
Module Ltl §1 1

Module Ltl

1. This is the main data structure representing an LTL formula. Notice that Var is of type
string now.

type ltl formula =
True

| False

| Var of string

| Or of ltl formula × ltl formula

| And of ltl formula × ltl formula

| Neg of ltl formula

| Iff of ltl formula × ltl formula

| Imp of ltl formula × ltl formula

| Until of ltl formula × ltl formula

| Next of ltl formula

| Glob of ltl formula

| Ev of ltl formula

2. This function prints a formula f on the standard output.

let rec show formula f =
match f with

Var x → Printf .printf "Var \"%s\"" x

| True → Printf .printf "True"

| False → Printf .printf "False"

| Glob x → Printf .printf "Glob ("; show formula x ; Printf .printf ")"

| Ev x → Printf .printf "Ev ("; show formula x ; Printf .printf ")"

| Neg x → Printf .printf "Neg ("; show formula x ; Printf .printf ")"

| Next x → Printf .printf "Next ("; show formula x ; Printf .printf ")"

| And (x , y) → Printf .printf "And ("; show formula x ; Printf .printf ", ";
show formula y ; Printf .printf ")"

| Or (x , y) → Printf .printf "Or ("; show formula x ; Printf .printf ", ";
show formula y ; Printf .printf ")"

| Until (x , y) → Printf .printf "Until ("; show formula x ; Printf .printf ", ";
show formula y ; Printf .printf ")"

| Iff (x , y) → Printf .printf "Iff ("; show formula x ; Printf .printf ", ";
show formula y ; Printf .printf ")"

| Imp (x , y) → Printf .printf "Imp ("; show formula x ; Printf .printf ", ";
show formula y ; Printf .printf ")"

3. This function takes a formula f and simplifies it according to the laws of Boolean algebra.

Module Ltl §4 2

let rec simp f =
match f with

Neg True → False

| Neg False → True

| Neg (Neg e) → simp e

| Neg e → Neg (simp e)
| And (, False) → False

| And (False,) → False

| And (True, e) → simp e

| And (e, True) → simp e

| Or (True,) → True

| Or (False, e) → simp e

| Or (, True) → True

| Or (e, False) → simp e

| Or (a, b) → Or (simp a, simp b)
| And (a, b) → And (simp a, simp b)
| Imp (a, b) → simp (Or (Neg a, b))
| Iff (a, b) → simp (And (simp (Imp (a, b)), simp (Imp (b, a))))
| → f

4. Returns the closure of LTL formula f in the form of a list, e.g., closure (Glob (Var "a"))
would return [Var "a"; Glob (Var "a")].

let rec closure f =
match f with

And (a, b) → f :: (closure a)@(closure b)
| Or (a, b) → f :: (closure a)@(closure b)
| Var a → [Var a]
| Neg a → f :: (closure a)
| Imp (a, b) → closure (simp (Imp (a, b)))
| Iff (a, b) → closure (simp (Iff (a, b)))
| Next a → f :: (closure a)
| Until (a, b) → f :: (closure a)@(closure b)
| Glob a → f :: (closure a)
| Ev a → f :: (closure a)
| → [f ; Neg f]

5. Returns a list of used variables in a formula f , e.g., if f is Glob (Var "a"), then [Var "a"]
is returned.

Module Aba §6 3

let rec variables f =
match f with

| And (a, b) → (variables a) @ (variables b)
| Until (a, b) → (variables a) @ (variables b)
| Or (a, b) → (variables a) @ (variables b)
| Glob a → variables a

| Neg a → variables a

| Ev a → variables a

| Next a → variables a

| Var x → [Var x]
| → []

Module Aba

6. In a sense, this function is the “heart” of the program, although one of the most easy
to write bits of code, actually. target takes some state f , an LTL formula, and some list of
variables, s . We have s ⊆ Σ, where Σ = 2AP is an alphabet consisting of the powerset of a
set of variables.

target basically computes the successor state for f upon processing the input s .1

let rec target f s =
match f with

Var a →
if (List .exists ((=) (Var a)) s) then True else False

| And (a, b) → Ltl .simp (And (target a s , target b s))
| Or (a, b) → Ltl .simp (Or (target a s , target b s))
| Until (a, b) →

Ltl .simp (Or (target b s , (Ltl .simp (And (target a s , Until (a, b))))))
| Imp (a, b) → target (Ltl .simp (Imp (a, b))) s

| Iff (a, b) → target (Ltl .simp (Iff (a, b))) s

| Next a → a

| Glob a → Ltl .simp (And (target a s , Glob a))

1Notice how close this function is to its corresponding mathematical definition of δ, the state transition
function for alternating Buchi automata:

δ(true, a) = true

δ(ϕ ∨ ψ, a) = δ(ϕ, a) ∨ δ(ψ, a)
δ(¬ϕ, a) = ¬δ(ϕ, a)
δ(Xϕ, a) = ϕ

δ(ϕUψ) = δ(ψ, a) ∨ δ(ϕ, a) ∧ ϕUψ . . . and so on.

Module Aba §7 4

| Ev a → Ltl .simp (Or (target a s , Ev a))
| Neg a → Ltl .simp (Neg (target a s))
| → f

7. transitions returns all the possible transitions within an alternating Buchi automaton
for a set of states states , where each element in the list is an LTL formula. Usually states

would contain the closure of some LTL specification. alphabet is the input alphabet of the
alternating Buchi automaton.

let rec transitions states alphabet =
match states with

[] → []
| s :: st →

let succ states = (List .map (fun p → s , p, (target s p)) alphabet) in

succ states @ (transitions st alphabet)

8. This function takes as input a list of formulas and prints it to standard output. No-
tice that the argument to show formula list will usually just contain elements of the form
Var string , since it is used to print an automaton’s input symbols which in turn, are elements
of an alphabet.

let rec show formula list =
function

| [] → Printf .printf ""

| x :: y :: xs → Ltl .show formula x ;
printf "; "; Ltl .show formula y ;
show formula list xs

| x :: xs → Ltl .show formula x ;
show formula list xs

9. show transitions takes a list of transitions, where each list element is a triple (ltl formula, [ltl formula

and prints it to standard output.

let rec show transitions =
function

| [] → Printf .printf ""

| (s , p, t) :: tt →
Printf .printf "[(";
show formula s ;
Printf .printf "), ["; show formula list p; printf "], (";
show formula t ;
Printf .printf ")]\n";
show transitions tt

Module Aba §10 5

10. succ states takes a list of transitions (of an alternating Buchi automaton) and some
state s ∈ LTL, and returns all immediate successor states of s , i.e., all states reachable via
taking one transition only.

let succ states t s =
let rt = List .filter (fun h → match h with (src, ,) →

if s = src

then true

else false) t in

List .map (fun h → match h with (, , dst) → dst) rt

11. unfold and or takes a list of LTL formulas whose elements may be conjunctions or
disjunctions of formulas. It returns the list of formulas, but all conjunctions and disjunctions
are “unfolded” in a sense that an entry a ∨ b becomes [a; b], respectively for ∧.

let rec unfold and or =
function

| [] → []
| (And (a, b)) :: ft → a :: b :: unfold and or ft

| (Or (a, b)) :: ft → a :: b :: unfold and or ft

| f :: ft → f :: unfold and or ft

12. Function returns true if state q ∈ LTL is reachable in a list of transitions t with initial
state i ∈ LTL, otherwise false.

let rec has path t i q =
if i = q then true

else

(∗ first, get all immediate successors of i: ∗)
let r = succ states t i in

(∗ we have to unfold all And and Or states: ∗)
let r = unfold and or r in

(∗ we have to remove cycles, or the algorithm does not terminate: ∗)
let r = List .filter ((6=) i) r in

match r with

[] → false

| →
if List .mem q r

then true

else List .for all (fun r → has path t r q) r

13. This function “prunes away” unreachable states and their respective transitions, where
t is a list of transitions of an alternating Buchi automaton, i ∈ LTL is the initial state of the

Module Ltl parser §14 6

automaton, and s a list of states of the automaton, where each si ∈ s is an LTL formula.2

let prune transitions t i =
(∗ first, compute a set of all reachable states: ∗)
let rs = List .filter (fun s → has path t i s) (closure i) in

(∗ then remove all transitions which do not cover any of those states: ∗)
List .filter (fun t → match t with (s , ,) →

if (List .mem s rs)
then true

else false) t

Module Ltl parser

14. Bit of an ugly definition to make a lexer consisting of the keywords in the given list.
lexer is basically a function which takes an input stream and produces an output token
stream.

let lexer =
Genlex .make lexer

["&"; "|"; "G"; "U"; "X"; "F"; "->"; "<->"; "True"; "False"; "("; ")"; "-"]

15. Definition of a recursive-descent stream parser. parse formula is a function which
takes a token stream and returns an LTL formula. It is mutually recursive, giving rise to
precedence of operators.

let rec parse atom = parser

| [〈 ’Kwd "-"; e1 = parse atom 〉] → Neg (e1)
| [〈 ’Ident c 〉] → Var c

| [〈 ’Kwd "("; e = parse formula; ’Kwd ")" 〉] → e

and parse formula = parser

| [〈 e1 = parse and ; stream 〉] →
(parser

| [〈 ’Kwd "|"; e2 = parse formula 〉] → Or (e1 , e2)
| [〈 ’Kwd "U"; e2 = parse formula 〉] → Until (e1 , e2)
| [〈 ’Kwd "->"; e2 = parse formula 〉] → Imp (e1 , e2)
| [〈 ’Kwd "<->"; e2 = parse formula 〉] → Iff (e1 , e2)
| [〈 〉] → e1) stream

2This shows again how sets are realised in terms of lists here.

Module Ltl2aba §16 7

and parse and = parser

| [〈 e1 = parse atom; stream 〉] →
(parser

| [〈 ’Kwd "&"; e2 = parse and 〉] → And (e1 , e2)
| [〈 〉] → e1) stream

| [〈 e1 = parse unary 〉] → e1

and parse unary = parser

| [〈 ’Kwd "G"; e1 = parse and 〉] → Glob (e1)
| [〈 ’Kwd "F"; e1 = parse and 〉] → Ev (e1)
| [〈 ’Kwd "X"; e1 = parse and 〉] → Next (e1)

Module Ltl2aba

16. The program’s main function. It accepts from the standard input a string which
contains an LTL formula. Then it converts this string into an ltl formula data type, and
prints the transitions of an alternating Buchi automaton corresponding to the formula to
the standard output.

let =
let formula =

Ltl parser .parse formula(lexer(Stream.of string Sys .argv .(1))) in

let alphabet = Set list .powerset (Ltl .variables formula) in

let all transitions =
transitions (closure formula) alphabet in

let min transitions = prune transitions all transitions formula in

Aba.show transitions min transitions

Index

Aba (module), 6, 16, 16
And , 1, 3, 6
closure, 4, 4, 13, 16
Ev , 1, 6
False, 1, 3, 6
Glob, 1, 6
has path, 12, 12, 13
Iff , 1, 4, 6
Imp, 1, 3, 4, 6
Ltl (module), 1, 6–8, 16, 16
Ltl2aba (module), 16

ltl formula (type), 1, 1
Ltl parser (module), 14, 16, 16
Neg , 1, 3, 4, 6
Next , 1

Or , 1, 3, 6
prune transitions, 13, 16
show formula, 2, 2, 8, 9
show formula list , 8, 8, 9
show transitions, 9, 9, 16
simp, 3, 3, 4, 6
succ states , 10, 12
target , 6, 6, 7
transitions, 7, 7, 16
True, 1, 3, 6
unfold and or , 11, 11, 12
Until , 1, 6
Var , 1, 4–6
variables, 5, 5, 16

8

