Foundation [1991]),
from the web page depicted in Fig. B.1). Besides extensive documentation on Salt,
its compiler and the according language features, this web page also features an in-
teractive front-end to a remote Salt compiler. That is, users may be testing Salt

without having to install a local copy of the compiler on their machines. The front-
end accepts a Salt specification as textual input and returns a translation of the
specification either in SPIN or SMV syntax (see Fig. B.2).

The layers monitoring and diagnosis of the runtime reflection framework are also
available free of charge, under the same open source license (GPL), from a web page
depicted in Fig. B.3. This web page contains both the source code as well as the exam-
ple outlined previously in §4.4.2, demonstrating the application of runtime reflection
in a real-world C++ application. Moreover, the web page also provides a custom
logging layer, which is written in C++, although runtime reflection as described in
this thesis is not constrained to just one type of logging facility. The logging layer
available on the web page was used to perform the case study described in §4.4.2.

197

198 Appendix B: Runtime reflection on the web: Obtaining the files

Fig. B.1: The Salt web page, http://salt.in.tum.de/.

Fig. B.2: The Salt web interface.

http://salt.in.tum.de/

B.2 CASE-tool integration: SALT in AutoFocus2 199

Fig. B.3: The runtime reflection web page, http://runtime.in.tum.de/.

B.2 CASE-tool integration: SALT in AutoFocus2

Additionally, Salt has been integrated in the freely available CASE-tool AutoFo-

cus2 (see also http://www4.in.tum.de/∼af2/). Note that AutoFocus2 is not
open source, however, free of charge. AutoFocus2 is the successor of AutoFocus

as previously described in §4.1, for instance. Like AutoFocus, AutoFocus2 is
a CASE-tool for the design, development, and testing of distributed embedded sys-
tems. It provides a number of graphical notations that are visually similar to the
UML-notation, and allows model simulation as well as code generation for various
target languages (e. g., Java, C, Ada). Moreover, AutoFocus2 designs can be ver-
ified using external model checkers, such as SMV. For this purpose, AutoFocus2

performs a number of predefined model abstractions and translates the model into
a finite-space model that is understood by the model checker. The user in turn has
to specify properties in temporal logic which the model then has to fulfil. For this
purpose, AutoFocus2 offers two possibilities: it allows the direct input of LTL
properties, as well as Salt specifications, which then get translated into plain LTL
before invoking the model checking process. This is also depicted in Fig. B.4.

Salt as described in this thesis is integral part of the AutoFocus2 distribution,
and its installation and usage outlined in the program’s manuals.

As such Salt serves not only as an interface to the runtime reflection framework, but

http://runtime.in.tum.de/
http://www4.in.tum.de/~af2/

200 Appendix B: Runtime reflection on the web: Obtaining the files

Fig. B.4: The model checking interface and Salt editor in AutoFocus 2.

B.2 CASE-tool integration: SALT in AutoFocus2 201

to other design and verification frameworks that incorporate standard model checking
facilities.

202 Appendix B: Runtime reflection on the web: Obtaining the files

Index

∗-automata, 36
L-equivalent, 80
ω-automata, 36
ω-regular expressions, 38
ω-regular language, 38
n-fault assumption, 123
LTL-X, 69
2-SAT, 120
3-SAT, 120

abstract normality axioms, 114
acceptance, 35
accepting component, 74
actions, 33
alphabet, 33
applicable, 96
assignment, 117

Büchi acceptance condition, 37
Büchi recognisable, 37
backtracking algorithm, 120
bad prefix, 46
behavioural model, 108
binary tree, 126
bisimulation, 91
bounded liveness properties, 49
bounded model checking, 49
branch, 125
breadth-first search, 111

centralised systems, 20
circumscription, 129
clause, 117
clause normal form, 118
clock ceiling, 89
clock constraint, 85

clock valuation function, 83
clock zone, 91
clocking operator, 52
closed world assumption, 130
closure, 80
common-sense reasoning, 129
communication matrix, 5
complete automaton, 34
computation, 33
concurrent (real-time) systems, 20
conflict set, 110
conjunctive normal form, 118
consistent, 71
continuous semantics, 157
control systems, 5

decentralised diagnostic systems, 130
decomposition theorem, 50
default logic, 129
dense real-time logic, 83
dense time, 67
deterministic finite automaton, 35
diagnosis, 108
difference bound matrices, 93
digraphs, 36
discrete time-step, 42
discrete-event systems, 130
disjunctive equation normal form, 69
distributed reactive and real-time sys-

tem, 19
distributed systems, 20
domain, 106
duality, 42
dynamic verification, 21

203

204 Index

embedded, 21
emptiness check, 39
empty, 37
equivalence classes, 90
event clock, 83
event-clock automata, 82, 86
event-clock automaton, 93
event-predicting automata, 94
event-predicting clock, 83
event-recording automata, 94
event-recording clock, 83
events, 83
execution, 32
external fault, 115

failure distribution function, 25
fairness, 49
Fault Detection and Isolation, 131
finite automaton, 34
finite run, 34
first-order logic language, 105
first-order model, 106
first-order sentence, 106
first-order term, 105
formal methods, 19
freeze quantification, 69
functional requirements, 4
future fragment of LTL, 43

hard or soft real-time constraints, 20
hitting set, 110
Hoare-logic, 29
hypothesis of perfect synchrony, 70

infinite run, 37
infix, 106
informative, 81
informativeness, 80
initial, 94, 96
interpretation, 32, 106
interrupt, 100
interval, 84
invariant, 29

Kleene algebra, 35
Kleene-star, 35
Kripke structure, 32

lattice, 111
Linear time temporal logic, 40
literals, 116
liveness language, 48
liveness property, 48
location invariants, 87
LTL-semantics, 41
LTL-syntax, 40

macros, 61
mean time between failure, 26
mean time to failure, 25
minimal, 110
model checking, 32
model-based testing, 22
monadic second order logic, 54
monitor, 76
monitoring-based diagnosis problem, 114
Moore machine, 73
Muller automata, 38
mutual exclusion, 44
mutual reachability relation, 73

negations, 116
negative literals, 116
negative normal form, 42
neutral view on LTL, 71
next-free, 42
non-diagnosable faults, 115
non-monotonic and abductive reason-

ing, 129
non-Zeno, 87
normalisation function, 92
normalised formula, 43

Object Constraint Language, 54
observation, 107, 114
Omega automata, 36
operations over clock zones, 91
ordered binary decision diagrams, 33

Index 205

past fragment of LTL, 43
past operators, 43
pathological safety formulae, 80
perfect synchrony hypothesis, 82
point-wise semantics, 157
positive formula, 43
positive literals, 116
prefix, 106
printing function, 135
progress, 83
property, 44
propositional formula, 41

quasi-synchronous, 82

Rabin acceptance, 39
reachability, 89
reachable, 89
reactive systems, 20
real-time system, 20
recognisable languages, 35
region automaton, 90, 98
region equivalent, 89
region graph, 90
regular languages, 35
regular timed language, 88
reliability function, 26
run of a timed automaton, 88
runtime stack, 120

safety language, 46
safety property, 46
safety-critical systems, 23
Safra’s construction, 39
SAT-solving, 119
semantic tree, 126
Semantic trees, 125
semantics of TLTL, 85
semantics of a first-order logic language,

106
semantics of a timed automaton, 87
semantics of regular expressions, 35
service, 25
single-processor systems, 20

size of an automaton, 74
stable equivalence relation of finite in-

dex, 91
stable relation, 91
static analysis, 21
static initialisation order fiasco, 77
static verification, 21
stationary semantics, 70
Streett acceptance, 39
strict monotonicity, 83
strings, 33
strong fairness, 49
strong safety formula, 48
strongly connected component, 73
structural model, 108
Structured Assertion Language for Tem-

poral Logic, 51
stuttering, 47
symbolic clock evaluation, 96
symbolic evaluation of clock constraints,

95
symbolic semantics, 93
symbolic timed run, 96
symptom-free, 114
symptoms, 114
synchronous, 82
synchronous systems, 70
syntactic safety formulae, 46
syntax of regular expressions, 35
system, 106
system components, 106
system description, 106
system failure, 24

temporal formula, 41
temporal normal form, 42
terms, 105
time domain, 25
time successor, 98
time-synchronous, 82
timed actions, 83
timed automata, 82
timed automaton, 86, 87

206 Index

timed Büchi automaton, 88
timed language, 88
timed run, 94
timed word, 83
totality, 32
Translation, 161

acc , 168
rej , 169

stopexcl, 170
stopincl, 169
accepton, 167
between, 167
from, 166
holding, 163
never, 162
nextn, 162
occurring, 163
rejecton, 167
releases, 162
timed, 172
until, 165
upto, 165
iteration, 165
regular expressions, 167
repetition operators, 164

transversal problem, 111

untimed word, 83

V-model, 22
valuation, 117
value domain, 25
variables, 116

weak fairness, 49

zone automaton, 92
zone graph, 92

	Abstract
	Acknowledgements
	Chronology
	Contents
	Introduction
	Runtime reflection at a glance
	Architectural overview
	Practical view on runtime reflection

	Detailed problem statement
	System failures and their inevitability
	To know when a failure occurred
	To know why a failure occurred

	Contributions of this thesis
	Results of this thesis
	A brief guided tour through this thesis

	Failures and faults in distributed reactive systems
	Distributed reactive and real-time systems
	The quest for correctness
	Terminology and classification
	Failures, faults, and errors
	Alternative correctness criteria

	Summary

	Formal systems specification and verification with temporal logic
	Preliminaries
	Automata over strings
	Linear time temporal logic

	Safety and liveness properties
	Safety properties
	Liveness properties

	SALT---Structured assertion language for temporal logic
	Motivation
	Classification
	Design rationale and language features
	Formal semantics
	Example specifications

	Summary

	Failure detection through runtime verification
	A brief history of runtime verification
	LTL over finite words
	A 3-valued semantics for LTL---LTL3
	A dynamic decision procedure for LTL3
	Monitor construction
	Example: The C++ static initialisation order fiasco
	Complexity
	Discussion: Informativeness vs. minimality

	Reflecting real-time
	The real-time logic TLTL
	Verification of timed systems
	A 3-valued semantics for TLTL---TLTL3
	Dynamic decision procedure
	Complexity

	Summary

	Fault detection using model-based diagnosis
	Preliminaries
	Languages of first-order logic
	First-order diagnosis

	Diagnosis as a Boolean satisfiability problem
	From first-order to propositional diagnosis models
	Computing diagnoses using Boolean satisfiability
	Optimisation and determination of all minimal diagnoses

	Related work
	Summary

	Implementation, tool-support, and comparative results
	Front end: An optimising compiler for SALT
	Internals of the SALT compiler
	Experimental results

	Back end
	Monitoring: implementation and case-study
	Diagnosis: implementation and benchmarks

	Summary

	Conclusions
	Summary
	Future research directions
	Fundamental research questions
	Domain-specific aspects and applicability

	Bibliography
	SALT translation schema
	Replacement of non-core Salt operators
	never
	releases
	nextn
	occurring
	holding
	Regular expressions, part I
	Iteration operators

	Translation of core Salt into Rltl
	until
	upto
	from
	between
	Exception operators
	Regular expressions, part II

	Translation of Rltl into LTL
	 acc
	 rej
	[incl]
	[excl]

	Optimisation
	Operator replacement
	Translation of timed operators
	Timed Salt into timed Rltl
	Timed Rltl into extended TLTL
	Extended TLTL into pure TLTL

	Runtime reflection on the web: Obtaining the files
	Tools and source code
	CASE-tool integration: SALT in AutoFocus2

