COMP4600 Advanced algorithms: Algorithms for verification (3 lectures)

Andreas Bauer

NICTA Software Systems Research Group & The Australian National University

http://baueran.multics.org/
Caveat

- Although model checking is my research area...
- ...this is the first time, I’m giving a comprehensive lecture on model checking.
- We will look at MC foremost from a technical/algorithmic point of view, not so much from a formal/logical one.
- However, there will be a wee bit of logic introduced/used that everyone should be able to follow who knows standard propositional logic.
- Let’s see how we go...
What do we mean by verification?

- **System** is modelled as **finite state-transition system**.
- **Properties** are written down in **propositional temporal logic**.
- **Verification** = exhaustive state-space search of system model.
- Diagnostic counterexample, if any.
What do we mean by verification?

- **System** is modelled as **finite state-transition system**.
- **Properties** are written down in **propositional temporal logic**.
- **Verification** = exhaustive state-space search of system model.
- Diagnostic counterexample, if any.
Model checking

- Does system model M satisfy temporal logic property φ (written $M \models \varphi$)?
- Normally, checking of functional correctness (not error-freeness in the intuitive sense).
- System (model) only as good/reliable as its designers anticipated.
- Model checking cannot detect implementation errors (e.g., compiler bugs) \Rightarrow Systems testing.
Model checking

- Does system model M satisfy temporal logic property φ (written $M \models \varphi$)?
- Normally, checking of **functional correctness** (not error-freeness in the intuitive sense).
- System (model) only as good/reliable as its designers anticipated.
- Model checking cannot detect implementation errors (e.g., compiler bugs) \Rightarrow Systems testing.

Let’s be more formal!

What is M, what is φ, what is “satisfy”?
By the way…

- MC “won” Turing award in 2007 (Clarke, Emmerson, Sifakis):

 ![Image of award ceremony](image-url)

- Most widely used industrial design verification technique.
- Focus shifted from verification of simple designs (e.g., communication protocol specifications) to entire software systems (e.g., business information system).
By the way...

A lot (but not all) of the material in these lectures is based upon

(MIT Press, 2003)

(Henrik Reif Andersen ‘97)
Kripke structures

\[M = (S, R, L) \] over set of propositions, \(AP \), where

- \(S \) is set of states,
- \(R \subseteq S \times S \) a transition relation,
- \(L : S \rightarrow 2^{AP} \) a labelling function.
Kripke structures

\[M = (S, R, L) \] over set of propositions, \(AP \), where

- \(S \) is set of states,
- \(R \subseteq S \times S \) a transition relation,
- \(L : S \to 2^{AP} \) a labelling function.

Modelling the behaviour of a microwave oven

- \(AP = \{\text{Start, Close, Heat, Error}\} \)
- \(S = \{S_1, \ldots, S_7\} \)
- \(R = \{(S_1, S_3), (S_1, S_2), (S_3, S_1), \ldots\} \)
- \(L(S_1) = \emptyset, L(S_2) = \{\text{Start, Error}\}, \ldots \)
Kripke structures

1. "start oven" -> "open door" -> "cook" -> "start cooking"
2. Start, Error
3. Close
4. Close, Heat
5. Start, Close, Error
6. Start, Close
7. Start, Close, Heat

Possible behaviour of microwave oven:
- Trace/word: {Close}, {Start, Close}, {Start, Close, Heat}
- Actions: "start oven", "open door", "reset", "start oven", "warm up", "cook", "start cooking"
Kripke structures

Possible behaviour of microwave oven
Trace/word: \{Close\}, \{Start, Close\}, \{Start, Close, Heat\}, \{Close, Heat\}, \{Close, Heat\}, \ldots
Kripke structures

- Behaviour of microwave = all possible traces/words of M.
- Trace/word = linear Kripke structure.
- Traces typically infinite due to loops (i.e., reactive system never switched off).

Definition

Let $\Sigma = 2^\text{AP}$ be a finite alphabet. Let Σ^ω denote set of all infinite traces over Σ. Behaviour of M can be given as

$$\{ w \in \Sigma^\omega \mid \text{for all } i \in \mathbb{N}_0 \text{ there are } m, n \in \mathbb{N} \text{ s.t. } (S_m, S_m) \in R \text{ and } w(i) = L(S_m) \text{ and } w(i+1) = L(S_n) \}$$

(We could also demand that $L(S_0) = w(0)$, had we an S_0.)
Kripke structures—where they come from

- If we model a system directly in terms of a Kripke structure, we are, sort of, performing the model checking by hand already.
- **Model generation**: Convert abstract system model (e.g., source code) into Kripke structure automatically.

Example program: \(P = m : \text{cobegin } P_0 || P_1 \text{ coend } m' \)
Kripke structures—where they come from

The corresponding Kripke structure

Linear-time temporal logic

- Pnueli, 1977; Turing award 1996.
- LTL = propositional logic + two temporal operators (X, U).
- Used as formal specification language for temporal order of events.

Propositional logic (recap)

- \(\varphi = a \land \neg b \lor c \) has model \(\{ \alpha(a) = 1, \alpha(b) = 0, \alpha(c) = 1 \} \)
- We can write this as singleton “Kripke structure” \(M = \{ a, c \} \).
- Thus, \(M \models \varphi \) (“\(M \) satisfies/is a model for \(\varphi \).”)
Linear-time temporal logic

LTL syntax

- Every propositional logic formula is also an LTL formula.
- If \(\varphi \) is an LTL formula, then so are \(X\varphi \) and \(\varphi U \varphi' \).
- BNF: \(\varphi ::= p \in AP \mid \neg \varphi \mid \varphi \land \varphi \mid X\varphi \mid \varphi U \varphi \).
Linear-time temporal logic

LTL syntax

- Every propositional logic formula is also an LTL formula.
- If φ is an LTL formula, then so are $X\varphi$ and $\varphi U \varphi'$.
- BNF: $\varphi ::= p \in AP | \neg \varphi | \varphi \land \varphi | X\varphi | \varphi U \varphi$.

LTL semantics: w series of assignments/worlds, i position in w

<table>
<thead>
<tr>
<th>$w, i \models p$</th>
<th>iff</th>
<th>$p \in w(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w, i \models \neg \varphi$</td>
<td>iff</td>
<td>$w, i \models \varphi$ is not true</td>
</tr>
<tr>
<td>$w, i \models \varphi \land \psi$</td>
<td>iff</td>
<td>$w, i \models \varphi$ and $w, i \models \psi$</td>
</tr>
<tr>
<td>$w, i \models X\varphi$</td>
<td>iff</td>
<td>$w, i + 1 \models \varphi$</td>
</tr>
<tr>
<td>$w, i \models \varphi U \psi$</td>
<td>iff</td>
<td>there is $k \geq i$ s.t. $w, k \models \psi$, and for all $i \leq j < k$ we have $w, j \models \varphi$</td>
</tr>
</tbody>
</table>

More generally, note how models of $\varphi \in LTL$ are elements from Σ^ω ($\Sigma = 2^{AP}$ is our alphabet).

Let $L(\varphi) = \{w \in \Sigma^\omega \mid w, 0 \models \varphi\}$ be the **language** of φ.

Andreas Bauer

NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification

13 / 83
Linear-time temporal logic

Some more useful LTL operators and shortcuts (syntactic “sugar”):

- $true = p \lor \neg p$
- $false = \neg true$
- $\varphi \lor \psi = \neg (\neg \varphi \land \neg \psi)$
- $\varphi \rightarrow \psi = \neg \varphi \lor \psi$
- $\varphi \leftrightarrow \psi = (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- $F\varphi = true U \varphi$ (“eventually φ”)
- $G\varphi = \neg F \neg \varphi$ (“always φ”)
- $\varphi R \psi = \neg (\neg \varphi U \neg \psi)$ (“release ψ when φ becomes true”)

Andreas Bauer

COMP4600 Advanced algorithms: Algorithms for verification

14 / 83
Linear-time temporal logic

Some LTL specifications:

Invariants:
- $G \neg (crit_1 \land crit_2)$ (mutual exclusion)
- $G (preset_1 \lor \ldots \lor preset_n)$ (deadlock freedom)

Response, recurrence:
- $G (try_1 \rightarrow F crit_1)$ (eventual access to critical section)
- $GF \neg crit_1$ (no starvation in critical section)

Strong fairness:
- $GF (try_1 \land \neg crit_2) \rightarrow GF crit_1$ (strong fairness)
LTL model checking

Is the following decision problem:

- **Input**: Kripke structure M, LTL formula φ.
- **Question**: Does $\mathcal{L}(M) \subseteq \mathcal{L}(\varphi)$ hold (sometimes written as $M \models \varphi$)?
LTL model checking

Is the following decision problem:

- **Input**: Kripke structure M, LTL formula φ.
- **Question**: Does $\mathcal{L}(M) \subseteq \mathcal{L}(\varphi)$ hold (sometimes written as $M \models \varphi$)?

Example: Microwave oven

$\mathcal{L}(M) \subseteq \mathcal{L}(G(Heat \to Close))$
LTL model checking

Key ideas:

- \(L(M) \subseteq L(\varphi) \iff L(M) \cap L(\neg\varphi) = \emptyset \)
- If \(L(M) \cap L(\neg\varphi) \neq \emptyset \), we have a counterexample.
LTL model checking

Key ideas:

- \(L(M) \subseteq L(\varphi) \iff L(M) \cap L(\neg \varphi) = \emptyset \)
- If \(L(M) \cap L(\neg \varphi) \neq \emptyset \), we have a counterexample.

How do we test if \(L(M) \cap L(\neg \varphi) = \emptyset \)?
LTL model checking

Theorem

For every \(\varphi \in LTL \), there exists an \(\omega \)-automaton, \(A \), s.t.,
\[
L(A) = L(\varphi).
\]
LTL model checking

Theorem

For every $\varphi \in LTL$, there exists an ω-automaton, A, s.t., $L(A) = L(\varphi)$.

Corollary

We can solve the LTL model checking problem by testing if $L(M \times A_{\neg \varphi}) = \emptyset$.

LTL model checking

Theorem

For every $\varphi \in \text{LTL}$, *there exists an* ω-*automaton,* A, *s.t.,* $\mathcal{L}(A) = \mathcal{L}(\varphi)$.

Corollary

We can solve the LTL model checking problem by testing if $\mathcal{L}(M \times A_{\neg \varphi}) = \emptyset$.

Note that, $M \times A_{\neg \varphi}$ is normally too big to be explicitly computed (but we disregard that fact for now).
LTL model checking—ω-automata

Definition

An ω-automaton is a five-tuple $A = (\Sigma, Q, Q_0, \delta, F)$ where

- Σ is the input alphabet,
- Q a finite set of states,
- $Q_0 \subseteq Q$ a distinguished set of initial states,
- $\delta : Q \to 2^Q$ a transition relation, and
- F an acceptance condition.

A run ρ of A over a word $w \in \Sigma^\omega$ is a mapping $\mathbb{N}_0 \to Q$ s.t.

- $\rho(0) \in Q_0$, and
- $\rho(i + 1) \in \delta(\rho(i), w(i))$ for all $i \in \mathbb{N}_0$.
LTL model checking—ω-automata

Generalised Büchi automaton (GBA): $\mathcal{F} = \{F_1, \ldots, F_n\}$

- $F_i \subseteq Q$ is an accepting set.
- ρ is accepting iff $\text{Inf}(\rho) \cap F_i \neq \emptyset$ for $1 \leq i \leq n$.
LTL model checking—ω-automata

Generalised Büchi automaton (GBA): \(\mathcal{F} = \{ F_1, \ldots, F_n \} \)
- \(F_i \subseteq Q \) is an accepting set.
- \(\rho \) is accepting iff \(\text{Inf}(\rho) \cap F_i \neq \emptyset \) for \(1 \leq i \leq n \).

Definition

A word \(w \) is **accepted** by an ω-automaton \(\mathcal{A} \) iff \(\mathcal{A} \) has an **accepting run** over \(w \).
LTL model checking—ω-automata

Generalised Büchi automaton (GBA): \(\mathcal{F} = \{ F_1, \ldots, F_n \} \)
- \(F_i \subseteq Q \) is an accepting set.
- \(\rho \) is accepting iff \(\text{Inf}(\rho) \cap F_i \neq \emptyset \) for \(1 \leq i \leq n \).

Definition

A word \(w \) is accepted by an ω-automaton \(\mathcal{A} \) iff \(\mathcal{A} \) has an accepting run over \(w \).

Büchi automaton (BA sometimes NBA): \(\mathcal{F} = F \).
- \(F \subseteq Q \) is a set of accepting states.
- \(\rho \) is accepting iff \(\text{Inf}(\rho) \cap F \neq \emptyset \).

Streett automaton: \(\mathcal{F} = \{(E_1, F_1), \ldots, (E_n, F_n)\} \)
- \(E_i, F_i \subseteq Q \).
- \(\rho \) is accepting iff \(\text{Inf}(\rho) \cap F_i \neq \emptyset \rightarrow \text{Inf}(\rho) \cap E_i \neq \emptyset \) for \(1 \leq i \leq n \).
LTL model checking—\(\omega\)-automata

Recall: An automaton is deterministic iff for all \(q \in Q\), and \(\sigma \in \Sigma\), \(\delta(q, \sigma)\) is a singleton; that is, if \(\delta\) is, in fact, a function.
Recall: An automaton is deterministic iff for all \(q \in Q \), and \(\sigma \in \Sigma \), \(\delta(q, \sigma) \) is a singleton; that is, if \(\delta \) is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.
LTL model checking—\(\omega\)-automata

Recall: An automaton is deterministic iff for all \(q \in Q\), and \(\sigma \in \Sigma\), \(\delta(q, \sigma)\) is a singleton; that is, if \(\delta\) is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

\[L = \mathcal{L}((a + b)^* a\omega) \] NBA- but not DBA-definable.
Recall: An automaton is deterministic iff for all \(q \in Q \), and \(\sigma \in \Sigma \), \(\delta(q, \sigma) \) is a singleton; that is, if \(\delta \) is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

\[L = \mathcal{L}((a + b)^* a^\omega) \text{ NBA- but not DBA-definable.} \]

Theorem

NBAs can encode every LTL property, but not vice versa.
Recall: An automaton is deterministic iff for all \(q \in Q \), and \(\sigma \in \Sigma \), \(\delta(q, \sigma) \) is a singleton; that is, if \(\delta \) is, in fact, a function.

Theorem

NBAs are strictly more expressive than DBAs.

Proof.

\[L = \mathcal{L}((a + b)^* a^\omega) \] is NBA-definable but not DBA-definable.

Theorem

NBAs can encode every LTL property, but not vice versa.

Proof.

"p occurs at least on even positions"
LTL-to-automata translation—prerequisites

Definition

The **syntactic closure** of \(\varphi \), \(cl(\varphi) \), consists of all subformulas of \(\psi \) of \(\varphi \) and their negation \(\neg \psi \).
Definition

The syntactic closure of φ, $cl(\varphi)$, consists of all subformulas of ψ of φ and their negation $\neg\psi$.

Example: $\varphi = aU(\neg a \land b)$
Definition

The **syntactic closure** of φ, $cl(\varphi)$, consists of all subformulas of ψ of φ and their negation $\neg\psi$.

Example: $\varphi = a U (\neg a \land b)$

$cl(\varphi) = \{a, b, \neg a, \neg b, \neg a \land b, \neg(\neg a \land b), \varphi, \neg\varphi\}$
LTL-to-automata translation

GBA for $\varphi \in LTL$:

- **Q**: elements of $cl(\varphi)$, promised to be true.
- **Q_0**: states containing φ.
- **δ**: repr. as graph $G = (V, E)$, where
 - V all **complete** subsets of $cl(\varphi)$
 (i.e., $c \in V$ iff for all $\psi \in cl(\varphi)$ either $\psi \in c$ or $\neg \psi \in c$, and for all $\varphi' = \psi \land \psi' \in cl(\varphi)$ we have that $\varphi' \in c$ iff $\psi \in c$ and $\psi' \in c$.)
 - $(c, d) \in E$ iff
 - for any $\varphi' = \psi U \psi' \in cl(\varphi)$, $\varphi' \in c$ iff either $\psi' \in c$, or $\psi \in c$ and $\varphi' \in d$;
 - for any $\varphi' = X \psi \in cl(\varphi)$, $\varphi' \in c$ iff $\psi \in d$.
- $\mathcal{F} = \{ \{q \in Q \mid \psi U \psi' \not\in q \text{ or } \psi' \in q\} \mid \psi U \psi' \in cl(\varphi)\}$
LTL-to-automata translation—complexity considerations

How big is $|Q|$ (resp. A_φ) at most?
LTL-to-automata translation—complexity considerations

How big is $|Q|$ (resp. A_φ) at most?

- $|cl(\varphi)| = O(|\varphi|)$.

How big is $|Q|$ (resp. A_φ) at most?

- $|\text{cl}(\varphi)| = O(|\varphi|)$.
- There are at most $2^{O(|\varphi|)}$ many possible subsets of $\text{cl}(\varphi)$.
How big is $|Q|$ (resp. A_φ) at most?

- $|cl(\varphi)| = O(|\varphi|)$.
- There are at most $2^{O(|\varphi|)}$ many possible subsets of $cl(\varphi)$.

That’s why we do LTL model checking as $\mathcal{L}(M \times A_{\neg \varphi}) = \emptyset$ rather than $\mathcal{L}(M) \cap \mathcal{L}(A_\varphi) = \emptyset$:
 - Complementation of formula $O(1)$ vs.
 - complementation of automaton $\approx O(2^{\vert Q\vert})$.

LTL-to-automata translation—optimisations

GBA acceptance more difficult to test than NBA acceptance:

- Turn all states into tuples \((q, i)\), where \(i\) is counter.
- Initially, \(i = 0\); counter counts modulo \(|\mathcal{F}|\).
- \(i = i + 1\) if the \(i\)th set \(F_i\) of \(\mathcal{F}\) is reached (i.e., if \(q\) not accepting counter doesn’t do anything).
- Now, we only need to check one accepting set, \(F_0 \times \{0\}\).
LTL-to-automata translation—optimisation

More formally:

From $G = (\Sigma, Q, Q_0, \delta, F)$, we construct $B = (\Sigma, Q', Q'_0, \delta', F')$:

$q' = Q \times \{1, \ldots, n\}$

$\delta' \subseteq Q' \times Q'$, where $(q_i, s_j) \in \delta'$ if $q \not\in F_i$ and $i = j$, or $q \in F_i$ and $j = (i + 1) \mod n$.

$Q'_0 = \{ (q_0, 0) \mid q_0 \in Q_0 \}$

$F'_0 = \{ (q_0, 0) \mid q_0 \in F_0 \}$

Edge-labelled vs. state-labelled NBA:
Both used; arguably, edge-labelled more common.
Easy translation between the two models.
LTL-to-automata translation—optimisations

More formally:
From GBA \(A = (\Sigma, Q, Q_0, \delta, F = F_1, \ldots, F_n) \), we construct NBA \(B = (\Sigma, Q', Q'_0, \delta', F') \):

- \(Q' = Q \times \{1, \ldots, n\} \)
- \(\delta' \subseteq Q' \times Q' \), where \(((q, i), (s, j)) \in \delta' \) iff \((q, s) \in \delta \) AND
 \(q \notin F_i \) and \(i = j \), or \(q \in F_i \) and \(j = (i + 1) \mod n \).
- \(Q'_0 = \{(q, 0) \mid q \in Q_0\} \)
- \(F' = \{(q, 0) \mid q \in F_0\} \)
LTL-to-automata translation—optimisations

More formally:
From GBA $\mathcal{A} = (\Sigma, Q, Q_0, \delta, \mathcal{F} = F_1, \ldots, F_n)$, we construct NBA $\mathcal{B} = (\Sigma, Q', Q'_0, \delta', F')$:

- $Q' = Q \times \{1, \ldots, n\}$
- $\delta' \subseteq Q' \times Q'$, where $((q, i), (s, j)) \in \delta'$ iff $(q, s) \in \delta$ AND $q \not\in F_i$ and $i = j$, or $q \in F_i$ and $j = (i + 1) \mod n$.
- $Q'_0 = \{(q, 0) \mid q \in Q_0\}$
- $F' = \{(q, 0) \mid q \in F_0\}$

Edge-labelled vs. state-labelled NBA:

- Both used; arguably, edge-labelled more common.
- Easy translation between the two models.
Some example NBAs: (w/o redundant states)

\[Xa: \]
\[aU b: \]
\[GF a: \]

The temporal formulae inside of states are just used for constructing automata. Later we can merely remember the **Boolean formulae** that are satisfied in order to enter a state as above. *(You should convince yourself that this is an equivalent representation wrt. the accepted languages!)*
Let A be an NBA over Σ.

- $L(A) = / \neq \emptyset$?
Important properties of NBAs

Let \mathcal{A} be an NBA over Σ.

- $\mathcal{L}(\mathcal{A}) = / \neq \emptyset$ in P (i.e., linear-time algorithm)
Important properties of NBAs

Let \mathcal{A} be an NBA over Σ.

- $\mathcal{L}(\mathcal{A}) = / \neq \emptyset$? in P (i.e., linear-time algorithm)
- $\mathcal{L}(\mathcal{A}) = / \neq \Sigma^\omega$?
Important properties of NBAs

Let A be an NBA over Σ.

- $L(A) = / \neq \emptyset$? in P (i.e., linear-time algorithm)
- $L(A) = / \neq \Sigma^\omega$? is PSpace-complete
Important properties of NBAs

Let \(A \) be an NBA over \(\Sigma \).

- \(\mathcal{L}(A) \neq \emptyset \) in P (i.e., linear-time algorithm)
- \(\mathcal{L}(A) \neq \Sigma^\omega \) is PSpace-complete
- \(\mathcal{L}(A) \cap \mathcal{L}(B) \) NBA representable (closure under intersection)
Important properties of NBAs

Let \mathcal{A} be an NBA over Σ.

- $\mathcal{L}(\mathcal{A}) \neq \emptyset$ in P (i.e., linear-time algorithm)
- $\mathcal{L}(\mathcal{A}) \neq \Sigma^\omega$ is PSpace-complete
- $\mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{B})$ NBA representable (closure under intersection)
- $\overline{\mathcal{L}(\mathcal{A})}$ NBA representable (closure under complement)
Important properties of NBAs

Let A be an NBA over Σ.

- $\mathcal{L}(A) = / \neq \emptyset$? is in P (i.e., linear-time algorithm)
- $\mathcal{L}(A) = / \neq \Sigma^\omega$? is PSpace-complete
- $\mathcal{L}(A) \cap \mathcal{L}(B)$ NBA representable (closure under intersection)
- $\overline{\mathcal{L}(A)}$ NBA representable (closure under complement)
- NBAs are not closed under determinisation, i.e., there exists an NBA, A, for which there is no DBA, B, s.t. $\mathcal{L}(A) = \mathcal{L}(B)$.

Closure under complement and intersection are the prerequisites for what is known as automata-theoretic model checking.
Important properties of NBAs

Let \mathcal{A} be an NBA over Σ.

- $\mathcal{L}(\mathcal{A}) \neq \emptyset$ in P (i.e., linear-time algorithm)
- $\mathcal{L}(\mathcal{A}) \neq \Sigma^\omega$ is PSpace-complete
- $\mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{B})$ NBA representable (closure under intersection)
- $\overline{\mathcal{L}(\mathcal{A})}$ NBA representable (closure under complement)
- NBAs are not closed under determinisation, i.e., there exists an NBA, \mathcal{A}, for which there is no DBA, \mathcal{B}, s.t. $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$.

Closure under complement and intersection are the prerequisites for what is known as automata-theoretic model checking.
Automata theoretic model checking

Given $M = (S, s_0, R, L)$ and $A_\varphi = (\Sigma, Q, Q_0, \delta, F)$, we define the “product automaton” $M \times A_\varphi = (\Sigma, Q', Q'_0, \delta', F')$ by

- $Q' = \{(s, q) \in S \times Q \mid L(s) \text{ satisfies } q\}$ (recall: q contains a Boolean formula!)
- $Q'_0 = \{(s_0, q) \in Q' \mid q \in Q_0\}$
- $\delta' = \{((s, q), (s', q')) \in Q' \times Q' \mid (s, s') \in R \text{ and } (q, q') \in \delta\}$
- $F' = \{(s, q) \in Q' \mid q \in F\}$

What is the accepted language of this automaton?

Lemma

$L(M \times A_\varphi) = L(M) \cap L(A_\varphi)$
Automata theoretic model checking

Given \(M = (S, s_0, R, L) \) and \(A_\varphi = (\Sigma, Q, Q_0, \delta, F) \), we define the “product automaton” \(M \times A_\varphi = (\Sigma, Q', Q'_0, \delta', F') \) by

- \(Q' = \{(s, q) \in S \times Q \mid L(s) \text{ satisfies } q\} \) (recall: \(q \) contains a Boolean formula!)
- \(Q'_0 = \{(s_0, q) \in Q' \mid q \in Q_0\} \)
- \(\delta' = \{((s, q), (s', q')) \in Q' \times Q' \mid (s, s') \in R \text{ and } (q, q') \in \delta\} \)
- \(F' = \{(s, q) \in Q' \mid q \in F\} \)

What is the accepted language of this automaton?
Automata theoretic model checking

Given \(M = (S, s_0, R, L) \) and \(A_\varphi = (\Sigma, Q, Q_0, \delta, F) \), we define the "product automaton" \(M \times A_\varphi = (\Sigma, Q', Q'_0, \delta', F') \) by

- \(Q' = \{(s, q) \in S \times Q \mid L(s) \text{ satisfies } q\} \) (recall: \(q \) contains a Boolean formula!)
- \(Q'_0 = \{(s_0, q) \in Q' \mid q \in Q_0\} \)
- \(\delta' = \{((s, q), (s', q')) \in Q' \times Q' \mid (s, s') \in R \text{ and } (q, q') \in \delta\} \)
- \(F' = \{(s, q) \in Q' \mid q \in F\} \)

What is the accepted language of this automaton?

Lemma

\[\mathcal{L}(M \times A_\varphi) = \mathcal{L}(M) \cap \mathcal{L}(A_\varphi) \]
Automata theoretic model checking

Recall: we need to test if $L(M \times A_{\varphi}) = \emptyset$. (How do we do it?)
Automata theoretic model checking

Recall: we need to test if $L(M \times A_{\varphi}) = \emptyset$. (How do we do it?)

Theorem

$L(M \times A_{\varphi}) = \emptyset \iff$ *there is no reachable cycle containing a state from F*.

Polynomial-time algorithm (e.g., Tarjan's SCC finding alg.) does the job (cf. Knuth Vol. 3)

Corollary

LTL model checking is in $PTime$, if M and A_{φ} are given.

... which is never the case in practice. :-(
Recall: we need to test if $\mathcal{L}(M \times A_\varphi) = \emptyset$. (How do we do it?)

Theorem

$\mathcal{L}(M \times A_\varphi) = \emptyset \iff \text{there is no reachable cycle containing a state from } F$.

Polynomial-time algorithm (e.g., Tarjan’s SCC finding alg.) does the job (cf. Knuth Vol. 3)
Automata theoretic model checking

Recall: we need to test if $\mathcal{L}(M \times A_\varphi) = \emptyset$. (How do we do it?)

Theorem

$\mathcal{L}(M \times A_\varphi) = \emptyset \iff$ there is no reachable cycle containing a state from F.

Polynomial-time algorithm (e.g., Tarjan’s SCC finding alg.) does the job (cf. Knuth Vol. 3)

Corollary

LTL model checking is in PTime, if M and A_φ are given.

...which is never the case in practice. :-(
Detour (I): Tarjan’s algorithm for SCC identification

Idea: Does a forward DFS to visit all nodes once to assign increasing index, and upon returning from the recursive calls, assigns low-indices that point to the node with the smallest index reachable from each respective node. When low-index of a node = index of that node, we have a root of an SCC.
Detour (I): Tarjan’s algorithm for SCC identification

Some observations:

- strongconnect(x) is called once for every node.
- The for-each-loop at most considers each edge twice (to find neighbours of all nodes)
- (But not all nodes have necessarily an outgoing edge.)
- That is, runtime of $O(|V| + |E|)$.

```
algorithm tarjan is
input: graph G = (V, E)
output: set of strongly connected components (sets of vertices)

index := 0
S := empty
for each v in V do
    if (v.index is undefined) then
        strongconnect(v)
    end if
end repeat

function strongconnect(v)
    // Set the depth index for v to the smallest unused index
    v.index := index
    v.lowlink := index
    index := index + 1
    S.push(v)

    // Consider successors of v
    for each (v, w) in E do
        if (w.index is undefined) then
            // Successor w has not yet been visited; recurse on it
            strongconnect(w)
            v.lowlink := min(v.lowlink, w.lowlink)
        else if (w is in S) then
            // Successor w is in stack S and hence in the current SCC
            v.lowlink := min(v.lowlink, w.index)
        end if
    end for

    // If v is a root node, pop the stack and generate an SCC
    if (v.lowlink == v.index) then
        start a new strongly connected component
        repeat
            w := S.pop()
            add w to current strongly connected component
            until (w = v)
        output the current strongly connected component
    end if
end function
```
Detour (II): On-The-Fly Bad-Cycle-Detection

Idea:

- Often M not given, so one needs to construct M from an abstract model (e.g., code, call it \mathcal{M}).
- Instead of doing it all at once, one can construct M on-the-fly (cf. Vardi et al, CAV’90).
- Observe, it is easy to obtain initial states (i.e., initial in M and \mathcal{A}_φ)
- Algorithm proceeds by expanding more states in an “as needed” manner, and looks if a cycle can be found which hosts an accepting state from \mathcal{A}_φ.
- In practice, there’s a fair chance it will find an accepting cycle before having expanded all nodes of M.
Detour (II): On-The-Fly Bad-Cycle-Detection

Input: \(\mathcal{M} \) and \(\mathcal{A}_\varphi \),

Initialize: \(\text{Stack1} := \emptyset \), \(\text{Stack2} := \emptyset \),
\(\text{Table1} := \emptyset \), \(\text{Table2} := \emptyset \);

procedure DFS2(s) {
 push(s, Stack2);
 hash(s, Table2);
 foreach \(t \in \text{Succ}^\odot(s) \) do {
 if \(t \not\in \text{Table2} \) then
 DFS2(t)
 else if \(t \) is on Stack1 {
 output(“bad cycle:”);
 output(Stack1, Stack2, t);
 exit;
 }
 }
 pop(Stack2);
}

procedure Main() {
 foreach \(s \in \text{Init}^\odot \) {
 if \(s \not\in \text{Table1} \) then DFS1(s);
 }
 output(“no bad cycle”);
 exit;
}

(Slide shamelessly stolen from Kousha Etessami.)
Recall: Input to the LTL model checking problem is a KS, M, and φ. The question to be answered is, does $\mathcal{L}(M) \cap \mathcal{L}(\neg \varphi) \neq \emptyset$ hold?

Theorem

The LTL model checking problem can be answered

- in time $O(2^{O(|\varphi|)} \cdot |M|)$ (cf. size of NBA), or
- in PSpace (but potentially ExpTime; cf. on-the-fly alg.).
Recall: Input to the LTL model checking problem is a KS, M, and φ. The question to be answered is, does $\mathcal{L}(M) \cap \mathcal{L}(\neg \varphi) \neq \emptyset$ hold?

Theorem

The LTL model checking problem can be answered

- in time $O(2^{O(|\varphi|)} \cdot |M|)$ (cf. size of NBA), or
- in PSpace (but potentially ExpTime; cf. on-the-fly alg.).

The latter explains why model checking works in practice: the NBA can be fixed for most formulae, and the subsequent state-space exploration optimised.
Complexity of LTL model checking

Theorem

**LTL model checking is PSpace-complete.**

Proof.

Hardness: Reduction from LTL satisfiability, which is also PSpace-complete: \(\mathcal{L}(\varphi) = \emptyset \iff \mathcal{L}(\varphi) \cap \Sigma^\omega = \emptyset \iff \Sigma^\omega \models \neg \varphi. \)

Membership: Nondeterministic algorithm: Expand NBA on-the-fly (similar to expansion of \(M \) earlier) and guess

- a path through \(M \), and
- a state, \(l \), in the NBA which lies on an accepting loop.

Each expansion step of the NBA can be done in PTime, and to check whether \(l \) is visited again is constant. If guessed path goes through \(l \) twice, we know that we have a counterexample.
Computation Tree Logic (CTL)

CTL syntax

\[\varphi ::= p \in AP \mid \neg \varphi \mid \varphi \land \varphi \mid AX \varphi \mid EX \varphi \mid A(\varphi U \varphi) \mid E(\varphi U \varphi) \]

Note, there's no arbitrary nesting of path quantifiers (cf. CTL\(^*\)). For example, you can't say \[XAX \varphi \] in CTL. But \[EXEG \varphi \] is OK.
Computation Tree Logic (CTL)

CTL syntax

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∧ ϕ | AXϕ | EXϕ | A(ϕUϕ) | E(ϕUϕ)

- Note, there’s no arbitrary nesting of path quantifiers (cf. CTL*).
- For example, you can’t say XAFϕ in CTL.
- But EFEGϕ is OK.
CTL—syntactic sugar and equalities

- $AX\varphi = \neg EX(\neg \varphi)$
- $EF\varphi = E(trueU\varphi)$
- $AG\varphi = \neg EF(\neg \varphi)$
- $AF\varphi = \neg EG(\neg \varphi)$
- $A(\varphi U \psi) = \neg E(\neg \psi U(\neg \varphi \land \neg \psi)) \land \neg EG\neg \psi$
- $A(\varphi R \psi) = \neg E(\neg \varphi U \neg \psi)$
- $E(\varphi R \psi) = \neg A(\neg \varphi U \neg \psi)$

Corollary

Any CTL formula can be expressed in terms of \neg, \lor, EX, EU, and EG alone.
CTL—syntactic sugar and equalities

- $AX \varphi = \neg EX(\neg \varphi)$
- $EF \varphi = E(trueU \varphi)$
- $AG \varphi = \neg EF(\neg \varphi)$
- $AF \varphi = \neg EG(\neg \varphi)$
- $A(\varphi U \psi) = \neg E(\neg \psi U(\neg \varphi \land \neg \psi)) \land \neg EG \neg \psi$
- $A(\varphi R \psi) = \neg E(\neg \varphi U \neg \psi)$
- $E(\varphi R \psi) = \neg A(\neg \varphi U \neg \psi)$

Corollary

Any CTL formula can be expressed in terms of \neg, \lor, EX, EU and EG alone.
CTL—semantics

CTL semantics: Let $M = (S, R, L)$ be defined as usual; $s \in S$.

- $M, s \models p$ iff $p \in L(s)$
- $M, s \models \neg \varphi$ iff $M, s \models \varphi$ is not true
- $M, s \models \varphi \land \psi$ iff $M, s \models \varphi$ and $M, s \models \psi$
- $M, s \models \text{AX} \varphi$ iff for all $s \rightarrow s_1, M, s_1 \models \varphi$
- $M, s \models \text{EX} \varphi$ iff there is a $s \rightarrow s_1$, s.t. $M, s_1 \models \varphi$
- $M, s \models \text{A}(\varphi \text{U} \psi)$ iff for all $s_1 \rightarrow s_2 \rightarrow \ldots$, where $s_1 = s$, there is a s_k, s.t. $M, s_k \models \psi$, and $M, s_j \models \varphi$ for all s_j, where $0 \leq j < k$
- $M, s \models \text{E}(\varphi \text{U} \psi)$ iff there is a \ldots
Some CTL specifications:

- **EF**(Start ∧ ¬Ready): It is possible to reach a state in which Start but not Ready holds.
- **AG**(Req → AFAck): Every req. is eventually answered.
- **AG**(AFDeviceEnabled): The device is enabled infinitely often on all paths.
- **AG**(EFRestart): From any state it is possible to reach a state in which Restart holds.
“Labelling algorithm”—what it does:

- **Input:** A CTL formula, φ, and a Kripke structure, $M = (S, s_0, R, L)$ over a set AP.

- **Output:** A set of formulae, $\text{label}(s_0)$, that are true in s_0 (i.e., $M, s_0 \models \varphi$ iff $\varphi \in \text{label}(s)$).
CTL model checking—labelling algorithm

“Labelling algorithm”—what it does:

- **Input**: A CTL formula, φ, and a Kripke structure, $M = (S, s_0, R, L)$ over a set AP.

- **Output**: A set of formulae, $label(s_0)$, that are true in s_0 (i.e., $M, s_0 \models \varphi$ iff $\varphi \in label(s)$).

- Initially, $label(s_0) = L(s_0)$; algorithm goes through states, at stage i, CTL subformulae with $i - 1$ nested temporal operators are processed.

- When a formula is processed it is added to the labelling of those states where it is true.
CTL model checking—labelling algorithm

By structural induction\(^1\) (that is, algorithm starts with innermost formulae and works its way “outwards”):

- \(\Phi = \neg \varphi\): label all states with \(\Phi\) that are not labelled by \(\varphi\).
- \(\Phi = \varphi \lor \psi\): label all states with \(\Phi\) that are labelled by either \(\varphi\) or \(\psi\).
- \(\Phi = \text{EX}\varphi\): label all states with \(\Phi\) that have a successor labelled by \(\varphi\).
- \(\Phi = \text{E}(\varphi \text{U}\psi)\): find all states labelled by \(\psi\); then work backwards until you hit a state labelled by \(\varphi\); all intermediate states on these paths should be labelled by \(\Phi\).

\(^1\)Only few cases due to earlier corollary!
CTL model checking—labelling algorithm

procedure CheckEU(f_1, f_2)
 $T := \{ s \mid f_2 \in \text{label}(s) \}$;
 for all $s \in T$ do label(s) := label(s) $\cup \{ E[f_1 \cup f_2] \}$;
 while $T \neq \emptyset$ do
 choose $s \in T$;
 $T := T \setminus \{s\}$;
 for all t such that $R(t, s)$ do
 if $E[f_1 \cup f_2] \notin \text{label}(t)$ and $f_1 \in \text{label}(t)$ then
 label(t) := label(t) $\cup \{ E[f_1 \cup f_2] \}$;
 $T := T \cup \{t\}$;
 end if;
 end for all;
 end while;
end procedure

Runs in $O(|S| + |R|)$.
CTL model checking—labelling algorithm

- \(\Phi = \text{EG} \varphi \) slightly more complicated; needs notion of SCC:
 - First create \(M' = (S', s'_0, R', L') \), where
 - \(S' = \{ s \in S' \mid M, s \models \varphi \} \) (i.e., remove all nodes from \(M \), where \(\varphi \) does not hold)
 - \(R' = R|_{S' \times S'} \)
 - \(L' = L|_{S'} \)
CTL model checking—labelling algorithm

- $\Phi = \text{EG} \varphi$ slightly more complicated; needs notion of SCC:

 - First create $M' = (S', s'_0, R', L')$, where
 - $S' = \{ s \in S' \mid M, s \models \varphi \}$ (i.e., remove all nodes from M, where φ does not hold)
 - $R' = R|_{S' \times S'}$
 - $L' = L|_{S'}$

Lemma

$M, s \models \text{EG} \varphi$ iff the following two conditions are satisfied:

1. $s \in S'$
2. There is a path in M', starting in s, to some node t in some SCC of graph (S', R').
CTL model checking—labelling algorithm

Proof.

(⇒) As for 1.: Clearly, $s \in S'$.
Now we need to show 2. Let $w' = uw$ be a path in M such that φ is true in each state. u is the prefix and w the infinite suffix. For w to repeat, it must lie inside a SCC. And since φ is true along the path, we have for u and w that they're both contained in S' by the construction of M'.

(⇐) Every path that in M' is also a path in M. And if there is a path that loops infinitely through some SCC, and on which φ holds, then it is a model for $\text{EG}\varphi$. Since the initial state of that path, $s \in S'$ is clearly also in S, the lemma follows.
ctl model checking—labelling algorithm

```
procedure CheckEG(f)
    S′ := { s | f ∈ label(s) };
    SCC := { C | C is a nontrivial SCC of S′ };
    T := ∪C∈SCC{ s | s ∈ C };
    for all s ∈ T do label(s) := label(s) ∪ { EG f };
    while T ≠ ∅ do
        choose s ∈ T;
        T := T \ {s};
        for all t such that t ∈ S′ and R(t, s) do
            if EG f ∉ label(t) then
                label(t) := label(t) ∪ { EG f };
                T := T ∪ {t};
            end if;
        end for all;
    end while;
end procedure
```

Runs in \(O(|S'| + |R'|) \).
Since we have at most $|\varphi|$ subformulae, CTL model checking against a Kripke structure takes time $O(|\varphi| \cdot (|S| + |R|))$.

Theorem

To decide the CTL model checking problem one only needs an algorithm that runs in PTime.
CTL model checking—example

Same Kripke structure we used earlier:

1. Introduction
2. LTL model checking
3. CTL model checking
4. Binary decision diagrams
5. Symbolic model checking

Andreas Bauer
NICTA & ANU
COMP4600 Advanced algorithms: Algorithms for verification

\[1 \models AG(Start \rightarrow AF(Heat)) \]
CTL model checking—example

Same Kripke structure we used earlier:

```
1

Start, Error

2

"start oven"

3

"open door"

"reset"

4

Close, Heat

5

"start oven"

6

"start oven"

"start cooking"

7

Start, Close, Heat

Start, Close, Error

Start

Error

Close

Start

Close

Heat
```

Observe:

- $\text{AG}(\text{Start} \rightarrow \text{AFHeat})$ equiv. to $\neg \text{EF}(\text{Start} \land \text{EG}\neg\text{Heat})$
- We use $\text{EF}\varphi$ as shorthand for $\text{E}(\text{trueU}\varphi)$.
CTL model checking—example

How the algorithm proceeds:

- Let $S(\psi)$ be the set of states in which ψ holds.
- Initially, $S(\text{Start}) = \{2, 5, 6, 7\}$, $S(\neg \text{Heat}) = \{1, 2, 3, 5, 6\}$.
- For $S(\text{EG} \neg \text{Heat})$ we first find SCCs wrt. $\neg \text{Heat}$.

\[\text{not 6, because you can reach 7 from 6, where Heat is true}\]
CTL model checking—example

How the algorithm proceeds:

- Let $S(\psi)$ be the set of states in which ψ holds.
- Initially, $S(Start) = \{2, 5, 6, 7\}$, $S(\neg Heat) = \{1, 2, 3, 5, 6\}$.
- For $S(\text{EG} \neg Heat)$ we first find SCCs wrt. $\neg Heat$. I.e.,

 $S' = \{1, 2, 3, 5, 6\}$, and SCC in S' is $\{1, 2, 3, 5\} = S(\text{EG} \neg Heat)^2$

\[2\text{not 6, because you can reach 7 from 6, where Heat is true}\]
CTL model checking—example

How the algorithm proceeds:

- Let $S(\psi)$ be the set of states in which ψ holds.
- Initially, $S(\text{Start}) = \{2, 5, 6, 7\}$, $S(\neg\text{Heat}) = \{1, 2, 3, 5, 6\}$.
- For $S(\text{EG}\neg\text{Heat})$ we first find SCCs wrt. $\neg\text{Heat}$. I.e., $S' = \{1, 2, 3, 5, 6\}$, and SCC in S' is $\{1, 2, 3, 5\} = S(\text{EG}\neg\text{Heat})^2$
- $S(\text{Start} \land \text{EG}\neg\text{Heat})$

2not 6, because you can reach 7 from 6, where Heat is true
CTL model checking—example

How the algorithm proceeds:

- Let $S(\psi)$ be the set of states in which ψ holds.
- Initially, $S(\text{Start}) = \{2, 5, 6, 7\}$, $S(\neg \text{Heat}) = \{1, 2, 3, 5, 6\}$.
- For $S(\text{EG} \neg \text{Heat})$ we first find SCCs wrt. $\neg \text{Heat}$. I.e., $S' = \{1, 2, 3, 5, 6\}$, and SCC in S' is $\{1, 2, 3, 5\} = S(\text{EG} \neg \text{Heat})^2$.
- $S(\text{Start} \land \text{EG} \neg \text{Heat}) = \{2, 5\}$.
- To compute $S(\text{EF}(\text{Start} \land \text{EG} \neg \text{Heat}))$, set $T = S(\text{EG} \neg \text{Heat})$ and find all states from which states from T can be reached.

\[\text{not 6, because you can reach 7 from 6, where Heat is true}\]
CTL model checking—example

How the algorithm proceeds:

- Let $S(\psi)$ be the set of states in which ψ holds.
- Initially, $S(Start) = \{2, 5, 6, 7\}$, $S(\neg Heat) = \{1, 2, 3, 5, 6\}$.
- For $S(\text{EG} \neg Heat)$ we first find SCCs wrt. $\neg Heat$. I.e., $S' = \{1, 2, 3, 5, 6\}$, and SCC in S' is $\{1, 2, 3, 5\} = S(\text{EG} \neg Heat)^2$.
- $S(Start \land \text{EG} \neg Heat) = \{2, 5\}$.
- To compute $S(\text{EF}(Start \land \text{EG} \neg Heat))$, set $T = S(\text{EG} \neg Heat)$ and find all states from which states from T can be reached, i.e., $S(\text{EF}(Start \land \text{EG} \neg Heat)) = S$.

\[\text{not 6, because you can reach 7 from 6, where } Heat \text{ is true}\]
How the algorithm proceeds:

- Let $S(\psi)$ be the set of states in which ψ holds.
- Initially, $S(\text{Start}) = \{2, 5, 6, 7\}$, $S(\neg\text{Heat}) = \{1, 2, 3, 5, 6\}$.
- For $S(\text{EG}\neg\text{Heat})$ we first find SCCs wrt. $\neg\text{Heat}$. I.e., $S' = \{1, 2, 3, 5, 6\}$, and SCC in S' is $\{1, 2, 3, 5\} = S(\text{EG}\neg\text{Heat})^2$.
- $S(\text{Start} \land \text{EG}\neg\text{Heat}) = \{2, 5\}$.
- To compute $S(\text{EF}(\text{Start} \land \text{EG}\neg\text{Heat}))$, set $T = S(\text{EG}\neg\text{Heat})$ and find all states from which states from T can be reached, i.e., $S(\text{EF}(\text{Start} \land \text{EG}\neg\text{Heat})) = S$.
- Finally, $S(\neg\text{EF}(\text{Start} \land \text{EG}\neg\text{Heat})) = \overline{S(\text{EF}(\text{Start} \land \text{EG}\neg\text{Heat}))} = \emptyset$.

2. not 6, because you can reach 7 from 6, where Heat is true.
CTL model checking—example

How the algorithm proceeds:

- Let $S(\psi)$ be the set of states in which ψ holds.
- Initially, $S(\text{Start}) = \{2, 5, 6, 7\}$, $S(\neg \text{Heat}) = \{1, 2, 3, 5, 6\}$.
- For $S(\text{EG} \neg \text{Heat})$ we first find SCCs wrt. $\neg \text{Heat}$. I.e., $S' = \{1, 2, 3, 5, 6\}$, and SCC in S' is $\{1, 2, 3, 5\} = S(\text{EG} \neg \text{Heat})^2$
- $S(\text{Start} \land \text{EG} \neg \text{Heat}) = \{2, 5\}$.
- To compute $S(\text{EF} (\text{Start} \land \text{EG} \neg \text{Heat}))$, set $T = S(\text{EG} \neg \text{Heat})$ and find all states from which states from T can be reached, i.e., $S(\text{EF} (\text{Start} \land \text{EG} \neg \text{Heat})) = S$.
- Finally, $S(\neg \text{EF} (\text{Start} \land \text{EG} \neg \text{Heat})) = S(\text{EF} (\text{Start} \land \text{EG} \neg \text{Heat})) = \emptyset$.
- Property does not hold. :-(

\[^2\text{not 6, because you can reach 7 from 6, where Heat is true}\]
Binary decision diagrams

- Popular data structure for compactly and uniquely representing Boolean functions.
- Efficient algorithms known to manipulate BDDs according to the operations in Boolean logic.

Applications: there are many! In our context: to compactly represent Kripke structures.
Binary decision diagrams

Let $x \rightarrow y_0, y_1$ be the if-then-else operator defined by

$$x \rightarrow y_0, y_1 = (x \land y_0) \lor (\neg x \land y_1)$$

All other Boolean operations can be expressed in terms of this operator:

- $\neg x =$
Let \(x \rightarrow y_0, y_1 \) be the if-then-else operator defined by

\[
x \rightarrow y_0, y_1 = (x \land y_0) \lor (\neg x \land y_1)
\]

All other Boolean operations can be expressed in terms of this operator:

- \(\neg x = (x \rightarrow 0, 1) \)
- \(x \iff y = \)
Binary decision diagrams

Let $x \rightarrow y_0, y_1$ be the if-then-else operator defined by

$$x \rightarrow y_0, y_1 = (x \land y_0) \lor (\neg x \land y_1)$$

All other Boolean operations can be expressed in terms of this operator:

- $\neg x = (x \rightarrow 0, 1)$
- $x \iff y = x \rightarrow (y \rightarrow 1, 0), (y \rightarrow 0, 1)$
- etc.
Let $x \rightarrow y_0, y_1$ be the if-then-else operator defined by

$$x \rightarrow y_0, y_1 = (x \land y_0) \lor (\neg x \land y_1)$$

All other Boolean operations can be expressed in terms of this operator:

- $\neg x = (x \rightarrow 0, 1)$
- $x \iff y = x \rightarrow (y \rightarrow 1, 0), (y \rightarrow 0, 1)$
- etc.

Definition

The ITE-normal form (INF) is a Boolean expression built entirely from the ITE-operator. (You may have heard of other normal forms.)
Binary decision diagrams—how to obtain INF?

Definition

Shannon expansion: Given Boolean expression t,

$$t = x \rightarrow t[1/x], t[0/x] \text{ ("Shannon expansion of } t \text{ wrt. } x").$$

- If t contains no variables, it is equivalent to 0 or 1, i.e., in INF.
- Otherwise, perform Shannon expansion of t wrt. any of its variables x.
- Since $t[0/x]$ and $t[1/x]$ contain one variable less than t, one can recursively find INFs for both of these new terms; call them t_0 and t_1.
- INF for t is thus $x \rightarrow t_1, t_0$.
Binary decision diagrams—how to obtain INF?

Theorem

Any Boolean expression is equivalent to an expression in INF.

Proof.

See inductive INF construction.
Example: $t = (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2)$

Perform SE on variables ordered by x_1, y_1, x_2, y_2, then

$t = x_1 \rightarrow t_1, t_0$

$t_0 = y_1 \rightarrow 0, t_{00}$

$t_1 = y_1 \rightarrow t_{11}, 0$

$t_{00} = x_2 \rightarrow t_{001}, t_{000}$

$t_{11} = x_2 \rightarrow t_{111}, t_{110}$

$t_{000} = y_2 \rightarrow 0, 1$

$t_{001} = y_2 \rightarrow 1, 0$

$t_{110} = y_2 \rightarrow 0, 1$

$t_{111} = y_2 \rightarrow 1, 0$
Example: \(t = (x_1 \iff y_1) \land (x_2 \iff y_2) \)

Corresponding binary decision tree:

(Source: Henrik Reif Andersen’s lecture notes.)
Binary decision diagrams—how to obtain BDD?

Consider again:

\[
\begin{align*}
t &= x_1 \rightarrow t_1, t_0 \\
t_0 &= y_1 \rightarrow 0, t_{00} \\
t_1 &= y_1 \rightarrow t_{11}, 0 \\
t_{00} &= x_2 \rightarrow t_{001}, t_{000} \\
t_{11} &= x_2 \rightarrow t_{111}, t_{110} \\
t_{000} &= y_2 \rightarrow 0, 1 \\
t_{001} &= y_2 \rightarrow 1, 0 \\
t_{110} &= y_2 \rightarrow 0, 1 \\
t_{111} &= y_2 \rightarrow 1, 0
\end{align*}
\]

Note:

- Instead of \(t_{110} \) we could use \(t_{000} \).
- Substitute \(t_{110} \) for \(t_{000} \) on RHS of \(t_{11} \).
Binary decision diagrams—how to obtain BDD?

\[
\begin{align*}
t &= x_1 \rightarrow t_1, t_0 \\
t_0 &= y_1 \rightarrow 0, t_{00} \\
t_1 &= y_1 \rightarrow t_{11}, 0 \\
t_{00} &= x_2 \rightarrow t_{001}, t_{000} \\
t_{11} &= x_2 \rightarrow t_{111}, t_{000} \\
t_{000} &= y_2 \rightarrow 0, 1 \\
t_{001} &= y_2 \rightarrow 1, 0 \\
t_{111} &= y_2 \rightarrow 1, 0
\end{align*}
\]
Binary decision diagrams—how to obtain BDD?

\[
\begin{align*}
t &= x_1 \rightarrow t_1, t_0 \\
t_0 &= y_1 \rightarrow 0, t_{00} \\
t_1 &= y_1 \rightarrow t_{11}, 0 \\
t_{00} &= x_2 \rightarrow t_{001}, t_{000} \\
t_{11} &= x_2 \rightarrow t_{001/111}, t_{000} \\
t_{000} &= y_2 \rightarrow 0, 1 \\
t_{001} &= y_2 \rightarrow 1, 0 \\
t_{111} &= y_2 \rightarrow 1, 0
\end{align*}
\]
Binary decision diagrams—how to obtain BDD?

\[
\begin{align*}
 t &= x_1 \rightarrow t_1, t_0 \\
 t_0 &= y_1 \rightarrow 0, t_{00} \\
 t_1 &= y_1 \rightarrow t_{00/11}, 0 \\
 t_{00} &= x_2 \rightarrow t_{001}, t_{000} \\
 t_{11} &= x_2 \rightarrow t_{001}, t_{000} \\
 t_{000} &= y_2 \rightarrow 0, 1 \\
 t_{001} &= y_2 \rightarrow 1, 0
\end{align*}
\]
Binary decision diagrams—how to obtain BDD?

\[t = x_1 \rightarrow t_1, t_0 \]
\[t_0 = y_1 \rightarrow 0, t_{00} \]
\[t_1 = y_1 \rightarrow t_{00}, 0 \]
\[t_{00} = x_2 \rightarrow t_{001}, t_{000} \]
\[t_{000} = y_2 \rightarrow 0, 1 \]
\[t_{001} = y_2 \rightarrow 1, 0 \]
Binary decision diagrams—how to obtain BDD?

\[

t = x_1 \rightarrow t_1, t_0 \\
t_0 = y_1 \rightarrow 0, t_{00} \\
t_1 = y_1 \rightarrow t_{00}, 0 \\
t_{00} = x_2 \rightarrow t_{001}, t_{000} \\
t_{000} = y_2 \rightarrow 0, 1 \\
t_{001} = y_2 \rightarrow 1, 0
\]

Let us now view each subexpression as a node of a graph, where 0 and 1 are the only “terminal” nodes:
Binary decision diagrams—how to obtain BDD?

\[
\begin{align*}
t &= x_1 \rightarrow t_1, t_0 \\
t_0 &= y_1 \rightarrow 0, t_{00} \\
t_1 &= y_1 \rightarrow t_{00}, 0 \\
t_{00} &= x_2 \rightarrow t_{001}, t_{000} \\
t_{000} &= y_2 \rightarrow 0, 1 \\
t_{001} &= y_2 \rightarrow 1, 0
\end{align*}
\]

Let us now view each subexpression as a node of a graph, where 0 and 1 are the only “terminal” nodes:
Binary decision diagrams

Definition

A **BDD** is a rooted, directed acyclic graph (DAG) with

- one or two terminal nodes of out-degree zero labeled 0 or 1 and,

- a set of variable nodes u of out-degree two. The two outgoing edges are given by two functions $\text{low}(u)$ and $\text{high}(u)$. (In pictures, these are shown as dotted and solid lines, respectively). A variable $\text{var}(u)$ is associated with each variable node.
Definition

A BDD is ordered (OBDD) if on all paths through the graph the variables respect a given linear order $x_1 < x_2 < \ldots < x_n$. An OBDD is reduced if

- (uniqueness) no two distinct nodes u and v have the same variable name and low- and high-successor, i.e.,
 \[\text{var}(u) = \text{var}(v), \text{low}(u) = \text{low}(v), \text{high}(u) = \text{high}(v) \Rightarrow u = v \]

- (no redundancy) no variable node u has identical low- and high-successor, i.e., $\text{low}(u) \neq \text{high}(u)$.
Binary decision diagrams

Various OBDDs. Which ones are reduced, which ones are not? What Boolean functions are expressed in those?
Binary decision diagrams

ROBDDs are canonical.
Binary decision diagrams

ROBDDs are canonical.

Let $f : \mathbb{B}^n \rightarrow \mathbb{B}$. Nodes u of ROBDD for f inductively define Boolean expressions t^u:

- $t^0 = 0$
- $t^1 = 1$
- $t^u = \text{var}(u) \rightarrow t^{\text{high}}(u), t^{\text{low}}(u)$

Let $x_1 < \ldots < x_n$ be var. ordering, then f^u maps $(b_1, \ldots, b_n) \in \mathbb{B}^n$ to the truth value of $t^u[b_1/x_1, \ldots, b_n/x_n]$.
Binary decision diagrams

ROBDDs are canonical.
Let \(f : \mathbb{B}^n \rightarrow \mathbb{B} \). Nodes \(u \) of ROBDD for \(f \) inductively define Boolean expressions \(t^u \):

- \(t^0 = 0 \)
- \(t^1 = 1 \)
- \(t^u = \text{var}(u) \rightarrow t^{\text{high}}(u), t^{\text{low}}(u) \)

Let \(x_1 < \ldots < x_n \) be var. ordering, then \(f^u \) maps \((b_1, \ldots, b_n) \in \mathbb{B}^n\) to the truth value of \(t^u[b_1/x_1, \ldots, b_n/x_n] \).

Theorem

For any function \(f : \mathbb{B}^n \rightarrow \mathbb{B} \) there is exactly one ROBDD \(u \) with variable ordering \(x_1 < x_2 < \ldots < x_n \) s.t. \(f^u = f(x_1, \ldots, x_n) \).
Binary decision diagrams

Proof.

By induction (cf. Andersen lecture notes p. 13f.).
What to do with ROBDDs? Let $f, g : \mathbb{B}^n \rightarrow \mathbb{B}$

- How do you check validity of f if given as ROBDD?
Binary decision diagrams

What to do with ROBDDs? Let $f, g : \mathbb{B}^n \to \mathbb{B}$

- How do you check validity of f if given as ROBDD? (compare to non-terminal node; $O(1)$ vs coNP for formulae)
Binary decision diagrams

What to do with ROBDDs? Let $f, g : \mathbb{B}^n \rightarrow \mathbb{B}$

- How do you check validity of f if given as ROBDD? (compare to non-terminal node; $O(1)$ vs coNP for formulae)
- How do you check equivalence of f and g if given as ROBDDs?
What to do with ROBDDs? Let $f, g : \mathbb{B}^n \rightarrow \mathbb{B}$

- How do you check validity of f if given as ROBDD? (compare to non-terminal node; $O(1)$ vs coNP for formulae)
- How do you check equivalence of f and g if given as ROBDDs? (compare nodes; $O(n)$ vs coNP for formulae)
Consider ROBDD for \((x_1 \Leftrightarrow y_1) \land (x_2 \Leftrightarrow y_2)\)

... but different var. ordering of \(x_1 < x_2 < y_1 < y_2\):
Consider ROBDD for \((x_1 \Leftrightarrow y_1) \land (x_2 \Leftrightarrow y_2)\)

...but different var. ordering of \(x_1 < x_2 < y_1 < y_2\):
ROBDDs—construction

We saw how to construct OBDD, but how to construct ROBBD?
We saw how to construct OBDD, but how to construct ROBBD?

- "Construct OBDD and reduce it until you can't anymore."
ROBDDs—construction

We saw how to construct OBDD, but how to construct ROBBD?

- “Construct OBDD and reduce it until you can’t anymore.”
- Reduce OBDD on-the-fly (i.e., during construction).
ROBDDs—construction

- Let $T : u \mapsto (i, l, h)$ be a table which maps every node to an index, a low- and high-index.
- Let $H : (i, l, h) \mapsto u$ be the inverse of T to look up nodes (i.e., $T(u) = (i, l, h)$ iff $H(i, l, h) = u$)
Let $T : u \mapsto (i, l, h)$ be a table which maps every node to an index, a low- and high-index.

Let $H : (i, l, h) \mapsto u$ be the inverse of T to look up nodes (i.e., $T(u) = (i, l, h)$ iff $H(i, l, h) = u$)
ROBDDs—construction

Lookup a node i in H and return it, or create new one and return handle to it:

\[
\text{Mk}[T, H](i, l, h) \\
1: \text{if } l = h \text{ then return } l \\
2: \text{else if member}(H, i, l, h) \text{ then} \\
3: \quad \text{return lookup}(H, i, l, h) \\
4: \text{else } u \leftarrow \text{add}(T, i, l, h) \\
5: \quad \text{insert}(H, i, l, h, u) \\
6: \quad \text{return } u
\]

($\text{Mk}[T, H]$ means that Mk uses data structures T and $H.$)
ROBDDs—construction

Lookup a node i in H and return it, or create new one and return handle to it:

\[
\text{Mk}[T, H](i, l, h) =
\begin{cases}
 \text{return } l & \text{if } l = h \\
 \text{else if } \text{member}(H, i, l, h) \text{ then return } \text{lookup}(H, i, l, h) \\
 \text{else } u \leftarrow \text{add}(T, i, l, h) \\
 \text{insert}(H, i, l, h, u) \\
 \text{return } u
\end{cases}
\]

($MK[T, H]$ means that MK uses data structures T and $H.$)

What is the running time of MK?
ROBDDs—construction

Lookup a node i in H and return it, or create new one and return handle to it:

\[
\text{Mk}[T, H](i, l, h) \\
1: \quad \text{if } l = h \text{ then return } l \\
2: \quad \text{else if } \text{member}(H, i, l, h) \text{ then} \\
3: \quad \quad \text{return } \text{lookup}(H, i, l, h) \\
4: \quad \text{else } u \leftarrow \text{add}(T, i, l, h) \\
5: \quad \quad \text{insert}(H, i, l, h, u) \\
6: \quad \text{return } u
\]

($\text{MK}[T, H]$ means that MK uses data structures T and H.)

What is the running time of MK?

Can be implemented in $O(1)$ using hash tables.
ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).
Output: ROBBD of t.

$$\text{BUILD}[T, H](t)$$
1: function BUILD'(t, i) =
2: if $i > n$ then
3: if t is false then return 0 else return 1
4: else $v_0 \leftarrow$ BUILD'(t[0/x_i], $i + 1$)
5: $v_1 \leftarrow$ BUILD'(t[1/x_i], $i + 1$)
6: return MK(i, v_0, v_1)
7: end BUILD'
8:
9: return BUILD'(t, 1)
ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).

Output: ROBBD of t.

\[
\text{\textbf{BUILD}}[T, H](t)
\]

1: function \textbf{BUILD}'(t, i) =
2: \hspace{1em} if $i > n$ then Evaluation
3: \hspace{2em} if t is false then return 0 else return 1
4: \hspace{2em} else $v_0 \leftarrow \text{\textbf{BUILD}}'(t[0/x_i], i + 1)$
5: \hspace{2em} $v_1 \leftarrow \text{\textbf{BUILD}}'(t[1/x_i], i + 1)$
6: \hspace{1em} return \text{MK}(i, v_0, v_1) Shannon expansion
7: end \textbf{BUILD}'
8:
9: return \text{\textbf{BUILD}}'(t, 1)
ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).

Output: ROBBD of t.

\[
\text{BUILD}[T, H](t)
\]

1: \hspace{1em} \textbf{function} \ BUILD'(t, i) =
2: \hspace{1em} \textbf{if} \ i > n \ \textbf{then} \ \textbf{Evaluation}
3: \hspace{2em} \textbf{if} \ t \ \textbf{is false} \ \textbf{then} \ \textbf{return} \ 0 \ \textbf{else} \ \textbf{return} \ 1
4: \hspace{2em} \textbf{else} \ \textbf{return} \ \textbf{BUILD}'(t[0/x_i], i + 1)
5: \hspace{2em} v_1 \ \leftarrow \ \textbf{BUILD}'(t[1/x_i], i + 1)
6: \hspace{2em} \textbf{return} \ \text{MK}(i, v_0, v_1) \ \} \ \text{Shannon expansion}
7: \hspace{1em} \textbf{end BUILD}'
8: \hspace{1em} \textbf{return} \ \text{BUILD}'(t, 1)

What is the running time of \text{BUILD}?
ROBDDs—construction

Input: t be Boolean expression of n var (with fixed var. ordering).

Output: ROBBD of t.

```
BUILD[T, H](t)
1: function BUILD'(t, i) =
2:   if $i > n$ then Evaluation
3:     if $t$ is false then return 0 else return 1
4:   else $v_0 \leftarrow$ BUILD'(t[0/$x_i$], $i + 1$)
5:     $v_1 \leftarrow$ BUILD'(t[1/$x_i$], $i + 1$)
6:     return MK($i, v_0, v_1$) Shannon expansion
7: end BUILD'
8:
9: return BUILD'(t, 1)
```

What is the running time of BUILD?

It's bad: $O(2^n)$.
ROBDDs—construction

Intuitive explanation for bad running time:

BUILD callgraph on \((x_1 \Leftrightarrow x_2) \lor x_3:\)

Can we do better?

Andreas Bauer

NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification
Intuitive explanation for bad running time:

BUILD callgraph on \((x_1 \leftrightarrow x_2) \lor x_3:\)

Can we do better?

One can optimise using divide & conquer, etc. But worst-case no. of calls unavoidable as validity is \(O(1)\), yet in coNP for formulae.
ROBDDs—Boolean operations

\textbf{APPLY}[T,H](op,u_1,u_2)

1: \textit{init}(G)

2:

3: \textbf{function APP}(u_1,u_2) =

4: \quad \textbf{if } G(u_1,u_2) \neq \text{ empty \ then return } G(u_1,u_2)

5: \quad \textbf{else if } u_1 \in \{0,1\} \ \text{ and } u_2 \in \{0,1\} \ \text{ then } u \leftarrow \text{op}(u_1,u_2)

6: \quad \textbf{else if } \text{var}(u_1) = \text{var}(u_2) \ \text{ then}

7: \quad \quad u \leftarrow \text{MK}(\text{var}(u_1), \text{APP}(\text{low}(u_1),\text{low}(u_2)), \text{APP}(\text{high}(u_1),\text{high}(u_2)))

8: \quad \textbf{else if } \text{var}(u_1) < \text{var}(u_2) \ \text{ then}

9: \quad \quad u \leftarrow \text{MK}(\text{var}(u_1), \text{APP}(\text{low}(u_1),u_2), \text{APP}(\text{high}(u_1),u_2))

10: \quad \quad \textbf{else } (*) \text{var}(u_1) > \text{var}(u_2) (*)

11: \quad \quad u \leftarrow \text{MK}(\text{var}(u_2), \text{APP}(u_1,\text{low}(u_2)), \text{APP}(u_1,\text{high}(u_2)))

12: \quad G(u_1,u_2) \leftarrow u

13: \quad \textbf{return } u

14: \textbf{end APP}

15:

16: \textbf{return} APP(u_1,u_2)

\textbf{Uses Shannon expansion:}

- \(t = x \rightarrow t[1/x], t[0/x] \)
- \((x \rightarrow t_1, t_2) \text{ op } (x \rightarrow t'_1, t'_2) = x \rightarrow t_1 \text{ op } t'_1, t_2 \text{ op } t'_2 \)
- \((x \rightarrow t_1, t_2) \text{ op } t_3 = x \rightarrow t_1 \text{ op } t_3, t_2 \text{ op } t_3 \)
ROBDDs—SatCount

Task: Count satisfying assignments for ROBBD u

Idea: Given some node, u . . .

- determine $\#sat(low(u))$ and $\#sat(high(u))$ first;
- let there be $n \geq 0$ nodes in between u and $low(u)$ (resp. $high(u)$); these n nodes can be assigned truth values arbitrarily, but add 2^n more assignments in total, respectively.
ROBDDs— SatCount

Task: Count satisfying assignments for ROBBD u

Idea: Given some node, u . . .

- determine $\#sat(low(u))$ and $\#sat(high(u))$ first;
- let there be $n \geq 0$ nodes in between u and $low(u)$ (resp. $high(u)$); these n nodes can be assigned truth values arbitrarily, but add 2^n more assignments in total, respectively.

$$\text{SatCount}[T](u)$$

1: function $count(u)$
2: if $u = 0$ then $res \leftarrow 0$
3: else if $u = 1$ then $res \leftarrow 1$
4: else $res \leftarrow 2^{var(low(u))-var(u)-1} \times count(low(u))$
5: \hspace{1cm} + $2^{var(high(u))-var(u)-1} \times count(high(u))$
6: return res
7: end $count$
ROBDDs—AnySat & AllSat

\textbf{AnySat}(u)

1: \textbf{if } u = 0 \textbf{ then Error}
2: \textbf{else if } u = 1 \textbf{ then return } []
3: \textbf{else if } \text{low}(u) = 0 \textbf{ then return } [x_{\text{var}(u)} \mapsto 1, \text{ AnySat}(\text{high}(u))] \newline
4: \textbf{else return } [x_{\text{var}(u)} \mapsto 0, \text{ AnySat}(\text{low}(u))]

\textbf{AllSat}(u)

1: \textbf{if } u = 0 \textbf{ then return } \langle \rangle \\
2: \textbf{else if } u = 1 \textbf{ then return } \langle [\] \rangle \\
3: \textbf{else return}
4: \langle \text{add } [x_{\text{var}(u)} \mapsto 0] \text{ in front of all truth-assignments in AllSat(low(u))}, \rangle \\
5: \text{add } [x_{\text{var}(u)} \mapsto 1] \text{ in front of all truth-assignments in AllSat(high(u))} \rangle
ROBDDs—algorithm running times

<table>
<thead>
<tr>
<th>Function</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mk(i, u_0, u_1)</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Build(t)</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>Apply(op, u_1, u_2)</td>
<td>$O(</td>
</tr>
<tr>
<td>Restrict(u, j, b)</td>
<td>$O(</td>
</tr>
<tr>
<td>SatCount(u)</td>
<td>$O(</td>
</tr>
<tr>
<td>AnySat(u)</td>
<td>$O(</td>
</tr>
<tr>
<td>AllSat(u)</td>
<td>$O(</td>
</tr>
<tr>
<td>Simplify(d, u)</td>
<td>$O(</td>
</tr>
</tbody>
</table>
Symbolic model checking—why?/what?

- Typically, one doesn’t directly model system in terms of Kripke structure.
Symbolic model checking—why?/what?

- Typically, one doesn’t directly model system in terms of Kripke structure.
- Translation of system model $\mathcal{M} \rightarrow M$ (cf. on-the-fly alg.)
Symbolic model checking—why?/what?

- Typically, one doesn’t directly model system in terms of Kripke structure.
- Translation of system model $\mathcal{M} \rightarrow M$ (cf. on-the-fly alg.)
- However, M can be huge! (State explosion.)
Symbolic model checking—why?/what?

- Typically, one doesn’t directly model system in terms of Kripke structure.
- Translation of system model $\mathcal{M} \rightarrow M$ (cf. on-the-fly alg.)
- However, M can be huge! (State explosion.)
- Represent states/transition system of M symbolically using ROBDDs (i.e., one ROBDD encodes multiple states/transitions of M).
Symbolic model checking—why?/what?

- Typically, one doesn’t directly model system in terms of Kripke structure.
- Translation of system model $\mathcal{M} \rightarrow M$ (cf. on-the-fly alg.)
- However, M can be huge! (State explosion.)
- Represent states/transition system of M symbolically using ROBDDs (i.e., one ROBDD encodes multiple states/transitions of M).
- Expand state space inductively in a stepwise manner using ROBDD operations.
Symbolic model checking—basic idea

For example:

![Transition diagram](image)
Symbolic model checking—basic idea

- For example:

- Transition $s_1 \rightarrow s_2$ is $a \land b \land a' \land \neg b'$
Symbolic model checking—basic idea

- For example:

- Transition $s_1 \rightarrow s_2$ is $a \land b \land a' \land \neg b'$

- Whole TS:
 $$(a \land b \land a' \land \neg b') \lor (a \land \neg b \land a' \land \neg b') \lor (a \land \neg b \land a' \land b')$$
Symbolic model checking—example

Milner’s scheduler:

- $t_i = 1$ iff task i is running
- $h_i = 1$ iff task i has token
- $c_i = 1$ iff task $i-1$ has released token (and i not picked it up yet)

Scheduler job: start at task 1, and schedule all tasks such that all are executed. Tasks can terminate in any order.
Symbolic model checking—example

- Each task can be described as an individual state-transition system over variables t_i, h_i, c_i, respectively.
- First, formalise behaviour:
 - if $c_i = 1 \land t_i = 0$ then $t_i, c_i, h_i := 1, 0, 1$
 - if $h_i = 1$ then $c_{(i \mod N)+1}, h_i := 1, 0$

S subset of unprimed vars. Useful to state something about vars that changed:

$$\text{unchanged}_S = \bigwedge_{x \in S} x = x'$$

(Or, $\text{assigned}_{S'} = \text{unchanged}_{\overline{x \setminus S'}}$, i.e., all vars not in S' are unchanged.)
Symbolic model checking—example

We can now define P_i, the transitions of task i over the vars \vec{x}, \vec{x}' as:

$$P_i = (c_i \land \neg t_i \land t'_i \land \neg c'_i \land h'_i \land \text{assigned}\{c_i, t_i, h_i\})$$

$$\lor (h_i \land c'_i \mod N + 1 \land \neg h'_i \land \text{assigned}\{(c_i \mod N + 1, h_i)\})$$

Termination of task:

$$E_i = t_i \land \neg t'_i \land \text{assigned}\{t_i\}$$

All possible transitions:

$$T = P_1 \lor \ldots \lor P_n \lor E_1 \lor \ldots \lor E_n$$

Initial state (only c_1 has token):

$$I = \neg \vec{t} \land \neg \vec{h} \land c_1 \land \neg c_2 \land \ldots \land \neg c_N$$
Symbolic model checking—example

We can now start asking questions like

- Is it the case that all reachable states only ever have one token?
- Is task t_i always scheduled after t_{i-1}?
- Deadlock: can we reach a state where no more transitions can be taken?
- ...
Symbolic model checking—example

We can now start asking questions like

- Is it the case that all reachable states only ever have one token?
- Is task \(t_i \) always scheduled after \(t_{i-1} \)?
- Deadlock: can we reach a state where no more transitions can be taken?
- \(\ldots \)

Need to compute predicate over the unprimed vars, \(R \), characterising exactly the set of states reachable from \(I \).
Symbolic model checking—how to compute R

Some observations:

- R needs to satisfy I or within finite number of transitions can be reached from I.

Suggests iterative process:

Let $R_0 = 0$ and compute R_{k+1} as disjunction of I and the set of states reachable from R_k.

Andreas Bauer NICTA & ANU

COMP4600 Advanced algorithms: Algorithms for verification
Some observations:

- R needs to satisfy I or within finite number of transitions can be reached from I.
- Suggests iterative process: R^0, R^1, ...
Symbolic model checking—how to compute R

Some observations:

- R needs to satisfy I or within finite number of transitions can be reached from I.
- Suggests iterative process: R^0, R^1, R^2, \ldots
- Let $R^0 = 0$ and compute R^{k+1} as disjunction of I and the set of states reachable from R^k.
Symbolic model checking—how to compute R

Some observations:

- R needs to satisfy I or within finite number of transitions can be reached from I.
- Suggests iterative process: R^0, R^1, ...
- Let $R^0 = 0$ and compute R^{k+1} as disjunction of I and the set of states reachable from R^k.

```
REACHABLE-STATES(I, T, x, x')
1:   R ← 0
2:   repeat
3:     R' ← R
4:     R ← I ∨ (∃x. T ∧ R)[x/x']
5:   until R' = R
6:   return R
```