Module Ltl

1. This is the main data structure representing an LTL formula. Notice that Var is of type string now.
```
type \(l t l_{-}\)formula \(=\)
    True
    False
    Var of string
    Or of ltl_formula \(\times\) ltl_formula
    And of ltl_formula \(\times\) ltl_formula
    Neg of \(l\) tl_-formula
    Iff of ltl_formula \(\times\) ltl_formula
    Imp of ltl_formula \(\times\) ltl_formula
    Until of ltl_formula \(\times\) ltl_formula
    Next of ltl_formula
    Glob of ltl_formula
    | Ev of ltl_formula
```

2. This function prints a formula f on the standard output.
let rec show_formula $f=$ match f with
Var $x \rightarrow$ Printf.printf "Varı\"\%s\"" x
\mid True \rightarrow Printf.printf "True"
False \rightarrow Printf.printf "False"
Glob $x \rightarrow$ Printf.printf "Glob $_{\cup}(" ;$ show_formula $x ;$ Printf.printf ")"
$\mid E v x \rightarrow$ Printf.printf "Evப("; show_formula x; Printf.printf ")"
\mid Neg $x \rightarrow$ Printf.printf "Negப("; show_formula x; Printf.printf ")"
| Next $x \rightarrow$ Printf.printf "Next ${ }^{\prime}(" ;$ show_formula $x ;$ Printf.printf ")"
\mid And (x,y) \rightarrow Printf.printf "Andப("; show_formula x; Printf.printf ", ப";
show_formula y; Printf.printf ")"
\mid Or $(x, y) \rightarrow$ Printf.printf "Or \sqcup ("; show_formula $x ;$ Printf.printf ", ь";
show_formula y; Printf.printf ")"

show_formula y; Printf.printf ")"
\mid Iff $(x, y) \rightarrow$ Printf.printf "Iff $\sqcup(" ;$ show_formula $x ;$ Printf.printf ", ப";
show_formula y; Printf.printf ")"
$\mid \operatorname{Imp}(x, y) \rightarrow$ Printf.printf $" \operatorname{Imp} \sqcup(" ;$ show_formula $x ;$ Printf.printf ", ப";
show_formula y; Printf.printf ")"
3. This function takes a formula f and simplifies it according to the laws of Boolean algebra.
```
let rec \(\operatorname{simp} f=\)
    match \(f\) with
            Neg True \(\rightarrow\) False
            Neg False \(\rightarrow\) True
    \(\mid \operatorname{Neg}(\) Neg e) \(\rightarrow\) simp e
    | Neg e \(\rightarrow\) Neg (simp e)
        And (_, False) \(\rightarrow\) False
        And (False, _) \(\rightarrow\) False
        And (True, e) \(\rightarrow\) simp e
        And ( \(e\), True) \(\rightarrow\) simp e
        Or (True, _) \(\rightarrow\) True
        Or (False, e) \(\rightarrow \operatorname{simp} e\)
        Or (_, True) \(\rightarrow\) True
        \(\mid \operatorname{Or}(e\), False \() \rightarrow \operatorname{simp} e\)
        \(\operatorname{Or}(a, b) \rightarrow \operatorname{Or}(\operatorname{simp} a, \operatorname{simp} b)\)
        And \((a, b) \rightarrow\) And (simp a, simp b)
        \(\operatorname{Imp}(a, b) \rightarrow \operatorname{simp}(\) Or (Neg \(a, b))\)
        \(\operatorname{Iff}(a, b) \rightarrow \operatorname{simp}(\operatorname{And}(\operatorname{simp}(\operatorname{Imp}(a, b)), \operatorname{simp}(\operatorname{Imp}(b, a))))\)
        \(-\rightarrow f\)
```

4. Returns the closure of LTL formula f in the form of a list, e.g., closure (Glob (Var "a"))
would return [Var "a"; Glob (Var "a")].
let rec closure $f=$
match f with
And $(a, b) \rightarrow f::($ closure $a) @($ closure $b)$
$\operatorname{Or}(a, b) \rightarrow f::($ closure $a) @($ closure b)
Var a \rightarrow [Var a]
Neg $a \rightarrow f::($ closure $a)$
$\operatorname{Imp}(a, b) \rightarrow$ closure $(\operatorname{simp}(\operatorname{Imp}(a, b)))$
$\operatorname{Iff}(a, b) \rightarrow$ closure $(\operatorname{simp}(\operatorname{Iff}(a, b)))$
\mid Next $a \rightarrow f::($ closure a)
$\mid \operatorname{Until}(a, b) \rightarrow f::($ closure $a) @($ closure $b)$
| Glob $a \rightarrow f::($ closure a)
| Ev a $\rightarrow f$:: (closure a)
$\mid-\rightarrow[f ; N e g f]$
5. Returns a list of used variables in a formula f, e.g., if f is Glob (Var "a"), then [Var "a"] is returned.
```
let rec variables \(f=\)
    match \(f\) with
        And \((a, b) \rightarrow(\) variables \(a) @(\) variables \(b)\)
        \(\operatorname{Until}(a, b) \rightarrow(\) variables \(a) @(\) variables \(b)\)
        \(\operatorname{Or}(a, b) \rightarrow(\) variables \(a) @(v a r i a b l e s ~ b)\)
        | Glob a \(\rightarrow\) variables a
        \(\mid\) Neg \(a \rightarrow\) variables \(a\)
        | Ev a \(\rightarrow\) variables a
        \(\mid\) Next \(a \rightarrow\) variables a
        \(\mid \operatorname{Var} x \rightarrow[\) Var \(x]\)
        \(\mid-\rightarrow[]\)
```


Module Aba

6. In a sense, this function is the "heart" of the program, although one of the most easy to write bits of code, actually. target takes some state f, an LTL formula, and some list of variables, s. We have $s \subseteq \Sigma$, where $\Sigma=2^{A P}$ is an alphabet consisting of the powerset of a set of variables.
target basically computes the successor state for f upon processing the input $s .{ }^{1}$
let rec target $f s=$
match f with
Var $a \rightarrow$
if $($ List.exists $((=)(\operatorname{Var} a)) s)$ then True else False
\mid And $(a, b) \rightarrow$ Ltl.simp (And (target a s, target bs))
$\mid \operatorname{Or}(a, b) \rightarrow$ Ltl.simp $($ Or (target a s, target $b s))$
$\mid \operatorname{Until}(a, b) \rightarrow$
Ltl.simp (Or (target bs, (Ltl.simp (And (target a s, Until (a, b))))))
$\mid \operatorname{Imp}(a, b) \rightarrow \operatorname{target}(L t l . \operatorname{simp}(\operatorname{Imp}(a, b))) s$
$\operatorname{Iff}(a, b) \rightarrow$ target (Ltl.simp (Iff $(a, b))) s$
Next $a \rightarrow a$
| Glob a \rightarrow Ltl.simp (And (target a s, Glob a))
[^0]```
| Ev a \(\rightarrow\) Ltl.simp (Or (target a s, Ev a))
Neg \(a \rightarrow\) Ltl.simp (Neg (target a s))
\(-\rightarrow f\)
```

7. transitions returns all the possible transitions within an alternating Buchi automaton for a set of states states, where each element in the list is an LTL formula. Usually states would contain the closure of some LTL specification. alphabet is the input alphabet of the alternating Buchi automaton.
let rec transitions states alphabet $=$
match states with
```
 [] \(\rightarrow\) []
 \(s::\) st \(\rightarrow\)
 let succ_states \(=(\) List.map \((\operatorname{fun} p \rightarrow s, p,(\) target s \(p))\) alphabet \()\) in
 succ_states @ (transitions st alphabet)
```

8. This function takes as input a list of formulas and prints it to standard output. Notice that the argument to show_formula_list will usually just contain elements of the form Var string, since it is used to print an automaton's input symbols which in turn, are elements of an alphabet.
```
let rec show_formula_list \(=\)
 function
 | [] \(\rightarrow\) Printf.printf ""
 \(\mid x:: y:: x s \rightarrow\) Ltl.show_formula \(x\);
 printf "; \(\sqcup\) "; Ltl.show_formula y;
 show_formula_list xs
 \(\mid x:: x s \rightarrow\) Ltl.show_formula \(x\);
 show_formula_list xs
```

9. show_transitions takes a list of transitions, where each list element is a triple (ltl_formula, [ltl_form and prints it to standard output.
```
let rec show_transitions \(=\)
 function
 | [] \(\rightarrow\) Printf.printf ""
 \(\mid(s, p, t):: t t \rightarrow\)
 Printf.printf " [(";
 show_formula s;
 Printf.printf "),七["; show_formula_list p; printf "], ப(";
 show_formula \(t\);
 Printf.printf ")]\n";
 show_transitions tt
```

10. succ_states takes a list of transitions (of an alternating Buchi automaton) and some state $s \in L T L$, and returns all immediate successor states of $s$, i.e., all states reachable via taking one transition only.
```
let succ_states \(t s=\)
 let \(r\) L \(=\) List.filter (fun \(h \rightarrow\) match \(h\) with \(\left(s r c,_{-}\right.\),) \(\rightarrow\)
 if \(s=s r c\)
 then true
 else false) \(t\) in
 List.map (fun \(h \rightarrow\) match \(h\) with \((-,-, d s t) \rightarrow d s t) r t\)
```

11. unfold_and_or takes a list of LTL formulas whose elements may be conjunctions or disjunctions of formulas. It returns the list of formulas, but all conjunctions and disjunctions are "unfolded" in a sense that an entry $a \vee b$ becomes $[a ; b]$, respectively for $\wedge$.
let rec $u n f o l d_{-} a n d_{-} o r=$
function
```
| [] \(\rightarrow\) []
 | (And \((a, b)):: f t \rightarrow a:: b::\) unfold_and_or ft
 | \((\) Or \((a, b)):: f t \rightarrow a:: b::\) unfold_and_or ft
 \(\mid f:: f t \rightarrow f::\) unfold_and_or ft
```

12. Function returns true if state $q \in L T L$ is reachable in a list of transitions $t$ with initial state $i \in L T L$, otherwise false.
let rec has_path ti $q=$
if $i=q$ then true
else
(* first, get all immediate successors of i: *)
let $r=$ succ_states $t i$ in
(* we have to unfold all And and Or states: *)
let $r=$ unfold_and_or $r$ in
(* we have to remove cycles, or the algorithm does not terminate: $*$ )
let $r=$ List.filter $((\neq) i) r$ in
match $r$ with
[] $\rightarrow$ false
$\mid-\rightarrow$
if List.mem q r
then true
else List.for_all (fun $r \rightarrow$ has_path $t r q$ ) $r$
13. This function "prunes away" unreachable states and their respective transitions, where $t$ is a list of transitions of an alternating Buchi automaton, $i \in L T L$ is the initial state of the
automaton，and $s$ a list of states of the automaton，where each $s_{i} \in s$ is an LTL formula．${ }^{2}$
```
let prune_transitions t i =
 (* first, compute a set of all reachable states: *)
 let rs = List.filter (fun s -> has_path t i s) (closure i) in
 (* then remove all transitions which do not cover any of those states: *)
 List.filter (fun t match t with (s,_,_) }
 if (List.mem s rs)
 then true
 else false) }
```


## Module Ltl＿parser

14．Bit of an ugly definition to make a lexer consisting of the keywords in the given list． lexer is basically a function which takes an input stream and produces an output token stream．

```
let lexer =
 Genlex.make_lexer
 ["&"; "|"; "G"; "U"; "X"; "F"; "->"; "<->"; "True"; "False"; "("; ")"; "-"]
```

15．Definition of a recursive－descent stream parser．parse＿formula is a function which takes a token stream and returns an LTL formula．It is mutually recursive，giving rise to precedence of operators．

```
let rec parse_atom = parser
 | [〈'Kwd "-"; e1 = parse_atom \(\rangle] \rightarrow\) Neg (e1)
 [〈'Ident c 〉] \(\rightarrow\) Var \(c\)
 [〈'Kwd"("; e = parse_formula; 'Kwd")" >] \(\rightarrow e\)
and parse_formula \(=\) parser
 \(\mid[\langle e 1=\) parse_and; stream \(\rangle] \rightarrow\)
 (parser
 | [〈'Kwd "|"; e2 = parse_formula 〉] \(\rightarrow\) Or (e1, e2)
 | [〈'Kwd "U"; e2 = parse_formula \(\rangle] \rightarrow \operatorname{Until}(e 1, e 2)\)
 | [〈'Kwd"->"; e2 = parse_formula \(\rangle] \rightarrow \operatorname{Imp}(e 1, e 2)\)
 | [〈'Kwd"<->"; e2 = parse_formula \(\rangle] \rightarrow\) Iff (e1, e2)
 | [〈〉] \(\rightarrow\) e1) stream
```

[^1]```
and parse_and \(=\) parser
    \(\mid[\langle\) e1 = parse_atom; stream \(\rangle] \rightarrow\)
        (parser
            \(\mid[\langle\) 'Kwd "\&"; e2 = parse_and \(\rangle] \rightarrow\) And (e1, e2)
            | [ \(\rangle \rightarrow\) e1) stream
    \([\langle\) e1 = parse_unary \(\rangle] \rightarrow\) e1
and parse_unary \(=\) parser
    | [〈'Kwd "G"; e1 = parse_and \(\rangle] \rightarrow\) Glob (e1)
    | [〈'Kwd "F"; e1 = parse_and 〉] \(\rightarrow E v(e 1)\)
    \(\mid[\langle ' K w d\) "X"; e1 \(=\) parse_and \(\rangle] \rightarrow \operatorname{Next}(e 1)\)
```


Module Ltl2aba

16．The program＇s main function．It accepts from the standard input a string which contains an LTL formula．Then it converts this string into an ltl＿formula data type，and prints the transitions of an alternating Buchi automaton corresponding to the formula to the standard output．

```
let _ =
    let formula \(=\)
        Ltl_parser.parse_formula(lexer(Stream.of_string Sys.argv.(1))) in
    let alphabet \(=\) Set_list.powerset (Ltl.variables formula) in
    let all_transitions =
        transitions (closure formula) alphabet in
    let min_transitions \(=\) prune_transitions all_transitions formula in
    Aba.show_transitions min_transitions
```


Index

Aba (module), 6, 16, 16
And, 1, 3, 6
closure, 4, 4, 13, 16
Ev, 1, 6
False, 1, 3, 6
Glob, 1, 6
has_path, 12, 12, 13
Iff, 1, 4, 6
Imp, 1, 3, 4, 6
Ltl (module), 1, 6-8, 16, 16
Ltt2aba (module), 16
ltl_formula (type), 1, 1
Ltl_parser (module), 14, 16, 16
Neg, 1, 3, 4, 6
Next, $\mathbf{1}$
Or, 1, 3, 6
prune_transitions, 13, 16
show_formula, 2, 2, 8, 9
show_formula_list, $\mathbf{8 , 8 , 9}$
show_transitions, 9, 9, 16
simp, 3, 3, 4, 6
succ_states, 10,12
target, $\mathbf{6 , 6 , 7}$
transitions, 7, 7, 16
True, 1, 3, 6
unfold_and_or, 11, 11, 12
Until, 1, 6
Var, 1, 4-6
variables, $\mathbf{5}, 5,16$

[^0]: ${ }^{1}$ Notice how close this function is to its corresponding mathematical definition of δ, the state transition function for alternating Buchi automata:

 $$
 \begin{array}{ll}
 \delta(\text { true }, a) & =\text { true } \\
 \delta(\varphi \vee \psi, a) & =\delta(\varphi, a) \vee \delta(\psi, a) \\
 \delta(\neg \varphi, a) & =\neg \delta(\varphi, a) \\
 \delta(X \varphi, a) & =\varphi \\
 \delta(\varphi U \psi) & =\delta(\psi, a) \vee \delta(\varphi, a) \wedge \varphi U \psi \ldots \text { and so on. }
 \end{array}
 $$

[^1]: ${ }^{2}$ This shows again how sets are realised in terms of lists here．

